The Problem:

“Richard Bronowitz offers this radar detection problem. Assume that a radar has a detection thresh-
old requiring at least nine successful pulse returns out of 10 successive pulses. Furthermore, once
an object is is detected, it remains detected – i.e., there are no lost contacts. The probability that
a pulse is successfully detected is \(p \), and pulse results are independent. What is the probability of
detection given \(N \) pulses?”

Overview. This problem may be re-characterized and generalized:

Flip a biased coin with \(\Pr\{\text{head}\} = p \) until attainment of the goal “\(K \) heads occur among the final
\(M \) flips for the first time at the \(N \)th flip”. Determine the cumulative probability distribution for
random variable \(N \).

A Solution. This situation lends itself to modeling as an Absorbing Markov Chain\(^*\). Definitions of
states and transitions are:

State: Strings of length \(M \) of 0’s and 1’s, a 1 representing a head flip. Such strings containing \(K \) or
more 1’s are aggregated to constitute the one absorbing state \(G \), representing the attainment of the goal.
All other strings are individual transient states.

Transition: A flip of the coin. If \(b_1 b_2 \ldots b_M \) is a current transient state (\(b_i \) is a binary digit), then transition probabilities are

\[
\begin{align*}
\Pr\{b_2 \ldots b_M 1 \mid b_1 b_2 \ldots b_M\} &= p, \\
\Pr\{b_2 \ldots b_M 0 \mid b_1 b_2 \ldots b_M\} &= 1 - p = q, \quad \text{and} \\
\Pr\{G \mid G\} &= 1.
\end{align*}
\]

Very Small Example. With parameter values \(K = 2 \) and \(M = 3 \), the one-step transition matrix \(T \) is

\[
T = \begin{pmatrix}
G & 000 & 001 & 010 & 100 \\
000 & 1 & 0 & 0 & 0 \\
001 & 0 & q & p & 0 \\
010 & p & 0 & 0 & q \\
100 & 0 & q & p & 0
\end{pmatrix}
\]

Define state vector \(S_n \), the condition of the process at time \(n \) (after \(n \) flips), by

\[
S_n = (G(n), \ s_n(1), \ s_n(2), \ s_n(3), \ s_n(4)),
\]

in which \(G(n) = \Pr\{N \leq n\} \) and \(s_n(i) = \Pr\{\text{at time } n \text{ the process is in transient state } i\} \).

With initial state vector \(S_0 = (0,1,0,0,0,0) \), successive state vectors are determined by recursion:

\[
S_n = S_{n-1} T, \quad n = 1, 2, \ldots \quad (R)
\]

The sequence

\[
\{G(n) \mid n = 0, 1, 2, \ldots\}
\]

is the cumulative probability distribution for random variable \(N \).

\(^*\) See, for example, the chapter on Markov Chains in *Introduction to Operations Research* by Hillier &
With a CAS, symbolic values for \(G(n) \) can be obtained. Numerical values for \(G(n) \) can be obtained for a desired \(p \). Graphs of \(G(n) \) for \(p = 0.1 \) to \(p = 0.9 \) are given for the Very Small Example:

![Graphs of G(n) for p = 0.1 to p = 0.9](image)

Large Values for Parameters. For large values of \(K \) and \(M \) the approach above is impractical. In general, matrix \(T \) would have \(2^M - \sum_{i=K}^{M-1} \binom{M}{i} \) rows and columns. For values \(K = 9 \) and \(M = 10 \) in the original problem statement, the size of matrix \(T \) is \(1014 \times 1014 \). Because matrix \(T \) is sparse, with just two non-zero entries per row, an alternative is to replace the recursion (R) with explicit equations. For the Very Small Example and \(n = 1, 2, \ldots \), these equations are

\[
G(n) = G(n-1) + p \cdot [s_{n-1}(2) + s_{n-1}(3)],
\]
\[
s_n(1) = q \cdot [s_{n-1}(1) + s_{n-1}(4)],
\]
\[
s_n(2) = p \cdot [s_{n-1}(1) + s_{n-1}(4)],
\]
\[
s_n(3) = q \cdot s_{n-1}(2), \quad \text{and}
\]
\[
s_n(4) = q \cdot s_{n-1}(3).
\]
As the coin is flipped the Markov Chain transitions from state to state. Denote the transient states by \(B_1, B_2, \ldots \) The possible transitions are depicted here:

State Transition Diagrams (Transient States)

Next Flip a Tail (\(q \)) Next Flip a Head (\(p \))

\[
\begin{align*}
0b_1 \ldots b_{M-1} \quad &\quad 0b_1 \ldots b_{M-1} \\
\downarrow \quad &\quad \downarrow \\
b_1 b_2 \ldots b_{M-1} \quad &\quad b_1 b_2 \ldots b_{M-1} \\
\downarrow \quad &\quad \downarrow \\
1b_1 \ldots b_{M-1} \quad &\quad 1b_1 \ldots b_{M-1}
\end{align*}
\]

Those states which contain \(K \) (or more) 1’s are aggregated into a single absorbing state \(G \). If state \(B_{j_1} \) contains \(K \) 1’s, then \(B_{j_1} \equiv G \). In general, each state has two states preceding.

As earlier, \(s_n(i) \) is the probability that the system is in transient state \(B_i \) at time \(n \). Then equations replacing recursion (R) are of the form:

\[
\begin{align*}
s_n(j_0) &= q \cdot [s_{n-1}(i_0) + s_{n-1}(i_1)], \\
s_n(j_1) &= p \cdot [s_{n-1}(i_0) + s_{n-1}(i_1)].
\end{align*}
\]

Numerical Examples. Values for \(G(n) \), \(n = 0, 1, \ldots \), including initial parameter values \(K = 9 \) and \(M = 10 \), are given in the following figures. Variations in the three parameters \(K \), \(M \), and \(p \) are explored. In each plot, value \(n \) extends up the first flip on which \(G(n) \geq 0.998 \) (with a maximum 200 flips). For emphasis, figures displaying parameter variations have origins at \((0, 0.75) \).

Cumulative Probability Distribution \(G(n) \) with \(K = 9 \) and \(M = 10 \) (\(p = 0.9 \))
Cumulative Probability Distributions $G(n)$ with $M = 10$ and $p = 0.9$ ($K = 6[1][9]$)