Bits, Bytes and Integers

Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O'Hallaron (CMU) Mohamed Zahran (NYU)

- Each bit is 0 or 1 (well, at least on our human interpretation of a bit)
- Everything on a computer is encoded as sets of bits:
- programs: all instructions of a program stored on disk and running are represented using binary sequences
- data: the data that programs are manipulating are represented using binary sequences (numbers, strings, characters, images, audio, ...)
- Why bits? Why binary system and not base 3 , or base 4 , or base 10 ?
- Electronic Implementation
- Easy to store with bi-stable elements
- Reliably transmitted on noisy and inaccurate wires

More than a byte: $\mathrm{KB}, \mathrm{MB}, \mathrm{GB}, \ldots$

Confusion due to binary and decimal uses of Kilo-, Mega-, Giga- prefixes.
In this course, we will be using them in binary sense.

Binary	Decimal
$1 \mathrm{~KB}(1 \mathrm{KiB})=2^{\wedge} 10$ bytes $=1,024$ bytes	$1 \mathrm{~KB}=10^{\wedge} 3$ bytes $=1,000$ bytes
$1 \mathrm{MB}(1 \mathrm{MiB})=2^{\wedge} 20$ bytes $=1,048,576$ bytes	$1 \mathrm{MB}=10^{\wedge} 6$ bytes $=1,000,000$ bytes
$1 \mathrm{~GB}(1 \mathrm{GiB})=2^{\wedge} 30$ bytes $=1,073,741,824$ bytes	$1 \mathrm{~GB}=10^{\wedge} 9$ bytes $=1,000,000,000$ bytes
$1 \mathrm{~TB}(1 \mathrm{TBB})=2^{\wedge} 40$ bytes $=1,099,511,627,776$ bytes	$1 \mathrm{~TB}=10^{\wedge} 12$ bytes $=1,000,000,000,000$ bytes

Boolean algebra

Developed by George Boole in 19th century for logical operations. Claude E. Shannon (1916-2001) adapted this concept to electrical switches and relays; this eventually lead to our computers "speaking" binary.

DNHI:

Convert the following numbers to the other two representations (by hand) and then write a C program that does the same:

Binary: 101101010, 10001110010, 10101011010001, 100001
Decimal: 255, 64, 100, 1025
Hexadecimal: 0xab, 0x123, 0xff, 0xf0

Bit-vector operations using Boolean operators

To operate on vectors of bits, a Boolean operation is applied to bits at corresponding positions
Example:
$\sim 1100=0011$
$0110 \& 1010=0010$
0110 \& $1010=1110$
$0110 \wedge 1010=1100$

DNHI:

Pick a bit vector, say 101110 Xor it with an arbitrary other bit vector b, save the result in Xor r with b. What do you get?

These operators in C are called bitwise operators

Warning:

do not confuse bitwise operators (\&, |, ~, ^) with logical operators (\&\&, ||, !)

Bit-vector operations using shift operators

Left Shift: \quad x $\ll y$

- Shift bit-vector x left by y positions
- Throw away extra bits on left
- Fill with 0's on right

Example 1: x is 01100010
$\ll x \ll 3$ is 00010000
\gg (logical) $x \gg 2$ is 00011000 (arith.) $x \gg 2$ is 00011000
Example 2: x is 10100010
$\ll x \ll 3$ is 00010000
$\gg \quad$ (logical) $x \gg 2$ is $00101000 \quad$ (arith.) $x \gg 2$ is 11101000

Warning: shifting the a value <0 or $>=$ word size is undefined in \mathbf{C}.

Swapping values of variables without a temp

Swapping values of two variables normally requires a temporary storage
Using the bitwise exclusive or operator we can actually do this using only the storage of the two bit-vectors

```
void inplace_swap ( int * x, int * y ) {
    *y = *x ^ * y;
    *x = *x ^ * y;
    *Y = *x ^ * y;
}
```

DNHI: Try it on paper with several different values to convince yourself that this works and how/why.

Encoding of Integers

Unsigned:

Two's Complement (Signed):

$$
B 2 U(X)=\sum_{i=0}^{w-1} x_{i} \cdot 2^{i}
$$

$$
B 2 T(X)=-x_{w-1} \cdot 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \cdot 2^{i}
$$

Example: C short is 2 bytes long

	Decimal	Hex	Binary	
\mathbf{x}	15213	3B 6D	$00111011 \quad 01101101$	
y	-15213	C4 93	1100010010010011	

Sign bit - for 2's complement notation it is the most significant bit (leftmost)

- 0 indicates non-negative number
- 1 indicates negative number

ToDo: try these formulas for $w=5$ just for practice. What is the integer encoded by 01011, 10010 using both unsigned and two's complement encodings?

Numerical Ranges

Unsigned:
Two's Complement:
$U_{\text {min }}=0$
$\mathrm{T}_{\text {min }}=-2^{\mathrm{w}-1}$
$U_{\max }=2^{w}-1$
$T_{\text {max }}=2^{w-1}-1$

Assume w = 5:
Assume w = 5:

- smallest unsigned:

$$
00000_{2}=0_{10}
$$

- largest unsigned

$$
11111_{2}=31_{10}
$$

- smallest 2's comp

$$
10000_{2}=-16_{10}
$$

- largest 2's comp:
$01111_{2}=15_{10}$

Umax, Tmin, Tmax for standard word sizes

	$\mathbf{~}$			
	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	$\mathbf{6 4}$
UMax	255	65,535	$4,294,967,295$	$18,446,744,073,709,551,615$
TMax	127	32,767	$2,147,483,647$	$9,223,372,036,854,775,807$
TMin	-128	$-32,768$	$-2,147,483,648$	$-9,223,372,036,854,775,808$

Notice:

- the range of 2's complement values is not symmetric
\mid Tmin $|=|T \max |+1$
- for a given value of w

Umax $=2$ * $\operatorname{Tmax}+1$

In C:

- To access the values of largest/smallest values use \#include<limits.h>
- The constants are named
- UINT_MAX
- INT_MAX
- INT_MIN
(these numbers are system specific)

Comparison of Unsigned and Two's Comp.

\boldsymbol{X}	$\mathbf{B 2 U}(\boldsymbol{X})$	B2T (\boldsymbol{X})
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence:

- Same encodings for nonnegative values
- +/- 16 (in general $2^{\wedge} w$) for negative 2 's comp and positive unsigned

Uniqueness:

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Conversion Between Signed and Unsigned Values

-not always a good idea

Signed and Unsigned in C

Constants

- By default, signed integers
- Unsigned with "U" as suffix: 0U, 4294967259 U

Casting

- Explicit casting between signed \& unsigned
- int tx, ty;
- unsigned ux, uy;
- $t x=$ (int) $u x$:
uy = (unsigned) ty;
- Implicit casting also occurs via assignments and function calls
- $\mathrm{tx}=\mathrm{ux}$;
- uy = ty;

Casting Surprises

If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned, including expressions with logical comparison operations <, >, ==, <=, >=.

What will the following code print?

```
if ( -1<0)
    printf ("-1< 0 is true");
                                    -1<0 is true
else
    printf ("-1<0 is false");
if (-1< OU )
    printf ("-1< < O is true");
    printf ("-1 < OU is false");

\section*{DNHI: What does this code do?}
1) Array indexes are always non-negative. So it should be a good idea to use unsigned values to represent them. For example:
```

unsigned i;
short a[10]={1,2,3,4,5,6,7,8,9,10};
for (i = 9; i >=0 ; i--)
printf("%i, ", a[i]);
printf("\n");

```

Expanding, truncating

\section*{What do you think, the above code fragment will do? Test it in a program}
2) Here is another program that seems like it should work. What does this do?
int i;
short \(\mathrm{a}[10]=\{1,2,3,4,5,6,7,8,9,10\}\);
for (i \(=9\); \(i\) - sizeof(char) \(>=0\); i-- )
printf( "\%i, ", a[i] );
printf("\n");

\section*{Sign Extension}

TASK: Given a w-bit signed integer X , convert it to \((\mathrm{w}+\mathrm{k})\)-bit integer X ' with the same value.

Solution: make k copies of the sign bit
```

X = x wh-1 }\mp@subsup{x}{w-2}{}\cdots\mp@subsup{x}{1}{}\mp@subsup{x}{0}{

```

    - k times

```

short int x = 15213;
int ix = (int) x
short int y = -15213;
int ix = (int) y

```

\section*{Truncating}
- Example: from int to short (i.e. from 32-bit to 16 -bit)
- High-order bits are truncated
- Value is altered and must be reinterpreted
- This (non-intuitive) behavior can lead to buggy code!

Example:
```

int i = 1572539;
short si = (short) i;
printf(" i = %i\nsi = %i\n\n ", i, si);

```
prints
    \(\begin{aligned} i & =1572539 \\ i & =-325\end{aligned}\)
    si \(=-325\)

\section*{Sign Extension}

C automatically performs sign extension when converting from "smaller" to "larger" data type.
\[
\begin{aligned}
\text { short int } \mathrm{x} & =15213 ; \\
\text { int } i x & =(\text { int }) \\
\text { short int } y & =-15213 ; \\
\text { int } \quad \text { iy } & =\text { (int) } y ;
\end{aligned}
\]
\begin{tabular}{|l|r|r|rrr|}
\hline & Decimal & \multicolumn{2}{|c|}{ Hex } & \multicolumn{3}{|c|}{ Binary } \\
\hline \(\mathbf{x}\) & 15213 & 3B 6D & & 0011101101101101 \\
\hline\(i x\) & 15213 & 00 30 3B 6D & 000000000000000000111011 & 01101101 \\
\hline\(y\) & -15213 & C4 93 & & 11000100 & 10010011 \\
\hline\(i y\) & -15213 & FF FF C4 93 & 11111111 & 11111111 & 11000100 \\
\hline
\end{tabular}

\section*{Negation}

Task: given a bit-vector X compute -X

\section*{Addition for unsigned numbers}

Solution: \(\quad-X=\sim X+1\)
(negating a value can be done by computing its complement and adding 1)
Example: \(\mathrm{x}=011001_{2}=25_{10}\)
\[
\begin{aligned}
& \sim X=100110_{2} \\
& \sim-26_{10} \\
& \sim X+1=100111_{2}=-25_{10}
\end{aligned}
\]

Notice that for any signed integer \(X\), we have \(\sim X+X=111 \ldots 11_{2}=-1_{10}\)

\author{
Operands: w bits
}

True Sum: \(w+1\) bits
Discard Carry: keep w bit
UAddw \((u, v)\)


Standard addition function ignores carry bits and implements modular arithmetic:
\[
\operatorname{UAdd}(u, v)=(u+v) \bmod 2^{w}
\]
\begin{tabular}{rl}
\(10010_{2}\) & \(=18_{10}\) \\
\(+11011_{2}\) & \(=27_{10}\) \\
\({\frac{101101_{2}}{2}}^{+10101_{2}}=45_{10}=45_{10} \% 2^{5}\)
\end{tabular}
```

DNHI
Show the results of adding the following
unsigned bit vectors. Assume w=5.
111112 + vel111
111112 + 111112
101012 + 011112

```

\section*{Multiplication}

Task: Computing Exact Product of w-bit numbers \(x, y\) (either signed or unsigned)
Ranges of results:
- Unsigned multiplication requires up to 2 w bits to store result:
\[
0 \leq x * y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1
\]
- Two's complement smallest possible value requires up to \(2 \mathrm{w}-1\) bits:
```

x * y }\geq(-\mp@subsup{2}{}{W-1})*(\mp@subsup{2}{}{W-1}-1)=-2\mp@subsup{2}{}{2w-2}+\mp@subsup{2}{}{W-1

```
- True sum requires \(w+1\) bits, addition ignores the carry bit.
- If \(T A d d w(u, v)>=2^{w-1}\), then sum becomes negative (positive overflow)
- If TAddw \((u, v)<-2^{w-1}\), then sum becomes positive (negative overflow)
- Two's complement largest possible value requires up to \(2 w\) bits (in one case):
\[
\begin{aligned}
10010_{2} & =-14_{10} \\
+11011_{2} & =-5_{10} \\
\hline 101101_{2} & =-19_{10} \\
\hline 01101_{2} & =13_{10}
\end{aligned}
\]

\section*{DNH:}

Show the results of adding the following signed bit vectors. Assume \(w=5\).
\(11111_{2}+11111\) \(00101^{2}+10010\) \(10101_{2}+01111_{2}\)

\section*{Multiplication signed/unsigned}

Operands: \(w\) bits
u \begin{tabular}{|l|l|l|l|}
\(\square 1\)
\end{tabular} * \(v \quad \square \square 1 \quad \cdots \quad \square \square \square\)

True Product: \(2^{*} w\) bits \(u\)\(\square \mid-\) \(\operatorname{Mult}(u, v) \square 1 \square\)
Discard w bits: keep w bits
(1)

Multiplication results for signed and unsigned bit vectors ignore the high order bits.

DNHI:
Show the results of multiplying the following signed bit vectors. Assume \(w=5\). \(11111_{2} \times 11111_{2}-00101_{2} \times 10010\)
If you multiply two very large numbers (large enough that the product cannot be stored in w bits), can you predict if the result is positive or negative?

Unsigned integer division by a power of two is equivalent to right shift
```

floor (u / 2k) is the same as u >> k
floor (u / 2k) is the same as $u \gg k$

```

With signed integers, when \(u\) is negative the results are rounded incorrectly

\section*{Division by powers of 2 (right shift)}

Multiplication by power of 2 (left shift)

Multiplication by a power of two is equivalent to the left shift operation:
\[
u * 2^{k} \text { is the same as } u \ll k
\]

For example:
```

u << 3 == u * 8

```
\((\mathrm{u} \ll 5)-(\mathrm{u} \ll 3)==\mathrm{u}\) * 24
\((u+(u \ll 1)) \ll 2==u * 12\)
- Most machines shift and add faster than multiply
- Compiler convert some multiplication to shift operations automatically.

\section*{Word size}

Word oriented memory organization
Note: memory
Note: memory
ddresses are not usually expressed in decimal.

\section*{Every computer has a "word size"}

Word size determines the number of bits used to store a memory address (a pointer in C)
- This determines the maximum size of virtual memory (virtual address space)
- Until recently, most machines used 32 -bit (4-byte) words Limits total memory for a program to 4GB (too small for memory-intensive applications)
\[
2^{32} B=\frac{2^{32} B}{2^{30} B / G B}=2^{2} G B=4 G B
\]
- These days, most systems use 64 -bit (8-byte) words
(Potential address space \(\approx 1.8 \times 10^{19}\) bytes)
x86-64 machines support 48-bit addresses: 256 Terabytes
\[
2^{64} B=\frac{2^{64} B}{2^{40} B / T B}=2^{14} T B
\]
- Address of a word in memory is the address of the first byte in that word.
- Consecutive word addresses differ by 4 (32-bit) or 8 (64-bit)

\section*{Byte ordering in a word}

There are two different conventions of byte ordering in a word:
- Big Endian: Sun, PowerPC Mac, Internet

Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows Least significant byte has lowest address

\section*{Example:}
variable \(x\) has 4 -byte value of \(0 \times 01234567\), address given by \(\& x\) is \(0 \times 100\)

\section*{Byte ordering example}

How are numbers stored in memory?
- Number in decimal: 321560
- Number in hex: 0x4E818
- Pad to 32-bits: \(0 \times 0004 \mathrm{E} 818\)
- Split into bytes: \(00 \quad 04\) E8 18
- Big Endian byte order: 0004 E8 18
- Little Endian byte order: 18 E8 0400 (reverse bytes, not the content of bytes!)

Big Endian


Little Endian
\begin{tabular}{|l|l|r|r|r|r|r|r|} 
n & \(0 \times 100\) & \(0 \times 101\) & \(0 \times 102\) & \(0 \times 103\) \\
\hline & & 67 & 45 & 23 & 01 & & \\
\hline
\end{tabular}

\section*{DNHI:}

For each of the following decimal numbers show how they would be stored as bytes using Big Endian and Little Endian conventions. Assume that the word size is 32 bits.
5789021, 10, 1587, 989795, 341, 2491

\section*{Examining Data Representation in C}
```

typedef unsigned char * pointer;
void show_bytes(pointer start, size_t len){
size_t i;
for (i = 0; i < len; i++)
printf("%p\t0x%.2x\n",start+i, start[i]);
printf("\n");
}

```
- Casting any pointer to unsigned char * allows us to treat the memory as a byte array
- Using printf format specifiers:
- \%p - print pointer
\(\circ\) \%x - print value in hexadecimal
int a = 15213;
\(0 \times 7 f f d 1530\) b0ac \(0 x 7 f f d 1530 b 0 a d\) 0x7ffd1530b0ae
0x7ffd1530b0af
on Linux x86-64 PC
produces
and

\section*{Examining Data Representation in C}

Running the following code
```

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) \&a, sizeof(int));

```
int \(a=15213\); ffbefb \(4 \mathrm{c} \quad 0 x 0\) ffbffb 4 d 0x00 ffbeff 4 ex 0 b
ffbefb4f \(0 x 6 d\)
on Sun Solaris machine (32-bit)
\begin{tabular}{lll}
\(0 \times 6 \mathrm{~d}\) & ffbffb 4 c & \(0 \times 00\) \\
\(0 \times 3 \mathrm{~b}\) & ffbffb 4 d & \(0 \times 00\) \\
\(0 \times 00\) & ffbffb 4 e & \(0 \times 3 \mathrm{~b}\) \\
\(0 \times 00\) & ffbffb 4 f & \(0 \times 6 \mathrm{~d}\)
\end{tabular}```

