PUZZLE CORNER

e ———

and I was asked to write a page of

“Puzzle Corner” for the book they
are producing. In preparing for the col-
umn I reread the introductions from the
first seven years of “Puzzle Corner” and
I must confess that it was fun to escape
back to those earlier, more carefree
days. I found some of my old words
touching, some boring, and occasionally
some were quite surprising. I guess we
really do change. If any of you have
little vignettes of your past life stored
away, I recommend that, when no one
else is looking, you take some private
time with your former self.

This June is my class’s 25th reunion

Problems

F/M 1. Dave Wachsman sent us a hand
he played (as South) with his wife that
was reported in Truscott’s column in
the New York Times.

. North
4 82
v A72
¢ Q75 -
& KQ942
West East
4 973 4 65
v J865 v 104
¢ KJj1032 ¢ 984
& ] & A108653
South
4 AKQJ104
v KQ93
¢ A6
& 7

Both sides were vulnerable. The bid-
ding:

South West North - East
Y Pass 24 Pass
e Pass 3N.T. Pass
49 Pass. 4N.T. Pass
66 Pass Pass Pass

_How does Mr. Wachsman bring home
the slam after West leads the club jack?

! SEND PROBLEMS, SOLUTIONS,
AND COMMENTS TO ALLAN J. GOT-
TLIEB, '67, THE COURANT INSTI-
TUTE, NEW YORK UNIVERSITY, 251
MERCER ST., NEW YORK, N.Y. 10012,
OR TO: GOTTLIEB@NYU.EDU

ALLAN J. GOTTLIEB, '67

Objet Dart

F/M 2, John Prussing believes that the
following puzzle, which was actually on
the 1989 Putnam exam, seems about
right for “Puzzle Corner.”

A dart hits a square dartboard. If any
two points on the dartboard have the
same probability of being hit, what is
the probability that the dart will land
nearer to the center of the board than it
does to an edge?

F/M 3. Our last problem is from my
NYU colleague, Dennis Shasha, and can
be found in his book, The Puzzling
Adventures of Dr. Ecco.

You are given 20 coins. Some are fake
and some are real. If a coin is real, it
weighs between 11 and 11.1 grams. If it
is fake, it weighs between 10.6 and 10.7
grams. You are allowed 15 weighings
on a scale (not a balance). You are to
determine which coins are real and
which are fake.

Speed Department

Speedy Jim Landau wants to know why
the Kindom of Metrica chose to use a
long, flat piece of wood as their Royal
Standard of Length.

Solutions

OCT 1. We start with a chess problem (which may
well be a computer problem) from Victor Barocas.
It is well known that a knight can tour the chess
board, touching each square once and only once,
and beginning and ending on the same square.
Consider now the generalized knight K(m,n), m <
n, which moves m spaces along one axis of the
board and n spaces along the other (the normal
knight is K(1,2); also see diagram). For what val-
ues of m and n can the knight tour the board?

Moves available to K(2,3) at position e4.

The following solution is from Ken Kiesel:
Each time the knight moves one space in either
direction, it,moves to a square of the opposite
color. Therefore, m + n must be odd, or the knight
can reach only squares of one color.

A knight on one of the four center squares can
move a maximum distance of 4,4. Thus, the possi-
ble solutions are 0,1 0,3 1,2 1,4 2,3 and 34.

K{(0,1) is the only solution besides K(1,2), unless
there is a bug in my program. K(0,3) obviously
doesn't work.

Each corner square is accessible to only 2
squares. Therefore, one of these squares must be
used to enter the corner, and the other to exit it.
For K(3,4), diagonally opposite corners reach the
same 2 squares; therefore it cannot tour the board.
This leaves only K(1,4) and K (2,3).

The program I wrote found a solution to K(1,2)
in about 7 seconds on my XT clone. It eliminated
K(2,3) in less than that. In fact, K(2,3) can be
shown not to work quite easily. Starting at a8, the
possible first moves are to c5 or dé. Since the two
are equivalent, choose dé6. If the second move is
not to g8, g8 will be left with only one accesible
square, f5. It will be impossible to enter and exit it
later. Therefore, the second move must be to g8.
The only possible third move is to 15, If the fourth
move is not to h7, then it will have only one entry
square, f4. But if it is to h7, then b7 will have only
one entry square, cd.

With two rapid results from the program, plus a
test of the trivial K(0,1) and K(0,3) to further veri-
fy program operation, T launched it on K(1,4). It
finished after about 80 hours, having found no
solution.

OCT 2. Gordon Rice wonders how many Pythag-
orean triangles you can find in which one of the
three sides is 1991,

The following is from Jerry Grossman, who has

secret plans involving this problem:
There are five Pythagorean triangles one of whose
sides is 1991: (10860,1991,11041), (1980,209,1991),
(180180,1991,180191), (1982040,1991,1982041), and
(16320,1991,16441). The “easiest” way to learn this
is by asking a computer algebra package to solve
(in integers) x2+y2=1991Z and u2+19912=v2, |
asked Maple and it gave me these answers. Here
is how to do it more or less by hand:

Since 1991=11*181, we can look for three kinds
of solutions: primitive solutions (i.e., no common
factor to the three sides) in which one side is 1991,
solutions in which one side is 11 (and then multi-
ply all sides by 181 to obtain the desired triangle),
and solutions in which one side is 181 (then multi-
ply by 11).

The fundamental fact we need to use is that all
primitive triangles are of the form (2mn, m2-n2,
m2+n2), where m and n are relatively prime posi-
tive integers.

Let’s start with the solutions in which one side
is 11. Clearly 2mn cannot equal 11, nor can m2+n2.
So the only possibility here is that m=6 and n=5,
giving us the triangle (60,11,61), and hence the
solution to the original problem (60,11,61)*181=
(10860,1991,11041).

Next we look for solutions in which one side is
181. Again we cannot have 181=2mn, but we can
have 181=m2+n2, with m=10 and n=9 (this is
the only way). This gives a triangle (180,19,181),
yielding the second solution (1980,209,1991).
We can also have 181=m2-n2, only by letting
m=91 and n=90. This gives us the triangle
(16380,181,16381), and hence our third solution
(180180,1991,180191).

Finally we look for primitive solutions with one
side being 1991. Again, 1991 is not 2mn. A com-
uter search shows that 1991 cannot equal m2+n2,
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Symposium on Kids and Computers” in late
September. She delivered the keynote address for
the Conference on Cultural Issues in
Psycholanalytic Theory in New York in early
October. . . . Jessica Wang and Bruce Bimber, STS
graduate students, shared the first Siegel Prize for
their essay on the relationship of science and tech-
nology to political events in the U.S. The prize
was established in memory of Benjamin M. Siegel,
*38, PhD ’40, a pioneer in electron microscopy and
until his death in 1990, professor emeritus of
applied engineering and physics at Cornell.
Wang's essay recounted the security problems of
the scientist E.U. Condon during the loyalty
investigations of the McCarthy period. Bimber’s
essay dealt with the development, philosophy,
and politics of the Office of Technology
Assessment. . . . Barbara Mast, ‘86 (II), SM '88,
Wade Roush, and Ken White presented papers
on “Boundaries and Paradigms in Artificial
Intelligence Research” at the 4S meeting
November 15 at the Cambridge Center
Marriott.—Phyllis Klein, STS Program, MIT, Rm.
E51-128, Cambridge, MA 02139,

Deceased

The following deaths have been reported to the
Alumni/ae Association since the Review last went
to press:

G. Hobart Stebbins, ‘17; September 26, 1991;
Bellevue, Wash.

Henry R. Lacey, ‘18; March 13, 1991; Melbourne,
Fla

Webster W. Frymoyer, ‘21; October 5, 1991;
Arlington Heights, Il1.

Eastman Smith, ‘22; September 18, 1991;
Mountain Home, Ark.

Richard H. Frazier, ‘23; October 24, 1991;
Winchester, Mass.

George H. Fuller, ‘25; May 30, 1991; Colonia, N.J.
Hyman Katz, ‘25; January 6, 1987; North Quincy,
Mass.

Seward S. Merrell, ‘25; October 5, 1991; Saint
Petersburg, Fla.

W. Alan Williamson, ‘26; September 19, 1991
Marion E. Knowles, ‘27; September 18, 1991;
Akron, Ohio

Ralph W. Staber, ‘27; October 1, 1991; Newton
Highlands, Mass.

Howard S. Root, ‘28; Scptember 24, 1991;
Harrington Sound, Bermuda
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Henry D. Addison, ‘30; October 10, 1991;
Northampton, Mass.

Robert A. Lytle, 30; June 14, 1991; Grosse Point,
Mich.

Watson E. Slabaugh, ‘30; August 31, 1991;
Mansfield, Ohio

D. Malcolm Fleming, ‘33; August 12, 1991;
Rockville Centre, N.Y.

Charles N. Debes, ‘35; August 31, 1991; Rockford,
1L

Joseph K. Raes, ‘35; August 3, 1991; Las Vegas,
Nev.

Albert J. Del Favero, ‘36; September 18, 1991;
Vista, Calif.

O. William Muckenhirn, ‘37; September 2, 1991;
Toledo, Ohio

Robert D. Williams, ‘37; September 17, 1991; Lake
Helen, Fla.

Robert R. Chase, ‘39; January 12, 1991; Austin,
Tex.

Joseph W. Harrison, ‘39; October 14, 1991; New
London, N.H.

Charles A. Lawrence, ‘39; July 12, 1991; Seattle,
Wash.

Edward A. Ruckner, ‘41; September 12, 1991;
Annapolis, Md.

David G. Edwards, ‘42; December 29, 1990;
Pacific Grove, Calif.

Anthony P. Barbato, ‘44; July 17, 1991; Kettering,
Ohio

Warren H. Howard, ‘44; September 29, 1991;
Sunapee, N.H.

Louis H. Roddis, Jr., ‘44; September 15, 1991;
Charleston, S.C.

Henry F. Lloyd, ‘46; June 12, 1991; St. Augustine,
Fla.

Wilton M. Fraser, ‘47; February 14, 1991; Naples,
Fla.

C. Gregory Bassett, Jr., ‘48; September 25, 1991;
Hilton Head Island, S.C.

Aubert L. Mowry, ‘48; March 16, 1991;
Northridge, Calif.

Warren W. Houghton, ‘49; October 20, 1991;
Manchester, Mass.

Philip A. Lynn, '49; October 29, 1991; Reading,
Mass.

William B. Martz, ‘50; May 2, 1991; Winchester,
Mass.

Douglas Porter, ‘50; June 10, 1991; Watertown,
Mass.

Morgan L. Foster, '51; January 11, 1930;
Meadville, Pa. )
Peter Bishop, ‘54; September 29, 1991; Falmouth,
Maine

Francisco Torras, ‘54; October 3, 1991; Fairfield,
Conn.

Joseph A. Kissinger, Jr., ‘55; June 1, 1990; La
Habra, Va.

J. Willlam A, Tyler, ‘55; February 1, 1990;
Monroe, Chio

John A. Welsh, ‘55; September 26, 1991;
Richardson, Tex.

Herbert Curt Burrowes, Jr., ‘56; October 1, 1991;
Concord, Mass.

Stanley L. Lopata, ‘56; October 9, 1991; Natick,
Mass.

Charles V. Brown, ‘58; July 27, 1991; Bridge of
Allan, Stirling, Scotland

Marvin H. Cantor, '59; May 16, 1991; Rockville,
Md.

Irving Levinson, ‘61; February 26, 1991; Silver
Spring, Md.

Frederik O. Jeppesen, *64; April 23, 1991;
Denmark

Elsie P. Arnold, ‘65, February 25, 1991; Richmond,
Ontario

George T. Onega, ‘70; March 23, 1990; Slidell, La.
Ronald G. Jackson, ‘71; June 1, 1991; Pymble,
New South Wales, Australia

Daniel R. Siegel, ‘83; October 20, 1991; Wilmette,
1

Peter L. Armstrong, ‘84; August 27, 1991; Waban,
Mass.
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If 1991=m2-n2=(m+n)(m-n), then either we
have m+n=1991, with m-n=1; or we have
m+n=181 with m-n=11. This gives m=996,
n=995 in the first case; m=96, n=85 in the sec-
ond. The resulting triangles are our fourth
and fifth solutions: (1982040,1991,1982041)
and (16320,1991,16441).

OCT 3. That famous riverboat gambler, Bob
High, was inspired by 1989 JUL 5 to ask a
two-part question about shuffling cards. First,
in a shuffled deck, what is the average
(expected) number of cards occupying their
original position? (This is to ask, for n = 52,
what is the average number of fixed points of
a permutation of n things.) Second, which is
more likely in a random shuffle (permutation)
of n things: exactly one fixed point, or exactly
none?

Gordon Rice has a fine analytic proof, a
copy of which can be obtained from Faith
Hruby at Technology Review. Curiously, Rice
was in the process of formulating a similar
problem when he read OCT 3. The foliowing
shorter solution is from John Chandler, who
believes he might be a 25-year veteran as a
reader of “Puzzle Corner.”

Consider any specific card. After a random-
izing shuffle, its chance of being in its original
position is simply 1/52. Obviously, the a pos-
teriori probability of a second card being in
*its® original position will depend on the actu-
al position of the first card. Still, there is no
preferred treatment of any of the cards, so the
overall expectation of cards remaining in
position after the shuffle must be just 52 x
1/52 = 1. For n << 52, this is easily proven by
enumeration of all the permutations of n
things. Moreover, it is simple to write down
recursion formulas for the count of permuta-
tions with a given number of fixed points in
terms of the counts for smaller n. For exam-
ple, N(n,1) = N(n-1,0) * n, N(n,2) = N(n-2,0) *
n *(n-1) / 2, and so on. The table begins:

6

n= 01234 5 7

f=0 1 01 2 9 4 265 1854
1 1 0 3 8 45 264 1855

2 1 0 6 20 135 94

3 1 0 10 40 315

] 10 15 7

5 1 0 21

6 1 0

7 1

This suggests a further formula: N(n,0) =
N(n,1) + (-1)", and that can, in fact, be proved
by induction. The answer to the second ques-
tion is, thus, that exactly one fixed point is
(slightly) more probabile if n is odd and exact-
ly none if n is even.

Better Late Than Never

OCT SD. Dan Drucker notes a typo: S should
be (D-1)/2 not (D+1)/2.

Other Responders

Responsés have also been received from
Matthew Fountain, Coe Wadelin, Mayer
Wantman, Frank Carbin, Winslow Hartford,
John Woolston, Eric Lund, Jim Landau, Ken
Rosato, Steven Feldman, Rolph Person,
William Waite, Ronnie Haige, Eugene Sard,
Max Hailperin, Warren Jasper, Scott
Berhenblit, Avi Ornstein, Thomas Lewis, Alan
Friot.

Proposer’s Solution to Speed Problem

Because a plank’s constant.




