

 CSCI-UA 102, In-class Group Activity

Recursion - More Magic (or not)
Due date: by the end of the recitation session

Introduction
The objective of this lab is to get more practice on solving problems using recursion. Some of the problems that
you will look at can be solved using iterations (and some of them should in practice be solved using iterations).
But in order to get more practice on recursion, we will look at their recursive solutions.

Worksheet: https://goo.gl/ElsOsv

Part 1
The binary search has a much better performance than a linear search (i.e., it finds things faster) when searching
in sorted lists of elements. The general idea if a binary search is that it eliminates half of the remaining elements
on each comparison, thus reducing the remaining search space much faster than a linear search.
Here is a general outline of the binary search algorithm. Assume that key is the element that we are searching for.

1. If the array is not empty, pick an element in the middle of the current array. Otherwise, go to step 5.
2. If that element is smaller than the key, discard all elements in the left half of the array (including the

element that was just used) and go back to step 1.
3. If that element is greater than the key, discard all elements in the right half of the array (including the

element that was just used) and go back to step 1.
4. If that element is equal to the key, return its index.
5. If the array is empty, the key is not there.

There are both, iterative and recursive implementations of this algorithm.

Consider the following array of integers. For each "search" indicate which of the array locations will be visited
(their values compared to the key) before the binary search finds the desired element or is able to declare that it is
not there. Specify how many comparisons would have been performed in a linear search. Specify how you
determine the middle element.

0 1 2 3 4 5 6 7 8 9 10

4 12 15 17 21 22 30 35 50 70 73

Search for 22, 73, 35, 12, 21.
Enters your answers in the worksheet.

Part 2
In this part we will revisit the CodingBat website to attempt some of the more advanced recursion problems. .

 This activity is licensed under CC BY-SA 4.0 license. 1/2

https://goo.gl/ElsOsv
http://creativecommons.org/licenses/by-sa/4.0/

 CSCI-UA 102, In-class Group Activity

The website tests your code using many inputs. Try to write code solutions to the following problems. Once you
have the correct version (that passes all the tests) or an almost correct version (that might be failing some of the
tests), take a screenshot of the screen and paste the image in the worksheet.

Here are some problems that you should look at. You do not need to solve all of them! Concentrate on two
problems (other than the first warm-up problem) and spend time as a group to try to come up with the best
solution that you can.

1. Group Sum, http://codingbat.com/prob/p145416 - this is just a warm up exercise, you can (and probably
should) see its solutions on the website.

2. Group Sum 5, http://codingbat.com/prob/p138907
3. Group Sum 6, http://codingbat.com/prob/p199368
4. Group Sum No Adjacent, http://codingbat.com/prob/p169605
5. Split Array, http://codingbat.com/prob/p185204
6. Split Odd 10, http://codingbat.com/prob/p171660
7. Split 5 3, http://codingbat.com/prob/p168295

 This activity is licensed under CC BY-SA 4.0 license. 2/2

http://codingbat.com/prob/p199368
http://codingbat.com/prob/p168295
http://codingbat.com/prob/p145416
http://codingbat.com/prob/p185204
http://codingbat.com/prob/p138907
http://creativecommons.org/licenses/by-sa/4.0/
http://codingbat.com/prob/p169605
http://codingbat.com/prob/p171660

