Apo Sezginer, G'85

Problem S/O 3. Show that the solutions of $e^z = \frac{z-1}{z+1}$ are on the imaginary axis.

Solution

Let x and y be the real and imaginary parts of z, and z = x + iy be a root of :

$$f(z) = e^{z} - \frac{z-1}{z+1}$$
(1)

The root necessarily satisfies the weaker condition: $|e^z| = \left|\frac{z-1}{z+1}\right|$ which is equivalent to:

$$e^{2x} = \frac{(x-1)^2 + y^2}{(x+1)^2 + y^2} \tag{2}$$

For x > 0, $(x - 1)^2 < (x + 1)^2$ therefore $\frac{(x-1)^2 + y^2}{(x+1)^2 + y^2} < 1$. On the other hand, $e^{2x} > 1$ for x > 0. The direction of each inequality above reverses for x < 0. Let's summarize these results in a table:

<i>x</i> < 0	x > 0
$\frac{(x-1)^2 + y^2}{(x+1)^2 + y^2} > 1$	$\frac{(x-1)^2 + y^2}{(x+1)^2 + y^2} < 1$
$e^{2x} < 1$	$e^{2x} > 1$
$e^{2x} \neq \frac{(x-1)^2 + y^2}{(x+1)^2 + y^2}$	$e^{2x} \neq \frac{(x-1)^2 + y^2}{(x+1)^2 + y^2}$

Table 1. Eq. (2) cannot be satisfied for $x \neq 0$.

Since Eq (2) is a necessary condition, any solution of $e^z = \frac{z-1}{z+1}$ must have zero real-part.

This completes the proof of the original problem. Now we can have even more fun finding the roots. Since any root of f(z) is on the imaginary axis, we have:

$$e^{iy} = \frac{iy-1}{iy+1} \tag{3}$$

We observe that if *iy* is a root of f(z), so is -iy:

$$e^{iy} = \frac{iy-1}{iy+1} \Rightarrow e^{-iy} = \frac{iy+1}{iy-1} = \frac{-iy-1}{-iy+1}$$

Since z = 0 is not a root, and the set of roots have reflection symmetry, we search the roots on the positive imaginary axis. We take the logarithm of both sides of Eq (3):

$$e^{iy} = \frac{iy-1}{iy+1} = \frac{(y+i)^2}{y^2+1} = \exp\left(2i \operatorname{atan} \frac{1}{y}\right)$$
 (3b)

$$y = 2n\pi + 2 \operatorname{atan} \frac{1}{y} \tag{4}$$

$$g_n(y) \equiv 2n\pi + 2 \operatorname{atan} \frac{1}{y}$$
(5)

n is a non-negative integer. This transcendental equation is solved by the fixed-point iteration (W. Rudin, *Principles of Mathematical Analysis*, p. 220, 3^{rd} Ed. McGraw Hill, 1976):

$$y \leftarrow g_n(y) \tag{6}$$

The left-arrow denotes assignment. We iterate this assignment until convergence. We find a root y_n of Eq (4) for each nonnegative integer n. The roots of the original equation (1) are $z_n = \pm i y_n$; n = 0, 1, 2, ...:

n	Z _n
0	$\pm 1.30654237418881 i$
1	±6.58462004256417 i
2	±12.72324078413133 i
3	±18.95497141084159 i
4	±25.21202688855082 i
5	±31.47943871200974 i

Table 2. First five pairs of infinitely many solutions of $e^z = (z - 1)/(z + 1)$ to 14 decimal places.

Fixed-point iteration applies because $g_n(y)$ is a contraction map (that is, $|g'_n(y)| < 1$) for y > 1; and Eq (4) can have no solutions for $0 < y \le 1$. The latter statement is true because $g_n(y) \ge \frac{\pi}{2}$ for $0 < y \le 1$.

The roots of f(z) asymptote to: $z_n \cong \pm \left(2\pi i n + \frac{i}{\pi n}\right)$ as $|n| \to \infty$. The asymptote is obtained by solving the quadratic equation:

$$y \cong 2n\pi + \frac{2}{y}$$
 as $n \to \infty$,

which is the large y approximation to Eq (4).

15

10

5

-5

-10

-15

-20

-2

lmag(z) 0

Fig. 1

Fig. 2

Fig. 1 shows contours of equal magnitude (blue; logarithmically spaced) and equal phase (red) of the function $f(z) = e^z - \frac{z-1}{z+1}$. Contours of equal magnitude encircle the zeros (roots) and poles of f(z), and contours of equal phase issue from poles and zeros. There is a pole of f(z) at z = -1. Fig. 2 shows a color map of |f(z)| in logarithmic scale and the markers (x) show the roots listed in Table 2.