
Lecture 1: Course Overview

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU) Well, not that kind of organization

Abstraction is good, but ...

● Most CS and CE courses emphasize abstraction
○ Abstract data types
○ Asymptotic analysis (like the Big-O notation)

● These abstractions have limits
○ Especially in the presence of bugs
○ Need to understand details of underlying implementations

● Useful outcomes from taking CS201
○ Become more effective programmers

■ Able to find and eliminate bugs efficiently
■ Able to understand and tune for program performance

● Prepare for later “systems” classes in CS
○ Compilers,
○ Operating Systems,
○ Networks,
○ Computer Architecture,
○ Embedded Systems,
○ etc.

This class adds to your CV:

● C programming
● Unix / Linux familiarity
● X86-64 assembly
● Low level debugging
● Reverse engineering
● Understanding of computer systems
● ...

Programmers' Reality #1:
ints are not integers, floats/doubles are not real numbers

Is x2 >= 0 ?

● in a math class: YES (when x is an integer or a real number)
● on a computer: IT DEPENDS on x

○ for example: when x is an int

30,000 * 30,000 = 900,000,000

50,000 * 50,000 = ???

Is (x+y) + z = x + (y+z)?

● in math class: YES (when x is an integer or a real number)
● on a computer: IT DEPENDS on x, y, z

○ for example: when x, y, z are of type float

(1e20 + -1e20) + 3.14 = 3.14

1e20 + (-1e20 + 3.14) = ???

32,767 + 1 = -32,766

Programmers' Reality #2:
you need to know assembly

● Chances are, you’ll never write programs in assembly
○ Compilers are much better & more patient than you are

● But: understanding assembly is key to machine-level execution
model
○ Debugging
○ Performance tuning
○ Writing system software (e.g. compilers , OS)
○ Reverse engineering software
○ Creating / fighting malware

Programmers' Reality #3:
memory matters

● Memory is not unbounded
○ It must be allocated and managed
○ All running applications and data have to be in memory, all applications can

address lots of memory. Where does it all go?

● Memory referencing bugs especially wicked
○ Effects are distant in both time and space (i.e., may not happen until much

later or in a different part of the program or data structure)

● Memory performance is not uniform
○ Cache and virtual memory effects can greatly affect program's performance
○ Adapting program to characteristics of memory system can lead to major

speed improvements

Example: Array access

#include <stdio.h>

int main () {
int d = 3;
printf("d = %d\n", d);
int a[1];
int i;
for (i = 0; i < 5; i ++) {

a[i] = 214748364;
}
printf("d = %d\n", d);

}

OUTPUT (one possibility):

d = 3
d = 214748364

Memory referencing errors

● C and C++ do not provide any memory protection
○ Out of bounds array references
○ Invalid pointer values
○ Abuses of malloc/free

● Can lead to nasty bugs
○ Whether or not bug has any effect depends on system and compiler
○ Action at a distance

■ Corrupted object logically unrelated to one being accessed
■ Effect of bug may be first observed long after it is generated

● How can I deal with this?
○ Program in Java, Ruby, Python, ML, …
○ Understand what possible interactions may occur
○ Use or develop tools to detect referencing errors (e.g. Valgrind)

Programmers' Reality #4:
there is more to performance than asymptotic analysis

● (But do not tell your teachers in Data Structures and Algorithms
courses that I said that!)

● Constant factors matter too!
● Optimization has to happen at multiple levels: algorithm, data

representation, details of implementation.
● Optimizing implementation requires understanding of the

underlying system.
○ How programs are compiled and executed
○ How to measure program's performance and identify bottlenecks
○ How to improve performance without destroying code modularity and generality

Example:
What is Big-O notation of these two programs?

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

About 7 times faster on
Intel® Core™ i7-3930K CPU @ 3.20GHz × 12 .

WHY?

Programmers' Reality #5:
computers do more than execute programs

● They need to get data in and out
○ I/O system critical to program reliability and performance

● They communicate with each other over networks
○ Many system-level issues arise in presence of network

