Assignment 11 (The Last One)

Due Date for Programs: December 13, 2016

Problem 1 (10 points): What does this code do?

Take a look at the code below and the output that it produces. Try to figure out exactly what is going on. Explain what this code does.

```
def extract_alpha ( word ):
    clean_word = ""
    if len(word) == 0 :
        return clean_word
    if not word[0].isalpha() :
        return clean_word
    for c in word :
        if c.isalpha() or C==' -' or C==' _' or c=='\'' \
            or c== '\ \u2019' or c== '\ \u2018': #unicode for smart single quotes
                clean_word = clean_word + c
    if len(clean_word) == 1 and not clean_word.isalpha() :
        return ""
    return clean_word.lower()
phrase = "You're the guest of the Ford family - the Fords." + \
            "They live on a 4th floor of a three-story brownstone. " + \
            "Wow!!!"
words = phrase.split()
words_clean = []
for i in range(len(words)) :
    words_clean.append( extract_alpha( words[i] ) )
for i in range(len(words)) :
    print (format (words[i], "<15s"), format(words_clean[i], "<15s") )
```

Output:

You're	you're
the	the
guest	guest
of	of
the	the
Ford	ford
family	family
-	
the	the
Fords.	fords
They	they
live	live
on	on
a	a
4 th	floor
floor	of
of	a
a	three-story
three-story	

```
brownstone. brownstone
Wow!!! wow
```


Problem 2 (40 points): List Intersection

Write a program that prompts the user to enter two separate lists of numbers (the lists should be arbitrary length and the user input should be terminated by a negative value). Compute the intersection of the two lists (which values occur in both lists) - the program should produce a list of all the values that are in the intersection of those two lists.
Here is a sample run of the program:
Output:

```
Enter values for list 1 (terminate with -1):
    98
    67
    4 3
    18
    67
    98
    32
    17
    21
    -1
Enter values for list 2 (terminate with -1):
    87
    90
    65
    4 3
    1 7
    25
    6 7
    -1
List 1:
[98, 67, 43, 18, 67, 98, 32, 17, 21]
List 2:
[87, 90, 65, 43, 17, 25, 67]
The lists have 3 elements in common:
[67, 43, 17]
```

Comment your source code by 1) briefly describing parts of your program 2) including your name, the date, and your class section at top of your file (above everything else) 3) documenting all the functions following the IPO format

What to Submit

This program should be named (i.e., the name of the file containing the program should be) list_intersection.py. You only need to submit the source code for this problem.

73. Problem 3 (50 points): Word Count

Write a program that once again opens a text of a book. This program should count occurrences of a user specified word in the text. Your program should count exact matches as well as occurrences of that word as a substring in a larger word (for example 'cat' is a substring of 'catfood'). The program should be case-insesitive, i.e., 'cat', 'Cat' and 'CAT' should be counted all as exact matches of 'cat'.

The program should prompt the user for the name of the file containing the book and for the word that he/she wants to search for. The program should produce the results with counts for exact matches and substring matches as well as the total number of words in the input file.

Finally, the program should print a sorted list of all the UNIQUE words that were matched in the process. For example, if the user entered 'cat' and that produces 10 exact matches as well as 3 matches to 'catfood', 4 matches to 'cats' and one match to 'cataracts', then the list of unique words should contain ['cat', 'cataracts', 'catfood', 'cats'].
NOTE: you will need the code from problem 1 for solving this problem.
Here is a sample run of the program:

Output:

Enter the file name: moby_dick.txt
Enter the word to search for: whale

Here are the unique words:

fishersright-whale

 narwhalehoweversperm-whalemen
whale-boats
whale-books
whale-e
whale-fishery
whale-hunt
whale-jets
whale-lines
whale-ports
whale-ship's
whale-steak
whale-wise
whaleboats
whaled
whaleho
whaleman's
whalemoby
whalers
whaleships
whalesquid
whale's
horse-whales
narwhales
whale
whale-boat's
whale-craft
whale-fastener
whale-fleet
whale-hunter
whale-killer
whale-naturalists
whale-ship
whale-smitten
whale-surgeon
whalea
whaleboat's
whaledid
whalehow
whalemen
whalemodifying
whales
whaleshirr
whalethe
whale'sno

```
jonas-in-the-whale narwhale
right-whale sperm-whale
whale-balls whale-boat
whale-bone whale-bones
whale-cruisers whale-cry
whale-fish whale-fishers
whale-ground whale-hater
whale-hunters whale-hunting
whale-lance whale-line
whale-pike whale-pole
whale-ships whale-ships'
whale-spades whale-spout
whale-teeth whale-trover
whaleanother whaleas
whalebone
whaledrive whaleeven
whalein whaleman
whalemento whalemen's
whaleno whaler
whalesa whaleship
whalesmen whalesnow
whalethis whale'
```

Comment your source code by 1) briefly describing parts of your program 2) including your name, the date, and your class section at top of your file (above everything else) 3) documenting all the functions following the IPO format

What to Submit

This program should be named (i.e., the name of the file containing the program should be) word_counter.py. You only need to submit the source code for this problem.

What and how to submit?

You should submit the source code file for each program to NYU Classes by the due date stated above. Make sure that you get an email confirmation after you submit the assignment. You should keep that email until the grades are returned - it is your proof that the assignment was submitted! If you do not get an email confirmation, you should try to resubmit the assignment. If you do not get that email, it means that we did not get your assignment.

Name(s) and NetId(s):

What does this code do?
Describe in details what the function does to a word that is passed to it:

Describe what happens to the phrase variable:

