

 ​ CSCI-UA 102, In-class Group Activity

Comparable Interface - Code Reading and Exploration
Due date: by the end of the recitation session

Introduction
This activity sends you to a real life application to explore uses of the interface that you should have seen
previously, namely the ​Comparable<E>​ interface in Java.

Many open source projects host their source code in publicly accessible repositories. GitHub is an example of
such a repository. In this activity you will browse through the source code of a particular project hosted on
GitHub. You do not need a GitHub account to complete this activity.
The project that we will be looking at is OpenMRS, ​http://openmrs.org/​, and its GitHub repository is at
https://github.com/openmrs/openmrs-core

Worksheet​:​ ​https://goo.gl/GVlIhK

Part 1 Familiarize yourself with OpenMRS
Visit the websites (not the GitHub repository) of the OpenMRS project and try to learn what
the goal of the project is.
Go to the GitHub repository for OpenMRS (use the above link to the OpenMRS-core) and explore the
information available on the homepage for the project.
If you are unfamiliar with GitHub organization, you may need to spend a bit of time reading through that page. If
any member of your group has used/worked with GitHub before, they should explain to all other members how
the page is organized and what various things mean.

Answer the questions in Part 1 on the worksheet ​(they are here just as a reference for all group members):
1. What is the purpose/goal of this project?
2. How many programmers contributed code to the project?
3. When was the most recent modification to the codebase?
4. What is the username of the person who submitted the last change?

Part 2 Explore the code
Start with OpenMRS and search for the keyword "compareTo" (the case does not matter, but you are looking for
examples that match this spelling). Locate four different examples of a call to the ​compareTo method. For each
of them identify the type of the object that the method is called on. Explore (i.e., find the files and look at them)
the four classes that you identified.

Answer the questions in Part 2 ​on the worksheet (they are here just as a reference for all group members):
1. List the four different calls to the ​compareTo method. For each call specify the file name and line number

where it occurs and specify the type of object on which it is called (you may need to open the actual source
code file to figure out the type of the object).

2. For two of the classes that you named in the above table, find the following information.
a. What is the header for that class?
b. What is the type of the parameter to the ​compareTo​ method? How many parameters are there?
c. What is the return type of the ​compareTo​ method?

 This activity is licensed under ​CC BY-SA 4.0​ license. It is based on joint work of Prof. D. Burge and Prof. J. Klukowska

 1/3

http://openmrs.org/
https://github.com/openmrs/openmrs-core
https://goo.gl/GVlIhK
http://creativecommons.org/licenses/by-sa/4.0/

 ​ CSCI-UA 102, In-class Group Activity

Part 3 Familiar ​compareTo​ in the ​String​ class

Recall that you used the ​compareTo​ method with the ​String​ objects.

Here are the code fragments that show the header for the ​String class and the source code for the ​compareTo
method:

public​ ​final​ ​class​ ​String
 ​implements​ java​.​io​.​Serializable​,​ ​Comparable​<​String​>,​ ​CharSequence

public​ ​int​ compareTo​(​String​ anotherString​)​ ​{

 ​int​ len1 ​=​ value​.​length;
 ​int​ len2 ​=​ anotherString​.​value​.​length;
 ​int​ lim ​=​ ​Math​.​min​(​len1​,​ len2​);
 ​char​ v1​[]​ ​=​ value;
 ​char​ v2​[]​ ​=​ anotherString​.​value;
 ​int​ k ​=​ ​0;
 ​while​ ​(​k ​<​ lim​)​ {
 ​char​ c1 ​=​ v1​[​k​];
 ​char​ c2 ​=​ v2​[​k​];
 ​if​ ​(​c1 ​!=​ c2​)​ {
 ​return​ c1 ​-​ c2;
 }
 k​++;
 }
 ​return​ len1 ​-​ len2;
}

Read through this function and figure out what it is doing (try to figure out ​exactly​ what each line does and why).

Answer the questions in Part 3 ​on the worksheet (they are here just as a reference for all group members):
1. What is the type of the parameter and the return type for the ​compareTo​ method of the ​String​ class.
2. Given the following lines of code determine the return value of the call to ​compareTo method, i.e., what

value is stored in the variable ​result​? (Do not just run that code! Trace the ​compareTo method given in
the instructions.

 ​String​ str1 ​=​ ​"hello";
 ​String​ str2 ​=​ ​"help";
 ​int​ result ​=​ str1​.​compareTo​(​str2​);

3. How many iterations of the ​while loop in the ​compareTo method are executed when the above call is
made?

Part 4 ​Comparable<E>​ interface
Looking at all the examples above you learned a few things about the ​Comparable<E>​ interface.

Answer the questions in Part 4 ​on the worksheet (they are here just as a reference for all group members):
1. What do the headers of three classes (​String class and two classes you picked from OpenMRS) have in

common?
2. What can you say about the parameter type of the ​compareTo​ method?

 This activity is licensed under ​CC BY-SA 4.0​ license. It is based on joint work of Prof. D. Burge and Prof. J. Klukowska

 2/3

http://creativecommons.org/licenses/by-sa/4.0/

 ​ CSCI-UA 102, In-class Group Activity

3. What can you say about the return type of the ​compareTo​ method?

Part 5 Reading the API for ​Comparable<E>​ interface
The Java API documentation for ​Comparable<E> interface can be found at
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
Read through that documentation page. It may contain some material that is hard to follow at this point, but you
should be getting used to reading the documentation even if you do not understand every detail.

Consider this alternative definition of the ​compareTo​ method for the ​String​ class
(the modified lines are marked):

public​ ​int​ compareTo​(​String​ anotherString​)​ ​{

 ​int​ len1 ​=​ value​.​length;
 ​int​ len2 ​=​ anotherString​.​value​.​length;
 ​int​ lim ​=​ ​Math​.​min​(​len1​,​ len2​);
 ​char​ v1​[]​ ​=​ value;
 ​char​ v2​[]​ ​=​ anotherString​.​value;
 ​int​ k ​=​ ​0;
 ​while​ ​(​k ​<​ lim​)​ {
 ​char​ c1 ​=​ v1​[​k​];
 ​char​ c2 ​=​ v2​[​k​];
 ​if​ ​(​c1 ​!=​ c2​)​ {
 ​return​ c2 ​-​ c1​;​ ​// <--- modified
 }
 k​++;
 }
 ​return​ len2 ​-​ len1​;​ ​// <--- modified
}

Answer the questions in Part 5 ​on the worksheet (they are here just as a reference for all group members):
1. The first sentence of the description states that "This interface imposes a total ordering on the objects of

each class that implements it." What do you think is meant by "total ordering"?
2. The first sentence of the second paragraph states that "Lists (and arrays) of objects that implement this

interface can be sorted automatically by ​Collections.sort (and ​Arrays.sort​)." What do you think
is meant by "automatically"?

3. Locate the ​Method Detail for the ​compareTo method. Describe in your own words what is the meaning of
the value returned by this method?

4. If a call is made to ​Arrays.sort giving it as an argument an array of ​String objects, what do you think
will happen to an array of strings?

5. Assume that the ​compareTo method in the ​String class is modified as shown in the instructions (the
modified version). What do you think the result of calling ​Arrays.sort on an array of strings will be
now?

 This activity is licensed under ​CC BY-SA 4.0​ license. It is based on joint work of Prof. D. Burge and Prof. J. Klukowska

 3/3

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
http://creativecommons.org/licenses/by-sa/4.0/

