
Bits, Bytes and Integers

Computer Systems Organization (Spring 2016)
CSCI-UA 201, Section 2

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU)

Bits, bytes and bit-vectors

2

Everything is a bit

● Each bit is 0 or 1 (well, at least on our human interpretation of a bit)

● Everything on a computer is encoded as sets of bits:
○ programs: all instructions of a program stored on disk and running are represented using

binary sequences
○ data: the data that programs are manipulating are represented using binary sequences

(numbers, strings, characters, images, audio, ...)

● Why bits? Why binary system and not base 3 ,or base 4, or base 10?
○ Electronic Implementation
○ Easy to store with bi-stable elements
○ Reliably transmitted on noisy and inaccurate wires

3

Bytes

1 byte = 8 bits

Range of representable values:

● binary: 000000002 to 111111112
● decimal: 010 to 25510
● hexadecimal: 0016 to FF16

Hexadecimal: shorthand notation for binary (easier to write
one symbol than four) used by humans

● Base 16 number representation
● Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
● Write FA1D37B16 in C as

○ 0xFA1D37B
○ 0xfa1d37b

4

More than a byte: KB, MB, GB, ...

Confusion due to binary and decimal uses of Kilo-, Mega-, Giga- prefixes.

In this course, we will be using them in binary sense.

5

DNHI:

Convert the following numbers to the other two representations (by hand) and then
write a C program that does the same:

Binary: 101101010, 10001110010, 10101011010001, 100001

Decimal: 255, 64, 100, 1025

Hexadecimal: 0xab, 0x123, 0xff, 0xf0

6

Boolean algebra
Developed by George Boole in 19th century for logical operations. Claude E.
Shannon (1916–2001) adapted this concept to electrical switches and relays; this
eventually lead to our computers "speaking" binary.

AND

& 0 1

0 0 0

1 0 1

OR

| 0 1

0 0 1

1 1 1

NOT (complement)

~

0 1

1 0

XOR

^ 0 1

0 0 1

1 1 0

7

Bit-vector operations using Boolean operators

To operate on vectors of bits, a Boolean operation is applied to bits at
corresponding positions

Example:

 ~ 1100 = 0011

0110 & 1010 = 0010

0110 | 1010 = 1110

0110 ^ 1010 = 1100

These operators in C are called bitwise operators

Warning:

do not confuse bitwise operators (&, |, ~, ^) with logical operators (&&, ||, !)
8

DNHI:

Pick a bit vector, say 101110.
Xor it with an arbitrary other bit
vector b, save the result in r.
Xor r with b. What do you get?

Bit-vector operations using shift operators

Left Shift: x << y

● Shift bit-vector x left by y positions
● Throw away extra bits on left
● Fill with 0’s on right

Right Shift: x >> y

● Shift bit-vector x right by y
positions

● Throw away extra bits on right
● Logical shift: fill with 0’s on left
● Arithmetic shift: replicate most

significant bit on left
Example 1: x is 01100010
<< x << 3 is 00010000
>> (logical) x >> 2 is 00011000 (arith.) x >> 2 is 00011000

Example 2: x is 10100010
<< x << 3 is 00010000
>> (logical) x >> 2 is 00101000 (arith.) x >> 2 is 11101000

Warning: shifting the a value < 0 or >= word size is undefined in C.
9

Swapping values of variables without a temp

Swapping values of two variables normally requires a temporary storage

Using the bitwise exclusive or operator we can actually do this using only the
storage of the two bit-vectors

DNHI: Try it on paper with several different values to convince yourself that this
works and how/why.

10

Integer encoding

11

Encoding of Integers

Unsigned: Two's Complement (Signed):

Example: C short is 2 bytes long

Sign bit - for 2's complement notation it is the most significant bit (leftmost)

● 0 indicates non-negative number
● 1 indicates negative number

ToDo: try these formulas for w=5 just for practice. What is the integer encoded by
01011, 10010 using both unsigned and two's complement encodings?

12

Numerical Ranges

Unsigned:

 Umin = 0

 Umax = 2w - 1

Assume w = 5:

● smallest unsigned:

000002= 010

● largest unsigned:

111112 = 3110

13

Two's Complement:

 Tmin = -2w-1

 Tmax = 2w-1 - 1

Assume w = 5:

● smallest 2's comp:

100002 = -1610

● largest 2's comp:

011112 = 1510

Umax, Tmin, Tmax for standard word sizes

Notice:

● the range of 2's complement
values is not symmetric

 |Tmin| = |Tmax|+1

● for a given value of w

Umax = 2 * Tmax + 1

14

In C:

● To access the values of
largest/smallest values use
#include<limits.h>

● The constants are named
○ UINT_MAX
○ INT_MAX
○ INT_MIN

(these numbers are system
specific)

Comparison of Unsigned and Two's Comp.

15

Equivalence:

● Same encodings for nonnegative
values

● +/- 16 (in general 2^w) for negative 2's
comp and positive unsigned

Uniqueness:

● Every bit pattern represents unique
integer value

● Each representable integer has unique
bit encoding

Conversion Between
Signed and Unsigned Values

-not always a good idea

16

Signed and Unsigned in C

Constants

● By default, signed integers
● Unsigned with “U” as suffix: 0U, 4294967259U

Casting

● Explicit casting between signed & unsigned
○ int tx, ty;
○ unsigned ux, uy;
○ tx = (int) ux;
○ uy = (unsigned) ty;

● Implicit casting also occurs via assignments and function calls
○ tx = ux;
○ uy = ty;

17

Casting Surprises

If there is a mix of unsigned and signed in single expression, signed values
implicitly cast to unsigned, including expressions with logical comparison
operations <, >, ==, <=, >=.

What will the following code print?

18

-1 < 0 is true

-1 < 0u is false

DNHI: What does this code do?

1) Array indexes are always non-negative. So it should be a good idea to use
unsigned values to represent them. For example:

unsigned i;
short a[10] = {1,2,3,4,5,6,7,8,9,10};
for (i = 9; i >=0 ; i--)

 printf("%i, ", a[i]);
printf("\n");

What do you think, the above code fragment will do? Test it in a program.

2) Here is another program that seems like it should work. What does this do?
int i;
short a[10] = {1,2,3,4,5,6,7,8,9,10};
for (i = 9; i - sizeof(char) >= 0 ; i--)

 printf("%i, ", a[i]);
printf("\n");

19

Expanding, truncating

20

Sign Extension

TASK: Given a w-bit signed integer X, convert it to (w+k)-bit integer X' with
the same value.

Solution: make k copies of the sign bit

X = xw-1 xw-2...x1x0

X' = xw-1...xw-1xw-1 xw-2...x1x0

← k times →

21

Sign Extension

C automatically performs sign extension when converting from "smaller" to "larger"
data type.

22

Truncating

● Example: from int to short (i.e. from 32-bit to 16-bit)
● High-order bits are truncated
● Value is altered and must be reinterpreted
● This (non-intuitive) behavior can lead to buggy code!

Example:

int i = 1572539;
short si = (short) i;
printf(" i = %i\nsi = %i\n\n ", i, si);

prints
 i = 1572539
si = -325

23

Arithmetic Operations:
Negation, Addition, Multiplication,

(Multiplication using Shifting)

24

Negation

Task: given a bit-vector X compute -X

25

Solution: -X = ~X + 1

(negating a value can be done by computing its complement and adding 1)

Example: X = 0110012 = 2510

 ~X = 1001102 = -2610

 ~X+1 = 1001112 = -2510

Notice that for any signed integer X, we have ~X + X = 111...112 = -110

Addition for unsigned numbers

Standard addition function ignores carry bits and implements modular arithmetic:

UAdd(u , v) = (u + v) mod 2w

 100102 = 1810
 + 110112 = 2710
 1011012 = 4510
 011012 = 1310 = 4510 % 2

5

26

DNHI:
Show the results of adding the following
unsigned bit vectors. Assume w = 5.
111112 + 111112
001012 + 100102
101012 + 011112

Addition of signed numbers

● True sum requires w+1 bits, addition ignores the carry bit.
● If TAddw(u,v) >= 2w–1, then sum becomes negative (positive overflow)
● If TAddw(u,v) < –2w–1, then sum becomes positive (negative overflow)

 100102 = -1410
 + 110112 = -510
 1011012 = -1910
 011012 = 1310

27

DNHI:
Show the results of adding the following
signed bit vectors. Assume w = 5.
111112 + 111112
001012 + 100102
101012 + 011112

Multiplication

Task: Computing Exact Product of w-bit numbers x, y (either signed or unsigned)

Ranges of results:

● Unsigned multiplication requires up to 2w bits to store result:

0 ≤ x * y ≤ (2w – 1)2 = 22w – 2w+1 + 1

● Two’s complement smallest possible value requires up to 2w-1 bits:

x * y ≥ (–2w–1)*(2w–1–1)= –22w–2 + 2w–1

● Two’s complement largest possible value requires up to 2w bits (in one case):

x * y ≤ (–2w–1)2 = 22w–2

Maintaining exact results would need to keep expanding word size with each
product computed.

28

Multiplication signed/unsigned

Multiplication results for signed and unsigned bit vectors ignore the high order bits.

29

DNHI:
- Show the results of multiplying the following signed bit vectors. Assume w = 5.

111112 * 111112 00101 2 * 100102 101012 * 011112

- If you multiply two very large numbers (large enough that the product cannot be stored in w
bits), can you predict if the result is positive or negative?

Multiplication by power of 2 (left shift)

Multiplication by a power of two is equivalent to the left shift operation:

 u * 2k is the same as u << k

For example:

u << 3 == u * 8

(u << 5) – (u << 3) == u * 24

(u + (u << 1)) << 2 == u * 12

● Most machines shift and add faster than multiply
● Compiler convert some multiplication to shift operations automatically.

30

Division by powers of 2 (right shift)

Unsigned integer division by a power of two is equivalent to right shift

floor (u / 2k) is the same as u >> k

With signed integers, when u is negative the results are rounded incorrectly.

31

Memory Organization

32

Word size
Every computer has a “word size”
Word size determines the number of bits used to store a memory
address (a pointer in C)

● This determines the maximum size of virtual memory (virtual address space)
● Until recently, most machines used 32-bit (4-byte) words

Limits total memory for a program to 4GB (too small for memory-intensive
applications)

● These days, most systems use 64-bit (8-byte) words
(Potential address space ≈ 1.8 X 1019 bytes)
x86-64 machines support 48-bit addresses: 256 Terabytes

33

Word oriented memory organization

● Address of a word in memory is the
address of the first byte in that word.

● Consecutive word addresses differ by 4
(32-bit) or 8 (64-bit).

34

Note: memory
addresses are not

usually expressed in
decimal.

Byte ordering in a word
There are two different conventions of byte ordering in a word:

● Big Endian: Sun, PowerPC Mac, Internet
Least significant byte has highest address

● Little Endian: x86, ARM processors running Android, iOS, and Windows
Least significant byte has lowest address

Example:
variable x has 4-byte value of 0x01234567, address given by &x is 0x100

35

Byte ordering example

How are numbers stored in memory?

● Number in decimal: 321560
● Number in hex: 0x4E818
● Pad to 32-bits: 0x0004E818
● Split into bytes: 00 04 E8 18
● Big Endian byte order: 00 04 E8 18
● Little Endian byte order: 18 E8 04 00

(reverse bytes, not the content of bytes!)

36

DNHI:
For each of the following decimal numbers show how they would
be stored as bytes using Big Endian and Little Endian conventions.
Assume that the word size is 32 bits.
5789021, 10, 1587, 989795, 341, 2491

Examining Data Representation in C

typedef unsigned char * pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)

printf("%p\t0x%.2x\n",start+i, start[i]);
 printf("\n");
}

37

● Casting any pointer to unsigned char *
allows us to treat the memory as a byte array.

● Using printf format specifiers:
○ %p - print pointer
○ %x - print value in hexadecimal

Examining Data Representation in C

Running the following code

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

produces

int a = 15213;
0x7ffd1530b0ac 0x6d
0x7ffd1530b0ad 0x3b
0x7ffd1530b0ae 0x00
0x7ffd1530b0af 0x00

on Linux x86-64 PC on Sun Solaris machine (32-bit)

38

and

int a = 15213;
ffbffb4c 0x00
ffbffb4d 0x00
ffbffb4e 0x3b
ffbffb4f 0x6d

