
Assignment 4

Assignment 4: Trees
CS102: Data Structures, Fall 2013

Eric Koskinen and Daniel Schwartz-Narbonne

New York University

Due: 11:55PM (23:55:00), Thursday November 7th

Context

As the mobile app has been gaining popularity, users have been demanding features to allow them to

combine movie information with the movies on their disk drive. Consequently, the app will now need to be

able to build a representation of their disk drive. It immediately occurs to us that a Tree is the perfect data

structure for this task.

Scope

As in the previous assignment, we have done most of the coding for you. Your job is to implement a couple

of data-structure methods, as well as some application-level methods. In particular, you will implement a

tree findChild() method, as well as an application method which constructs a tree to represent files

organized in directories and subdirectories.

Task 1: Implement the findChild Tree Method

Your first task is to implement a member method of the Tree<T> class. In particular you will implement

findChild(T lab) which searches through the immediate children of the tree, and if it finds a child

subtree S such that S’s label is equal() to lab, it returns S. It returns null if no such subtree is found. For

example, let’s say we have a tree called myTree<String> whose label is “a” and has child subtrees as

follows:

If a user executed the following code:

 String labE = new String(“e”);

 return myTree.findChild(labE);

then the subtree consisting of the “e” node would be returned.

Task 2: Implement the displayXML Tree Method

In class we have examined pre-order and post-order traversals for displaying a tree. There are also cases,

such as in this assignment, where you may want to perform a traversal that has both pre- and post-order

Assignment 4 https://docs.google.com/document/d/1Cel6qiG5_yb2B2s7...

1 of 5 10/30/2013 12:09 PM

behavior. Let us return to the apartment example, where we have represented the inventory in a tree,

organized by location (room, closet, etc.). For example,

This tree can be displayed in XML format. XML documents are typically represented as follows:

 <?xml version=”1.0” encoding=”ISO-885901”?>

 <location name=”Apartment”>

 <location name=”Kitchen”>

 <location name=”Refrigerator”>

 <item name=”Milk”></item>

 <item name=”Eggs”></item>

 </location>

 </location>

 <location name=”Bathroom”>

 <item name=”Shower”></item>

 </location>

 </location>

Notice that there is a <location…> node for every location and an <item…> node for individual items.

Items are nested within Locations and Locations may themselves be nested in other Locations. There is one

root Location (in this case labeled “Apartment”).

Now contemplate how you would implement a displayXML() method for a tree that would generate this

output. Notice that, for a given node, some things need to be displayed before you explore the node’s

children, and other things need to be displayed after you explore the node’s children.

To simplify matters, we have already implemented two methods for the labels:

label.preString(); Generates a string to be displayed before child traversal.

label.postString(); Generates a string to be displayed after child traversal.

You will need to use these methods inside the displayXML() method of Tree<T>.

Task 3: Implement the insertPath() Application Method

The core challenge of the application is to construct a Tree representation of the file system. Much of the

work has been already done for you. You simply need to implement the following method:

 public void insertPath(Tree<FileNode> t, QueueList<String> filePathQueue)

This method constructs a subtree (or uses an existing subtree) to store the new file, represented by

Assignment 4 https://docs.google.com/document/d/1Cel6qiG5_yb2B2s7...

2 of 5 10/30/2013 12:09 PM

filePathQueue into Tree<FileNode> t. The input filePathQueue is a Queue consisting of the path to

the file. For example, if we are inserting the file “myDir/mySubDir/myFile”, this function would be called

with the following filePathQueue:

IN -> [“myFile” , “mySubDir” , “myDir”] -> OUT

This is convenient because a simple filePathQueue.dequeue() operation gives you the next

subdirectory or, in case filePathQueue is of size 1, the name of the file.

You will need to use recursion to implement this method. A few important things to keep in mind:

1. insertPath() will only be invoked with real files that are in your current working directory on

your computer (or in subdirectories thereof).

2. The final element of the filePathQueue will always be a file (not a directory).

Task 4: Testing
As always, testing is essential to this assignment. There are several things to test in this assignment:

1. The new Tree method findChild().

a. Tests should create Trees and exercise this method appropriately.

2. The new Tree method displayXML().

b. Tests should create Trees and generate XML. For this assignment you will not need to

automatically test that the XML is correct. However, you need to manually ensure that it is

correct. That is, you need to create Trees and ensure that the XML generated is correct.

When we grade your implementation, we will run specific tests and ensure that the XML

output is correct.

3. The new FileSystem method insertPath().

c. You will need to write user test that create FileSystem objects as follows:

FileSystem fs = new FileSystem(“path/…”)

d. You will need to provide a test directory structure consisting of directories, subdirectories,

and simple text files, and ensure that the correct Tree is built.

e. Your tests can examine the tree that has been constructed through the FileSystem method

fs getTree().

f. Our automatic tests will run your code on our directory structure, and your grade will depend

on whether the XML output exactly matches what is expected.

As with all assignments, you will use the suite of testing tools:

● TestHarness.java -- A TestHarness class which provides the infrastructure for the testing suite.

You do not need to modify this class.

● Test1.java -- An example of the kind of tests you should be creating.

● Test.java -- The main test function which registers individual tests and then invokes all of them.

You will need to extend the code in main in this class and register any tests that you create.

As with the previous assignment, we will be developing some incorrect implementations, and running your

tests cases on them. One of the jobs of your test suite is to try to catch all of our broken implementations.

Documentation

Assignment 4 https://docs.google.com/document/d/1Cel6qiG5_yb2B2s7...

3 of 5 10/30/2013 12:09 PM

In this assignment and henceforth, we will be using Javadoc:

http://en.wikipedia.org/wiki/Javadoc

For your convenience we have already documented the majority of the code in Javadoc form. You must be

consistent with this form.

Compilation and Execution

Your assignment will be automatically compiled as follows:

 javac *.java

Note that the Java compiler will automatically compile other classes that are inherited. Finally, your code will

be executed as:

 java Test

Note that your implementation will be built and executed against your test cases, as well as our test cases. It

is to your benefit to devise as many test cases as possible!

Submission

Please submit all .java and .txt files, as well as your report (whose filename should include your netid and

name), to NYUClasses.

In particular, you should have modified the following files (and no others)

● Tree.java

● FileSystem.java

● Test.java

● TestX.java -- Your test files

● mysample.zip -- A single zip file containing a directory called “mysample” which consists of

various subdirectories and files, used in testing FileSystem. Note: if you do not follow this naming

convention precisely, you will lose points.

Grading

Your assignment will be evaluated based on the following:

● Sufficiency of the tests you design (40%)

● Your implementation (50%)

● Clarity and organization of the code, and sufficiency of comments. (10%)

We look forward to your submission!

-- CS102 Course Instructors

For bonus points (mandatory for honours students), you may

Assignment 4 https://docs.google.com/document/d/1Cel6qiG5_yb2B2s7...

4 of 5 10/30/2013 12:09 PM

● Give a one-line Ocaml type definition for a generic Tree.

● Implement an XML output printer for your tree when your tree’s labels are strings.

Published by Google Drive – Report Abuse – Updated automatically every 5 minutes

Assignment 4 https://docs.google.com/document/d/1Cel6qiG5_yb2B2s7...

5 of 5 10/30/2013 12:09 PM

