package project5; //---------------------------------------------------------------------------- //Sorts.java by Dale/Joyce/Weems Chapter 11 // //Test harness used to run sorting algorithms. //---------------------------------------------------------------------------- import java.util.*; import java.text.DecimalFormat; public class Sorts { static final int SIZE = 5000; // size of array to be sorted static int[] values = new int[SIZE]; // values to be sorted static void initValues() // Initializes the values array with random integers from 0 to 99. { Random rand = new Random(); for (int index = 0; index < SIZE; index++) values[index] = Math.abs(rand.nextInt()) % SIZE*3; } static public boolean isSorted() // Returns true if the array values are sorted and false otherwise. { for (int index = 0; index < (SIZE - 1); index++) if (values[index] > values[index + 1]) return false; return true; } static public void swap(int index1, int index2) // Precondition: index1 and index2 are >= 0 and < SIZE. // // Swaps the integers at locations index1 and index2 of the values array. { int temp = values[index1]; values[index1] = values[index2]; values[index2] = temp; } static public void printValues() // Prints all the values integers. { int value; DecimalFormat fmt = new DecimalFormat("00"); System.out.println("The values array is:"); for (int index = 0; index < SIZE; index++) { value = values[index]; if (((index + 1) % 10) == 0) System.out.println(fmt.format(value)); else System.out.print(fmt.format(value) + " "); } System.out.println(); } ///////////////////////////////////////////////////////////////// // // Selection Sort static int minIndex(int startIndex, int endIndex) // Returns the index of the smallest value in // values[startIndex]..values[endIndex]. { int indexOfMin = startIndex; for (int index = startIndex + 1; index <= endIndex; index++) if (values[index] < values[indexOfMin]) indexOfMin = index; return indexOfMin; } static void selectionSort() // Sorts the values array using the selection sort algorithm. { int endIndex = SIZE - 1; for (int current = 0; current < endIndex; current++) swap(current, minIndex(current, endIndex)); } ///////////////////////////////////////////////////////////////// // // Bubble Sort static void bubbleUp(int startIndex, int endIndex) // Switches adjacent pairs that are out of order // between values[startIndex]..values[endIndex] // beginning at values[endIndex]. { for (int index = endIndex; index > startIndex; index--) if (values[index] < values[index - 1]) swap(index, index - 1); } static void bubbleSort() // Sorts the values array using the bubble sort algorithm. { int current = 0; while (current < (SIZE - 1)) { bubbleUp(current, SIZE - 1); current++; } } ///////////////////////////////////////////////////////////////// // // Short Bubble Sort static boolean bubbleUp2(int startIndex, int endIndex) // Switches adjacent pairs that are out of order // between values[startIndex]..values[endIndex] // beginning at values[endIndex]. // // Returns false if a swap was made; otherwise, returns true. { boolean sorted = true; for (int index = endIndex; index > startIndex; index--) if (values[index] < values[index - 1]) { swap(index, index - 1); sorted = false; } return sorted; } static void shortBubble() // Sorts the values array using the bubble sort algorithm. // The process stops as soon as values is sorted. { int current = 0; boolean sorted = false; while ((current < (SIZE - 1)) && !sorted) { sorted = bubbleUp2(current, SIZE - 1); current++; } } ///////////////////////////////////////////////////////////////// // // Insertion Sort static void insertItem(int startIndex, int endIndex) // Upon completion, values[0]..values[endIndex] are sorted. { boolean finished = false; int current = endIndex; boolean moreToSearch = true; while (moreToSearch && !finished) { if (values[current] < values[current - 1]) { swap(current, current - 1); current--; moreToSearch = (current != startIndex); } else finished = true; } } static void insertionSort() // Sorts the values array using the insertion sort algorithm. { for (int count = 1; count < SIZE; count++) insertItem(0, count); } ///////////////////////////////////////////////////////////////// // // Merge Sort static void merge(int leftFirst, int leftLast, int rightFirst, int rightLast) // Preconditions: values[leftFirst]..values[leftLast] are sorted. // values[rightFirst]..values[rightLast] are sorted. // // Sorts values[leftFirst]..values[rightLast] by merging the two subarrays. { int[] tempArray = new int[SIZE]; int index = leftFirst; int saveFirst = leftFirst; // to remember where to copy back while ((leftFirst <= leftLast) && (rightFirst <= rightLast)) { if (values[leftFirst] < values[rightFirst]) { tempArray[index] = values[leftFirst]; leftFirst++; } else { tempArray[index] = values[rightFirst]; rightFirst++; } index++; } while (leftFirst <= leftLast) // Copy remaining items from left half. { tempArray[index] = values[leftFirst]; leftFirst++; index++; } while (rightFirst <= rightLast) // Copy remaining items from right half. { tempArray[index] = values[rightFirst]; rightFirst++; index++; } for (index = saveFirst; index <= rightLast; index++) values[index] = tempArray[index]; } static void mergeSort(int first, int last) // Sorts the values array using the merge sort algorithm. { if (first < last) { int middle = (first + last) / 2; mergeSort(first, middle); mergeSort(middle + 1, last); merge(first, middle, middle + 1, last); } } ///////////////////////////////////////////////////////////////// // // Quick Sort static int split(int first, int last) { int splitVal = values[first]; int saveF = first; boolean onCorrectSide; first++; do { onCorrectSide = true; while (onCorrectSide) // move first toward last if (values[first] > splitVal) onCorrectSide = false; else { first++; onCorrectSide = (first <= last); } onCorrectSide = (first <= last); while (onCorrectSide) // move last toward first if (values[last] <= splitVal) onCorrectSide = false; else { last--; onCorrectSide = (first <= last); } if (first < last) { swap(first, last); first++; last--; } } while (first <= last); swap(saveF, last); return last; } static void quickSort(int first, int last) { if (first < last) { int splitPoint; splitPoint = split(first, last); // values[first]..values[splitPoint - 1] <= splitVal // values[splitPoint] = splitVal // values[splitPoint+1]..values[last] > splitVal quickSort(first, splitPoint - 1); quickSort(splitPoint + 1, last); } } ///////////////////////////////////////////////////////////////// // // Heap Sort static int newHole(int hole, int lastIndex, int item) // If either child of hole is larger than item this returns the index // of the larger child; otherwise it returns the index of hole. { int left = (hole * 2) + 1; int right = (hole * 2) + 2; if (left > lastIndex) // hole has no children return hole; else if (left == lastIndex) // hole has left child only if (item < values[left]) // item < left child return left; else // item >= left child return hole; else // hole has two children if (values[left] < values[right]) // left child < right child if (values[right] <= item) // right child <= item return hole; else // item < right child return right; else // left child >= right child if (values[left] <= item) // left child <= item return hole; else // item < left child return left; } static void reheapDown(int item, int root, int lastIndex) // Precondition: Current root position is "empty". // // Inserts item into the tree and ensures shape and order properties. { int hole = root; // current index of hole int newhole; // index where hole should move to newhole = newHole(hole, lastIndex, item); // find next hole while (newhole != hole) { values[hole] = values[newhole]; // move value up hole = newhole; // move hole down newhole = newHole(hole, lastIndex, item); // find next hole } values[hole] = item; // fill in the final hole } static void heapSort() // Sorts the values array using the heap sort algorithm. { int index; // Convert the array of values into a heap. for (index = SIZE / 2 - 1; index >= 0; index--) reheapDown(values[index], index, SIZE - 1); // Sort the array. for (index = SIZE - 1; index >= 1; index--) { swap(0, index); reheapDown(values[0], 0, index - 1); } } ///////////////////////////////////////////////////////////////// // // Main public static void main(String[] args) { initValues(); //printValues(); System.out.println("values is sorted: " + isSorted()); System.out.println(); // make call to sorting method here (just remove //) // selectionSort(); // bubbleSort(); shortBubble(); // insertionSort(); // mergeSort(0, SIZE - 1); // quickSort(0, SIZE - 1); // heapSort(); //printValues(); System.out.println("values is sorted: " + isSorted()); System.out.println(); } }