Bits, bytes and bit-vectors
Everything is a bit

- Each bit is 0 or 1 (well, at least on our human interpretation of a bit)

- Everything on a computer is encoded as sets of bits:
 - programs: all instructions of a program stored on disk and running are represented using binary sequences
 - data: the data that programs are manipulating are represented using binary sequences (numbers, strings, characters, images, audio, ...)

- Why bits? Why binary system and not base 3, or base 4, or base 10?
 - Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires
Bytes

1 byte = 8 bits

Range of representable values:

- binary: \(00000000_2\) to \(11111111_2\)
- decimal: \(0_{10}\) to \(255_{10}\)
- hexadecimal: \(00_{16}\) to \(FF_{16}\)

Hexadecimal: shorthand notation for binary (easier to write one symbol than four)

- Base 16 number representation
- Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
- Write \(FA1D37B_{16}\) in C as
 - 0xFA1D37B
 - 0xfa1d37b
More than a byte: KB, MB, GB, ...

Confusion due to binary and decimal uses of Kilo-, Mega-, Giga- prefixes.

In this course, we will be using them in binary sense.

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 KB (1KiB) = 2^{10} bytes = 1,024 bytes</td>
<td>1 KB = 10^3 bytes = 1,000 bytes</td>
</tr>
<tr>
<td>1MB (1MiB) = 2^{20} bytes = 1,048,576 bytes</td>
<td>1 MB = 10^6 bytes = 1,000,000 bytes</td>
</tr>
<tr>
<td>1GB (1GiB) = 2^{30} bytes = 1,073,741,824 bytes</td>
<td>1 GB = 10^9 bytes = 1,000,000,000 bytes</td>
</tr>
<tr>
<td>1TB (1TiB) = 2^{40} bytes = 1,099,511,627,776 bytes</td>
<td>1 TB = 10^{12} bytes = 1,000,000,000,000 bytes</td>
</tr>
</tbody>
</table>
DNHI:

Convert the following numbers to the other two representations (by hand) and then write a C program that does the same:

Binary: 101101010, 10001110010, 10101011010001, 100001

Decimal: 255, 64, 100, 1025

Hexadecimal: 0xab, 0x123, 0xff, 0xf0
Boolean algebra

Developed by George Boole in 19th century for logical operations. Claude E. Shannon (1916–2001) adapted this concept to electrical switches and relays; this eventually lead to our computers "speaking" binary.

<table>
<thead>
<tr>
<th></th>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>~</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Bit-vector operations using Boolean operators

To operate on vectors of bits, a Boolean operation is applied to bits at corresponding positions

Example:

\[\sim 1100 = 0011 \]
\[0110 \& 1010 = 0010 \]
\[0110 \mid 1010 = 1110 \]
\[0110 ^ 1010 = 1100 \]

These operators in C are called bitwise operators

Warning:

do not confuse bit-wise operators (\&, \mid, \sim, ^) with logical operators (&&, ||, !)
Bit-vector operations using shift operators

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left by \(y \) positions
- Throw away extra bits on left
- Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right by \(y \) positions
- Throw away extra bits on right
- Logical shift: fill with 0’s on left
- Arithmetic shift: replicate most significant bit on left

Example 1:
- \(x \) is 01100010
 - \(x << 3 \) is 00010000
 - (logical) \(x >> 2 \) is 00011000
 - (arith.) \(x >> 2 \) is 00011000

Example 2:
- \(x \) is 10100010
 - \(x << 3 \) is 00010000
 - (logical) \(x >> 2 \) is 00101000
 - (arith.) \(x >> 2 \) is 11101000

Warning: shifting the a value \(< 0\) or \(>=\) word size is undefined in C.
Swapping values of variables without a tmp

Swapping values of two variables normally requires a temporary storage.

Using the bitwise exclusive or operator we can actually do this using only the storage of the two bit-vectors.

```c
void inplace_swap ( int * x, int * y ) {
    *y = *x ^ * y;
    *x = *x ^ * y;
    *y = *x ^ * y;
}
```

DNHI: Try it on paper with several different values to convince yourself that this works and how.
Integer encoding
Encoding of Integers

Unsigned:

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two's Complement (Signed):

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

Example: C short is 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign bit - for 2's complement notation it is the most significant bit (leftmost)

- 0 indicates non-negative number
- 1 indicates negative number

ToDo: try these formulas for \(w=5\) just for practice. What is the integer encoded by 01011, 10010 using both unsigned and two's complement encodings?
Numerical Ranges

Unsigned:

\[\text{Umin} = 0 \]
\[\text{Umax} = 2^w - 1 \]

Assume \(w = 5 \):

- smallest unsigned:
 \[00000_2 = 0_{10} \]
- largest unsigned:
 \[11111_2 = 31_{10} \]

Two's Complement:

\[\text{Tmin} = -2^{w-1} \]
\[\text{Tmax} = 2^{w-1} - 1 \]

Assume \(w = 5 \):

- smallest 2's comp:
 \[10000_2 = -16_{10} \]
- largest 2's comp:
 \[01111_2 = 15_{10} \]
Umax, Tmin, Tmax for standard word sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
</tr>
</tbody>
</table>

Notice:

- the range of 2's complement values is not symmetric
 \[|T_{\text{min}}| = |T_{\text{max}}| + 1 \]
- for a given value of w
 \[U_{\text{max}} = 2 \times T_{\text{max}} + 1 \]

In C:

- To access the values of largest/smallest values use
 #include<limits.h>
- The constants are named
 - UINT_MAX
 - INT_MAX
 - INT_MIN
(these numbers are system specific)
Comparison of Unsigned and Two's Comp.

<table>
<thead>
<tr>
<th>X</th>
<th>$B2U(X)$</th>
<th>$B2T(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

Equivalence:
- Same encodings for nonnegative values
- +/- 16 for negative 2's comp and positive unsigned

Uniqueness:
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding
Conversion Between Signed and Unsigned Values

-not always a good idea
Signed and Unsigned in C

Constants

- By default, signed integers
- Unsigned with “U” as suffix: 0U, 4294967259U

Casting

- Explicit casting between signed & unsigned
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
- Implicit casting also occurs via assignments and function calls
 - tx = ux;
 - uy = ty;
Casting Surprises

If there is a mix of unsigned and signed in single expression, **signed values implicitly cast to unsigned**, including expressions with logical comparison operations <, >, ==, <=, >=.

What will the following code print?

```c
if ( -1 < 0 )
    printf ("-1 < 0 is true" ) ;
else
    printf ("-1 < 0 is false" ) ;

if ( -1 < OU )
    printf ("-1 < OU is true" ) ;
else
    printf ("-1 < OU is false" ) ;
```
DNHI: What does this code do?

1) Array indexes are always non-negative. So it should be a good idea to use unsigned values to represent them. For example:

```c
unsigned i;
short a[10] = {1,2,3,4,5,6,7,8,9,10};
for (i = 9; i >= 0 ; i-- )
    printf( "%i, ", a[i] );
printf("\n");
```

What do you think, the above code fragment will do? Test it in a program.

2) Here is another program that seems like it should work. What does this do?

```c
int i;
short a[10] = {1,2,3,4,5,6,7,8,9,10};
for (i = 9; i - sizeof(char) >= 0 ; i-- )
    printf( "%i, ", a[i] );
printf("\n");
```
Expanding, truncating
Sign Extension

TASK: Given a w-bit signed integer X, convert it to (w+k)-bit integer X' with the same value.

Solution: make k copies of the sign bit

$$X = x_{w-1} x_{w-2} \ldots x_1 x_0$$

$$X' = x_{w-1} \ldots x_{w-1} x_{w-1} x_{w-2} \ldots x_1 x_0$$

← k times →

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```
Sign Extension

C automatically performs sign extension when converting from "smaller" to "larger" data type.

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Truncating

- Example: from int to short (i.e. from 32-bit to 16-bit)
- **High-order bits are truncated**
- Value is altered and must be reinterpreted
- This (non-intuitive) behavior can lead to buggy code!

Example:

```c
int i = 1572539;
short si = (short) i;
printf(" i = %i\nsi = %i\n\n ", i, si );
```

prints

```plaintext
 i = 1572539
 si = -325
```
Arithmetic Operations:
Negation, Addition, Multiplication,
(Multiplication using Shifting)
Negation

Task: given a bit-vector X compute $-X$

Solution: $-X = \sim X + 1$

(negating a value can be done by computing its complement and adding 1)

Example: $X = 011001_2 = 25_{10}$

$\sim X = 100110_2 = -26_{10}$

$\sim X + 1 = 100111_2 = -25_{10}$

Notice that for any signed integer X, we have $\sim X + X = 111\ldots11_2 = -1_{10}$
Addition for unsigned numbers

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: keep w bits

Standard addition function ignores carry bits and implements modular arithmetic:

$$\text{UAdd}(u, v) = (u + v) \mod 2^w$$

- $10010_2 = 18_{10}$
- $+11011_2 = 27_{10}$
- $101101_2 = 45_{10}$
- $01101_2 = 13_{10}$

DNHI:
Show the results of adding the following unsigned bit vectors. Assume $w = 5$.

- $11111_2 + 11111_2$
- $00101_2 + 10010_2$
- $10101_2 + 01111_2$
Addition of signed numbers

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: keep \(w \) bits

- True sum requires \(w+1 \) bits, addition ignores the carry bit.
- If \(T\text{Add}_w(u, v) \geq 2^{w-1} \), then sum becomes negative (positive overflow)
- If \(T\text{Add}_w(u, v) < -2^{w-1} \), then sum becomes positive (negative overflow)

\[
\begin{array}{c}
10010_2 = -14_{10} \\
+ 11011_2 = -5_{10} \\
\hline
101101_2 = -19_{10} \\
01101_2 = 13_{10}
\end{array}
\]

DNHI:
Show the results of adding the following signed bit vectors. Assume \(w = 5 \).
11111_2 + 11111_2
00101_2 + 10010_2
10101_2 + 01111_2
Multiplication

Task: Computing Exact Product of w-bit numbers x, y (either signed or unsigned)

Ranges of results:

- **Unsigned multiplication** requires up to 2^w bits to store result:
 \[
 0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1
 \]

- **Two’s complement** smallest possible value requires up to 2^{w-1} bits:
 \[
 x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}
 \]

- **Two’s complement** largest possible value requires up to $2w$ bits (in one case):
 \[
 x \times y \leq (-2^{w-1})^2 = 2^{2w-2}
 \]

Maintaining exact results would need to keep expanding word size with each product computed.
Multiplication signed/unsigned

Operands: w bits

True Product: 2^w bits

Discard w bits: keep w bits

Multiplication results for signed and unsigned bit vectors ignore the high order bits.
Multiplication by power of two (left shift)

Multiplication by a power of two is equivalent to the left shift operation:

\[u \times 2^k \text{ is the same as } u \ll k \]

For example:

\[u \ll 3 = u \times 8 \]
\[(u \ll 5) - (u \ll 3) = u \times 24 \]
\[(u + (u \ll 1)) \ll 2 = u \times 12 \]

- Most machines shift and add faster than multiply
- Compiler convert some multiplication to shift operations automatically.
Division by powers of 2 (right shift)

Unsigned integer division by a power of two is equivalent to right shift

$$\text{floor} \left(\frac{u}{2^k} \right) \quad \text{is the same as} \quad u \gg k$$

With signed integers, when u is negative the results are rounded incorrectly.
Memory Organization
Word size

Every computer has a “word size”

Word size determines the number of bits used to store a memory address (a pointer in C)

- This determines the maximum size of virtual memory (virtual address space)
- Until recently, most machines used 32-bit (4-byte) words
 Limits total memory for a program to 4GB (too small for memory-intensive applications)

\[
2^{32} B = \frac{2^{32} B}{2^{30} \frac{B}{GB}} = 2^2 GB = 4 GB
\]

- These days, most new systems use 64-bit (8-byte) words
 Potential address space ≈ 1.8 X 10^{19} bytes
 x86-64 machines support 48-bit addresses: 256 Terabytes

\[
2^{64} B = \frac{2^{64} B}{2^{40} \frac{B}{TB}} = 2^{14} TB
\]
Word oriented memory organization

- Address of a word in memory is the address of the first byte in that word.

- Consecutive word addresses differ by 4 (32-bit) or 8 (64-bit).
Byte ordering in a word

There are two different conventions of byte ordering in a word:

- **Big Endian**: Sun, PowerPC Mac, Internet
 Least significant byte has highest address
- **Little Endian**: x86, ARM processors running Android, iOS, and Windows
 Least significant byte has lowest address

Example:
variable x has 4-byte value of 0x01234567, address given by \&x is 0x100
Byte ordering example

Deciphering Numbers:

- Number in decimal: 321560
- Number in hex: 0x4E818
- Pad to 32-bits: 0x0004E818
- Split into bytes: 00 04 E8 18
- Big Endian byte order: 00 04 E8 18
- Little Endian byte order: 18 E8 04 00
 (reverse bytes, not the content of bytes!)

DNHI:
For each of the following decimal numbers show how they would be stored as bytes using Big Endian and Little Endian conventions. Assume that the word size is 32 bits.
5789021, 10, 1587, 989795, 341, 2491
typedef unsigned char * pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)
 printf("%p\t0x%.2x\n",start+i, start[i]);
 printf("\n");
}

- Casting any pointer to unsigned char * allows is to treat the memory as a byte array.

- Using printf format specifiers:
 - %p - print pointer
 - %x - print value in hexadecimal
Examining Data Representation in C

Running the following code

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

produces

```plaintext
int a = 15213;
0x7ffd1530b0ac    0x6d
0x7ffd1530b0ad    0x3b
0x7ffd1530b0ae    0x00
0x7ffd1530b0af    0x00
```

on Linux x86-64 PC

and

```plaintext
int a = 15213;
ffbffb4c
0x00
ffbffb4d
0x00
ffbffb4e
0x3b
ffbffb4f
0x6d
```

on Sun Solaris machine (32-bit)