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PUZZLE CORNER

ALLAN ]. GOTTLIEB

How Smith Tried
(and Failed) to Vex Brown

ell, as this column is written it’s

two for two for the big apple.

Congratulations to the NY/N]
Giants on their victory in the superbowl.
Of course, by the time you read this the
hockey and basketball seasons will be
over and we will be two for four.

Problems

APR 1. We begin with a double-dummy
bridge problem from Doug Van Patter
who writes:

South is declarer at a six-heart con-
tract. Opening lead: A5. Make 12 tricks
against best defense.

AAKI104

YAJI0

¢ A75

& A53
A Q985 ‘AJ3
v2 vQ943
€)9432 1086
& Q92 *]865

A762

YK8765

¢ KQ

& K104

This hand occurred at a duplicate bridge
club. My partner was the only declarer
to make 12 tricks. In her successful line
of play, East made the ¥9 at the end of
the hand. After looking at this double-
dummy problem, another friend sug-
gested an entirely different approach. In
his line, East makes the ¥9 earlier in the
play. What are these two successful lines
of play?

APR 2. J. Ruoff has three circles of dif-
ferent radii and no circle contained
within another. He would like you to
construct a fourth circle tangent to the
other three.

SEND PROBLEMS, SOLU-
TIONS, AND COMMENTS TO
ALLAN |. GOTTLIEB, ‘67, THE
COURANT INSTITUTE, NEW
YORK UNIVERSITY, 251 MER-
CER ST., NEW YORK, N.Y.
10012.

APR 3. Nob. Yoshigahara reports that
the liquid crystal display on his calcu-
lator cannot draw vertical lines. This
leads to an interesting variant of cryp-
tarithmetic problems:

The diagram represents the product
of three-digit numbers by two-digit
numbers as displayed on Mr. Yoshiga-
hara’s calculator. What were the original
problems?

X == X -— X - =

APR 4. A stellar problem from Phelps
Meaker:

A star-shaped figure can be drawn
with two concentric circles, drawing
chords tangent to the inner circle, suc-
cessively around the outer one until they
meet the starting point. How many
points, blunt as they may be, result if
the inner circle is .66913 of the outer?
Compass and straightedge not allowed.
APR 5. Our final regular problem is from
the late John Rule:

Mr. Brown asked Mr. Smith to per-
form the following operations in the or-
der named, without Brown'’s being able
to see Smith’s work:

(a) Write any positive integer, preferably
of two digits to save labor on the part of
Smith.

(b) Multiply this number by the next
highest integer.

(c) Multiply the result of (b) by 225.

(d) Add 56 to the result of (c).

(e) Tell Brown all the result of (d) except
the two right-hand digits.

Smith gave 4064 in response to the re-
quest in (e), whereupon Brown, after a
moment’s computation, informed Smith
that his result after step (d) was 406406
and that the number he originally chose
was 42. Smith confirmed these state-
ments. How did Brown reach his con-
clusion?



Speed Department

SD 1. Jim Landau wants to know what
is small, yellow, and equivalent to the
Axiom of Choice.

SD 2. Howard Sard asks us to construct
a bridge deal such that North-South can
win 13 tricks in a suit contract against
best defense holding the minimum
number of high-card points.

Solutions

N/D 1. In a duplicate bridge tournament in which

every hand was played 20 times, the result at four
tables was a final contract of one club, played once
from each of the four sides. At four of the other
tables it was played at one diamond once from each
side. Likewise, at the remaining tables it was played
once from each side at one heart, one spade, and
one no-trump. Every one of these contracts was set.
Analysis of the hand proved that none of the de-
clarers made a mistake in play. Unfortunately, Mr.
Kells failed to see what the deal was. Can you re-
construct it? (That is, a deal where any contract
anybody bids can be set no matter how hard the
successful bidder tries to make it.)

The following solution is from the proposer, Law-
rence Kells:

6876
YAKQ5432
109
a— »— AAKQ5432
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Because of the symmetry of the hands, we need
only consider what happens to South at the five
possible contracts. At one club, West takes ¢ A and
¢dcK, then gives East a diamond ruff. East takes
#A, K, and AQ and leads a fourth spade, pro-
moting a trump in West’s hand as the seventh de-
fensive trick. At one heart, West takes A, ¢K,
and 4 Q and keeps leading diamonds until dummy
ruffs, promoting a trump trick for East. East will
also win any spades still in the dummy, resulting
in six side-suit tricks for the defense, as well as the
one trump trick. At one spade, West takes ¢ A and
. #K, then gives East a ruff. East cashes six more
spades for a three-trick set. At one diamond or one
no-trump, West simply takes seven diamond tricks.

Also solved by Winslow Hartford, Matthew
Fountain, and David Smith. Thomas Harriman has
responded.

N/D 2. A certain polyhedron has nine vertices, and
. each of its faces is a triangle. How many faces does
the figure have? If six faces meet at each of three
vertices, what common number of faces meet at
each of the other vertices?

Albert Mullin sent us the following solution:
We use Euler’s Theorem on polyhedral surfaces in
3-space:e + 2 = f + v. Note that this formula holds
for polyhedra that may not be either regular or even
convex! Indeed, an analogous formula holds for po-
lyhedra that cannot be continuously deformed into
a sphere. For example, on a torus a polyhedron sat-
isfies the relation: f + v — ¢ = 1. Analogous for-
mulae hold for polyhedra with genus > 1, too.
Further, Poincare generalized such formulae from
3-space to n-space. Counting edges, we have three
(per face), but this process counts cach edge twice;
hence, by Euler's formula:

W +2=f+9
=7

f = 14 (faces).
So the polyhedron has: e = 21 (edges), f = 14 (faces)

and v = 9 (vertices). Now count edges, based on
the information that six faces meet at cach of three
vertices, noting that each edge is common to tivo
vertices. Thus, 2 x 21 = 6 x 3 + x X 6orx = 4
(faces at each of their vertices). That is, four faces
meet at each of the other six vertices.

Also solved by Oren Cheyette, Winslow Hart-
ford,James Landau, Charles Piper, Chip Whiting,
Avi Omstein, Matthew Fountain, Thomas Harri-
man, and the proposer, Harry Zaremba.

N/D 3. What is the maximum length board L that
can pass through the corner shown?

1

David Smith can move pianos with the best of
them:

_The length of the line passing through the inter-

section of the inner walls, terminating at its inter-
section with the outer walls and making an angle
¢ with the horizontal wall in the diagram, is L =
a/sing + blcosd. The minimum value of L, which
is the maximum length of board that can pass
through, is obtained by sctting dL(d)dd = 0, from
which a/b = tan’$,. Thus ¢, = tan"! (a/b)** and
the maximum length board that can get around is
L. = alsind, + blcosd...

Joel Kalman notes a rule of thumb that the max-
imum length board that can be maneuvered around
a comner joining two hallways of equal width is L
= 2.8W.

Also solved by Erik Borne, Winslow Hartford,
Martin Carrera, Stu Lerner, Oren Cheyette, Michael
Jung, Jim Landau, Howard Lyons, Mary Linden-
berg, Steve Feldman, Chip Whiting, Charles Piper,
Robert Moeser, Shawn Gaither, Stuart Kurtz, Harry
Zaremba, Matthew Fountain, Thomas Harriman,
and the proposer, Rubin Cohen.

N/D 4. Any one of a group of aircraft may be re-
fueled from any other aircraft. Each has a fuel ca-
pacity sufficient for a flight one-fifth the distance
around the earth. Assuming that all have the same
constant ground speed and the same rale of fuel
consumption, that the only landing place and the
only available fuel supply are at the home base, and
that refueling time is negligible, find the minimum
number of planes necessary so that one plane may
fly around the carth and all return home safely.

The best sclution that I have seen is the one in
the American Mathematical Monthly that was men-
tioned when the problem was posed by Albert Mul-
lin. This solution, from the original proposer Fred
Jamison, requires just 75 planes. We reprint the so-
lution without change from the April 1951 issue:
The minimum number of planes required is not
more than 75.

It seems reasonable that a sufficient number of
planes would depart from the home base so that,
by refueling, one plane would be fueled to capacity
when two-fifths of the distance around the earth
and be met there by a plane flying in the opposite
direction. Let two-fifths of the distance be divided
into 12 equal legs. (Each leg is 1/30th of the earth’s
circumference, and a plane fueled to capacity has
enough fuel for six legs.) A schedule is given to
show how 77 planes can accomplish the desired
feat. Thirty-two planes depart at the same time; at

the end of the first leg 25 are fueled to capacity and

7 retumn; at the end of the second leg 5 turn back
after refueling 20 to capacity; but at the same instant
9 depart from the home base, and so on. Let the
amount of fuel necessary for one plane for one leg
be called a portion. Subscripts on numbers of re-
turning planes indicate portions of fuel remaining
at the end of the leg, negative subscripts on num-
bers of outbound planes indicate portions of fuel
below capacity at the beginning of the leg.

After six legs have been completed by the first
flight of planes it would be necessary to send planes
from the home base in the opposite direction to
meet the plane flying around the earth. For this
operation we have only to use the lines of the sched-
ule in reverse order. The numbers of planes in the
air at various times are now easily computed, and
itis found that no more than 77 are required at any
one time. However this number can be reduced by
one if on the eighth outbound flight of 10 planes,
one plane turns back at the midpoint of the first leg
after refucling the other 9 planes (with a similar
change in the analogous flight which is to meet the
home-coming plane). A further reduction of one is
possible if on the sixth, seventh, ninth and tenth
flight each, one plane is turned back at the midpoint
of the first leg; and if on the eighth flight one plane
is turned back at the quarter point and one at the
three-quarter point on the first leg.

It is reasonable to suppose that the minimum
number demanded in the proposal is less than 75,
since the schedule here presented makes the sim-
plifying assumptions that changes of direction and
refueling occur only when an integral number of
legs have been traversed and that all planes flying
at any instant are flying in the same direction (in-
dicated by the arrow). Units of time are indicated
vertically, distances (in legs) horizontally.
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Also solved by Michael Jung, Thomas Harriman,
and Matthew Fountain.

N/D 5. Find a method of converting an arbitrary
(legal) position in a tower of Hanoi puzzle into an-
other arbitrary position. In the tower of Hanoi puz-
zle, we have M disks of differing radii distributed
on three pegs with no disk on top of a smaller one.

The problem of finding a minimal solution appears
to be formidable. For example, it is clearly not al-
ways optimal to first move all the disks to one spin-
die.The proposer, Edmund Staples, first considers
a “natural conjecture,”” which at first appears 10 be
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minimal; however, Staples gives an example that
shows this to be nonminimal. The oplimal solution
is then derived. In detail, Mr. Staples writes:

The traditional tower of Hanoi problem asks how
to transfer N disks (numbered 1,2, . . . N, smallest
to largest) from spindle a to spindle b using a third
spindle c as spare, the moves subject to well-known
rules. In this note I discuss the computation of the
optimal solution when the start and end positions
are arbitrary distributions of disks over spindles.
The solution given here uses a function L which is
computed bottom-up rather than the completely
top-down recursion of the usual problem.

If m(k,x,y) denotes the move of disk k, 1 < k <
N, from spindle x to another spindle y with x,y =
a,b,c, and if S(N,x,y) denotes the sequence of moves
taking a tower of N disks from x to y (<> x), then
the traditional solution is given by the recursive
formula:

S(N,x,y) = S(N-1,x,2) m(N,x,y) S(N-1,z,y)

where the right hand side is a concatienation of
sequences; x,y,z are a,b,c in some order; and
S(O,x,y) consists of zero moves. If L(N,x,y) is the
;gn:l))er of moves in S(N,x,y), then L{N,x.y) =

In seeking a solution to the extension, a very nat-
ural first conjecture is that the above solution gen-
eralizes with the proviso that the kth recursive step
is skipped if disk k starts and ends in the same
position. Precisely, let P,Q represent positions of N
disks (N may vary with P or Q), let P(k) represent
the position of the first k disks of P, let sP represent
the spindle that disk N is on in P (disk N is the
largest disk of P), let T(x,k) denote the tower, or

ition, where the first k disks are all on x, and
let S(P,Q) denole a sequence of moves from P to Q.
The natural conjecture is that an optimum solution
is given recursively by:
S(P,Q) = S[P(N-1),Q(N-1)] if sP = sQ, or oth-
erwise
5(P,Q) = SIP(N -1),t] m(N,sP,sQ) S[t. QN - 1)]
wheret = Tz N~ and z<>sPorsQ. IfN = 0
then S(P,Q) trivally contains no moves. This clearly
is a solution; however it is not the optimum solution.
Consider the positions with N = 3 and P has disks
land 2ona, 3onb; whileQhas 1 and2on b, 3
on a. The solution just given yields the seven-move

uence:
S(P,Q) = m(l,a,b)m(2,a,c)m(l,b,c)m(3,b,a)m(1,c,a)
m(2,¢,b)m(1,a,b).
However, the optimum solution is the five-move
sequence:
S = m(3,b,c)m(1,a,c)m(2,a,b)m(1,c,b)m(3,c.a).
Thus, the natural conjecture is wrong. We may be
able lo improve upon it. We shall see, however,
that it comes very close to being correct. Note in
the last solution that the bottom disk moved twice.
Our essential observation will be that in any opti-
mum solution, the bottom disk need never move
more than twice. Adopting the notation:
S=50m1S2m2S3m3...mjSj
where Si = a sequence of moves of disks 1 . ..
N-1and mi = a move of disk N. If sP = sQ, itis
clear that mi’s have no effect; and if j > 0 then
$ =50S5152...5j
is a solution with fewer moves. Thus, if S is an
optimal solution from P to Q and sP’ = sQ, disk N
is never moved. If sP <> sQ, then obviously j >
0. We must have j < 3, however, for otherwise disk
N would move three or more times and repeat a
spindle x. By the argument just given, we could
drop the moves of disk N which are between the
two visits to x. Next, note that if P is a position and
its bottom disk N can be moved (say the move is
m{N,x,y]) then clearly we must have P(N-1) =
T(N - 1,2) where z <> x,y. From this we may give
a three-case representation to the optimal solution:
If sP = sQ (case A):
S(P,Q) = S[P(n-1),Q(N - 1)), otherwise
S(P.Q) = S[P(N-1),t)m(N,sP,sQ) S[t.QIN-1)]
(case B), or
S(P,Q) = S[P(N-1),t')m" S('t)Im"S[t",Q(N - 1)}
(case C)
where m' and m" are appropriate moves t,t't" are
towers. When sP <> sQ (case A), we must decide
between case B and case C. This is easy to do if we
can compute the function:

L(P,k.%) = number of moves in S[{P(k),T(k,x)).
It is easy to see that L(P,k,x) < 2", for we can do
no worse than the natural conjecture. If P is a tower
distinct from T, then equality holds. Applying the
representation to S[P(k),T(k,x)] and using this es-
timate allows us to rule out case C to obtain:
L(P.k,x) = L(P.k—1,x) if sP(k) = x, or
L(P.k,x) = L{P.k-1y) + 2, where y <> x, sP(k).
Once the function has been computed the decision
between case B and case C can be made. It is in-
teresting to note that this decision needs to be made
only once in any given problem, for the subsequent
recursive steps will give a P or a Q (or both) which
is a tower, so case C dan then be immediately rule
out as just noted. In teaching undergraduate data
structures, [ have found it an interesting program-
ming exercise to implement this solution. These po-
sitions are best represented not as lists of disks for
each spindle, as one might expect, but rather as an
array whose kth entry is a pointer to the spindle
that holds disk k:

Also solved by Oren Cheyette, Matthew Foun-
tain, Robert Moeser, Thomas Harriman, and Wins-
low Hartford.

Better Late Than Never
Y1986. Rik Anderson has responded.

1986 JAN 2. Norman Wickstrand has improved his
solution.

JAN 4. Thomas Brendle notes that the problem re-
quired calculating the ratio of the three largest circles’
area to the sector’s area. The largest ratio occurs at
21° and is approximately .7591.

F/M 4. Maithew Fountain and Harry Zaremba be-
lieve that the original published solution is correct.
Mr. Zaremba writes:

The method of solution used by Mr. Goldstein is
incorrectly applied and the velocity obtained is not
in the direction requested by the problem. Mr. Hen-
drickson unfortunately has a serious flaw in his de-
rivation of V and V,: the expressions given do not
have the dimensional units of velocity. Their units
would result in square centimeters per second.

--When Yy = L/2and Y = L/3, the correct expressions

for V and V, would be,

V = LY x VJ2 = 3V,/2, and

V, = YV3g(Y, - WL = V2gL6.

When L = 100 cm and g = 980 cvsec?, the hori-
zontal velocity of the rod's center of gravity is
V2 = V2 x 980 x 100712 = 36.9 cnv/sec

as given in the published solution.

A/S 1. Mark Seidel has found a simpler solution.
A/S 5. Alan Hodgkinson has responded.
OCT 2. Joel Feil has responded.

OCT 3. Joel Feil, John Cushnie, Mark Foster, and
Mary Lindenberg have responded.

OCT 5. Joel Feil and Mary Lindenberg have re-
sponded.

Proposers’s Solutions to Speed Problems
SD 1. Zorn's Lemon.

SD 2. Five high-card points suffice, as the following
deal illustrates: A109876
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hand each time by trumping a diamond or €lub.
South makes seven spades against any defense
by playing one round of trumps, then trumping
three rounds of hearts in dummy, returning to his
hand each time by trumping a diamond or club.
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