Virtual Memory

Computer Systems Organization (Spring 2016)
CSCI-UA 201, Section 2

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)
Mohamed Zahran (NYU)
Virtualization

Virtualization of a resource: presenting a user with a different view of that resource
- intercept all accesses to the resource
- possibly reinterpret/wrap/... such accesses
- and pass them along to the resource

Examples:
- A wrapper function
- Virtual machine (just like the course machine)
- Access to hard drives (we/programs specify logical block number, not specific platter, cylinder, track number on the disk)
- Virtual memory (using virtual as opposed to physical addresses)
Virtual Address Space
A System Using Physical Addressing

Used in “simple” systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames
A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart-phones
- One of the great ideas in computer science
- (This is a big picture view; ignores caches, and other hardware elements that are design to reduce the time access to the main memory.)
Address Spaces

- Linear address space:
 Ordered set of contiguous non-negative integer addresses:
 \{0, 1, 2, 3 \ldots \}

- Virtual address space:
 Set of \(N = 2^n\) virtual addresses
 \{0, 1, 2, 3, \ldots, N-1\}

- Physical address space:
 Set of \(M = 2^m\) physical addresses
 \{0, 1, 2, 3, \ldots, M-1\}

\(M \neq N\)
\(N\) - determined by amount of memory on the system,
\(M\) - same for all processes
Why Virtual Memory (VM)?

- **Uses main memory efficiently**
 - Use DRAM as a cache for parts of a virtual address space

- **Simplifies memory management**
 - Each process gets the same uniform linear address space

- **Isolates address spaces**
 - One process can’t interfere with another’s memory
 - User program cannot access privileged kernel information and code
VM as a cache for disk
Conceptually, **virtual memory** is an array of \(N \) contiguous bytes stored on disk.

The contents of the array on disk are cached in **physical memory** (DRAM cache).

- These cache blocks are called **pages** (size is \(P = 2^p \) bytes)

![Diagram showing virtual memory and physical memory with virtual pages (VPs) and physical pages (PPs)]
DRAM Cache Organization

- **DRAM cache organization driven by the enormous miss penalty**
 - DRAM is about 10x slower than SRAM
 - Disk is about 10,000x slower than DRAM

- **Consequences**
 - **Large page (block) size**: typically 4 KB, sometimes 4 MB
 - Fully associative
 - Any VP can be placed in any PP
 - Requires a “large” mapping function – different from cache memories
 - Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
 - Write-back rather than write-through (defer writing to the disk as long as possible)
A **page table** is an array of page table entries (PTEs) that maps virtual pages to physical pages.

- Per-process kernel data structure in DRAM
Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

![Diagram showing virtual memory, physical memory, and page tables.]

- Virtual address
- Physical page number or disk address
- Memory resident page table (DRAM)
- Physical memory (DRAM)
Page Fault

Page fault: reference to VM word that is not in physical memory (DRAM cache miss)
Handling Page Fault

- Page miss causes page fault (an exception)
Handling Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
Handling Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
Offending instruction is restarted: page hit!

Key point: Waiting until the miss to copy the page to DRAM is known as demand paging
Allocating a new page (VP 5) of virtual memory.
Virtual memory seems terribly inefficient, but it works because of locality.

At any point in time, programs tend to access a set of active virtual pages called the **working set**

- Programs with better temporal locality will have smaller working sets

If (working set size < main memory size)

- Good performance for one process after compulsory (cold) misses

If (SUM(working set sizes) > main memory size)

- **Thrashing**: Performance meltdown where pages are swapped (copied) in and out continuously
VM for memory management
Each process has its own virtual address space

- It can view memory as a simple linear array (each process/programmer has the virtual view of memory, not the real one)
- Mapping function scatters addresses through physical memory
VM as a Tool for Memory Management

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times

- Sharing code and data among processes
 - Map virtual pages to the same physical page (here: PP 6)
Simplifying Linking and Loading

Linking
- Each program has similar virtual address space
- Code, data, and heap always start at the same addresses.

Loading
- `execve` allocates virtual pages for `.text` and `.data` sections & creates PTEs marked as invalid
- The `.text` and `.data` sections are copied, page by page, on demand by the virtual memory system
VM for memory protection
VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

Process i:

<table>
<thead>
<tr>
<th>SUP</th>
<th>READ</th>
<th>WRITE</th>
<th>EXEC</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>PP 6</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>PP 4</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>PP 2</td>
</tr>
</tbody>
</table>

Process j:

<table>
<thead>
<tr>
<th>SUP</th>
<th>READ</th>
<th>WRITE</th>
<th>EXEC</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>PP 9</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>PP 6</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>PP 11</td>
</tr>
</tbody>
</table>

Physical Address Space

- PP 2
- PP 4
- PP 6
- PP 8
- PP 9
- PP 11
Address translation (not really)
VM Address Translation

- **Virtual Address Space**
 - $V = \{0, 1, \ldots, N-1\}$

- **Physical Address Space**
 - $P = \{0, 1, \ldots, M-1\}$

- **Address Translation**
 - $\text{MAP}: V \rightarrow P \cup \{\emptyset\}$
 - For virtual address a:
 - $\text{MAP}(a) = a'$ if data at virtual address a is at physical address a' in P
 - $\text{MAP}(a) = \emptyset$ if data at virtual address a is not in physical memory

For details of this see the textbook and slides that are posted at the end of this presentation. We will not cover the details of the address translation.
Address translation
Address Translation With a Page Table

Virtual address

Page table base register (PTBR)

Virtual page number (VPN) Virtual page offset (VPO)

$n-1$ p $p-1$ 0

Page table

Valid Physical page number (PPN)

$n-1$ p $p-1$ 0

Physical page number (PPN) Physical page offset (PPO)

Valid bit = 1

Valid bit = 0: Page not in memory (page fault)

Physical page table address for the current process
Address Translation: Page Hit

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory
5) Cache/memory sends data word to processor

1) CPU sends virtual address to MMU
2) MMU fetches PTE from page table
3) MMU sends physical address to cache/memory
4) Cache/memory sends data word to processor

Diagram:
- CPU Chip
- CPU
- MMU
- Cache/Memory
- VA
- PTEA
- PTE
- PA
- Data
Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
Integrating VM and Cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
Page table entries (PTEs) are cached in L1 like any other memory word
 - PTEs may be evicted by other data references
 - PTE hit still requires a small L1 delay

Solution: **Translation Lookaside Buffer (TLB)**
 - Small set-associative hardware cache in MMU
 - Maps virtual page numbers to physical page numbers
 - Contains complete page table entries for small number of pages
Accessing the TLB

- MMU uses the VPN portion of the virtual address to access the TLB:

TLBT matches tag of line within set

Set 0

Set 1

Set T-1

TLBI selects the set

VPN

TLB tag (TLBT) TLB index (TLBI) VPO

n-1 p+t p+t-1 p p-1 0

T = 2^t sets
A TLB hit eliminates a memory access
A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
Suppose:
- 4KB (2^{12}) page size, 48-bit address space, 8-byte PTE

Problem:
- Would need a 512 GB page table!
 - $2^{48} \times 2^{-12} \times 2^3 = 2^{39}$ bytes

Common solution: Multi-level page table
Example: 2-level page table
- Level 1 table: each PTE points to a page table (always memory resident)
- Level 2 table: each PTE points to a page (paged in and out like any other data)
A Two-Level Page Table Hierarchy

Level 1

page table

- PTE 0
- PTE 1
- PTE 2 (null)
- PTE 3 (null)
- PTE 4 (null)
- PTE 5 (null)
- PTE 6 (null)
- PTE 7 (null)
- PTE 8
- (1K - 9) null PTEs

Level 2

page tables

- PTE 0
- ... PTE 1023
- PTE 0
- ... PTE 1023
- PTE 0
- ... PTE 1023

Virtual memory

- 0
- VP 0
- ... VP 1023
- ... VP 1024
- VP 2047
- Gap
- 1023 unallocated pages
- VP 9215
- ... 1 allocated VM page for the stack

2K allocated VM pages for code and data

6K unallocated VM pages

32 bit addresses, 4KB pages, 4-byte PTEs
Translating with a k-level Page Table

Page table base register (PTBR)

VIRTUAL ADDRESS

PHYSICAL ADDRESS