Puzzle Corner
Allan J. Gottlieb

Can You Beat the Chimpanzee?

Allan J. Gottlieb, '67, is associate research professor of mathematical sciences at the Courant Institute of Mathematical Sciences at New York University; he studied mathematics at M.I.T. and Brandeis. Send problems, solutions, and comments to him at the Courant Institute, New York University, 251 Mercer St., New York, N.Y. 10012.

Let me begin by reviewing the sizes of the various problem backlogs. My cup of regular problems runneth over (more than a two-year supply); I have about a half-year supply of "quickies" and bridge problems; and a year's worth of chess puzzles.

Emmet Dufy comments that about three years ago I indicated that an anthology of problems was being considered. Mr. Dufy then remarks, "What happened? Get going and pay off the mortgage!" What happened was that a reader had at first expressed interest in compiling a collection from Puzzle Corner and then changed his mind. As I have said before, the halls of New York University are not filled with publishers waiting their turns to bid on such an anthology.

Mr. Dufy also expressed an interest in Walter Penny's solution to the perfect squares problem 1981 JAN 2. If Mr. Penny will supply his method of solution, I will be glad to forward it to all interested parties.

Problems

FEB 1 Winslow Hartford enjoyed the following problem that appeared in Scientific American during Martin Gardner's tenure: On an island there are only two trees, A and B, and the remains of a gallows. According to an old map, treasure may be found by following these directions: start at the gallows, pace to A, turn 90° to the left, pace an equal distance, and drive a stake. Return to the gallows, pace to B, turn 90° to the right, pace an equal distance, and drive another stake. Treasure is buried at a point half-way between the two stakes. A treasure hunter, coming to the island, found the two trees, but all vestiges of the gallows were gone. None the less, he found the treasure. How did he do it?

FEB 2 Stuart Schulman offers a chess problem in the classic format: White to move and win.

FEB 3 John Prussing's chimpanzee is trained to throw darts at the patterned dartboard below. He can hit the dartboard with one out of every two throws, on the average. What is the probability that on a given throw the dart will hit the shaded region?

FEB 4 John Rule wants you to locate the point P in the plane of a given triangle ABC such that triangles PAB, PBC, and PCA have equal perimeters.

FEB 5 Jerome Taylor thinks our orbital space flights would be more interesting if done just above the surface of the earth. He writes, "What can be said about the time periods of surface orbits of spheres of the same density but of different sizes?"

Speed Department

FEB SD1 Emmet Dufy has only a compass and pencil and needs to draw a
circle and mark off a 90-degree arc. How can he do it?

FEB SD2 Here's one from Art Dela- grange that should help me decide on presents for my wife Alice (it is late November and this is written):

In the traditional Christmas carol, the young lady receives on the first day a partridge in a pear tree; on the second day two turtle doves and a partridge in a pear tree; and so forth until on the twelfth day she receives 12 drummers drumming, 11 pipers piping, 10 lords-a-leaping, 9 ladies waiting, 8 maids-a-milking, 7 swans a-swimming, 6 geese a-laying, 5 golden rings, 4 calling birds, 3 French hens, 2 turtle doves, and a partridge in a pear tree. Of what items did she receive most, and of what least?

Solutions

OCT 1 With the hands shown, East opens with a weak two-dimensional double (usually six cards, sometimes only five). South's final contract is six hearts.

The opening lead: ♦ 2. What line of play gives South the best chance of making this slam, given the knowledge that West has three trumps?

North:

♠ J 10 5 2
♥ 6 2
♦ 7 6 5 4
♣ K J

South:

♠ A K
♥ A K Q 5 4 3
♦ A 8 3
♣ A 9

Since East has most of the outstanding diamonds, West has more than a 25-percent chance of having ♦ Q and ♣ Q. In this case, Rev. Joseph Hahn's solution works: Play ♦ A. After trumps in three rounds, lead ♦ A and ♣ K, lead ♦ Q and finesse ♦ ♦ A. West will have to lead either a space to the ♦ 10 or a club to the ♦ K; in either case the two little diamonds are parked on these two black cards.

Also solved by Barbara Magid, John Rutherford, John Sticher, Allen Zikadin, Winslow Hartford, Linda Hicks, Mark Oshin, George Holderness, Matthew Fountain, Richard Hess, and the proposer, Doug Van Patter.

OCT 2 A cow is tethered to a circular silo in such a manner that the distance from the cow's mouth to the fixed tie-point is exactly 10 meters. If the circumference of the silo is exactly 20 meters, how much grazing area does the cow have? (A calculus solution was requested.)

The proposer solved this by treating the silo as an n-gon and taking the limit as n approaches infinity (not quite calculus but in the same spirit). Emmet Duffy's solution reprinted below converts the area of an involute to the volume of a pyramid which non-calculus solutions are known. Mr. Duffy writes:

The grazing area shown in the figure is a semicircle with radius 10 meters and two involutes. As the rope winds around the silo, the radius varies linearly from 0 to 10 as the angle varies from 0 to π. At a radius r, the area of an elementary sector is r² dr / 2. The area of the involute is the summation of r² dr for the involute is a pyramid with a square base of side 10 in meters and a height of v. Volume is 100π/3. Then the summation of r² dr is 100π/6, which is the area of the involute. The total area is then 2 x 100π/6 + 100π/2 = 2500π/3 = 261.9 square meters.

Also solved by Richard Hess, Winthrop Leeds, Matthew Fountain, Norman Wickstrand, Harry Zar- emba, and Mary Fenocchi.

OCT 3 Find an integer having the property that moving the rightmost digit to the leftmost slot yields a number exactly nine times the original number.

John Woolston and Edwin McMillan generalized the problem, and the following solution is from Harry Zar- emba: Let N be the required integer which in separate digit form is

\[\begin{align*}
N &= 10a_9 + 10^2a_8 + 10^3a_7 + \ldots + 10^9a_1 + 10a_0 + a_9 \\
&= 10^9 - 9a_9 + 10^2a_8 + 10^3a_7 + \ldots + a_1 \\
&= 10^9 - 9a_9 + 10^2a_8 + 10^3a_7 + \ldots + 10^9a_1 + 10a_0 + a_9
\end{align*} \]

From the condition of the problem, \(a_9 = 9 \).

(1)

If we substitute the digital form of the numbers into the latter relation and rearrange the terms so that only the \(a_9 \) terms remain on the right, we get

\[\begin{align*}
10^9 - 9a_9 &= 10^{10} - 10^9a_9 + 10^2a_8 + 10^3a_7 + \ldots + 10a_1 + a_0 \\
10^9 &= 10^{10} - 9a_9 + 10^2a_8 + 10^3a_7 + \ldots + 10a_1 + a_0 \\
\end{align*} \]

From equation (2)

(2)

The fractional factor on the right of the equation will be an integer when \(n = 43 \), and the relation (1) will be satisfied when \(a_9 = 9 \). Therefore, the integer expressed by equation (2) is a 43-digit number equal to 1,011,235,...027,471, where

\[a_9 = 1 \]

Attaching \(a_9 = 9 \) to the above number, the required value of \(N \) is a 44-digit number:

\[10,112,359,550,551,761,752,800,988,764,044, \ldots 943,802,524,719 \]

OCT 4 In the Ballantine Beer logo, in which three circles of equal radius are placed so that the center of each circle lies on the boundary of the other two, the area of the region of intersection of four spheres of radius \(r \), each of which has its center on the surfaces of the other three.

Only Richard Hess, Emmet Duffy, and Greg Huber submitted solutions to this problem. Hess's solution is as follows:

The centers of the spheres lie on the vertices of a tetrahedron of side \(r \). Let \(V_1 \) be the volume of the tetrahedron and \(V_2 \) be the volume subtended by the
solid angle of the tetrahedron vertex and the surface of the sphere, as shown below. Then the

\[
V = 4V_1 = 4V_2 = 4 \left(\frac{r^2 \sqrt{3}}{2} \right)
\]

(1)

\[
V_1 = \frac{r^2 \sqrt{3}}{2}
\]

(2)

\[
V_2 = \frac{r^2 \sqrt{3}}{2}
\]

(3)

Plugging (3) and (2) into (1) gives \(V = \frac{3614940}{27} \).

OCT 5 A positive-integral solution to the pair of Pythagorean relations \(A^2 + B^2 = C^2 \) and \((A + 3)^2 + (B + 3)^2 = (C + 4)^2 \) is the trivial triple \((A, B, C) = (0, 1, 1)\). Find two other positive-integral solutions, and determine if there are a finite or infinite number of such solutions.

The following solution is from Charles Sutton: Given the equations \(A^2 + B^2 = C^2 \) \((A + 3)^2 + (B + 3)^2 = (C + 4)^2 \) \((A + 3)^2 + (B + 3)^2 = (C + 4)^2 \), it is well-known that solutions of (1) are given by \(A = 2m, B = m^2 - n^2, C = m^2 + n^2 \) \((A + 3)^2 + (B + 3)^2 = (C + 4)^2 \), where \(m \) and \(n \) are integers. Substituting these equations in (2) and simplifying gives \(2m^2 + 7n^2 = 0 \), which when solved for \(m \) yields \(m = 2, 7n^2 = 1 \).

Clearly \(2n^2 + 1 \) must be a perfect square. \(n = 0 \) gives the trivial solution \((A, B, C) = (0, 1, 1)\), while \(n = 2 \) gives \((12, 3, 13)\) and \((36, 17, 35)\). A TI 58 calculator was programmed to find values of \(n \) for which \(2n^2 + 1 \) is a square, with the result \(n = 0, 2, 12, 70, 408, 2376, 13860, \ldots \). (5)

This sequence is interesting, since the ratio of successive terms appears to approach a limit rapidly and suggests the well-known Fibonacci sequence, which behaves similarly. Does the sequence (5) likewise satisfy a second-order recurrence relation? Assuming \(u_{n+2} = Pu_{n+1} + Qu_n \), and substituting the first four values from the sequence gives \(2P = 2, Q = -1 \), so \(u_{n+2} = Pu_{n+1} - u_n \).

This is also found to be satisfied by the other members of the sequence and so apparently provides an easy method of continuing the sequence.

To get an explicit formula for any term of the sequence, assume \(u_0 = u_1 \) and substitute in (6). Dividing \(u_r \) gives \(r = 2r^2 - r - 1 \), from which \(r = 3 \pm \sqrt{2} \). Since (5) is a linear difference equation, the general solution is \(u_r = C_1 (3 + 2\sqrt{2})^r + C_2 (3 - 2\sqrt{2})^r \).

Substituting \(k = 0, u_0 = 0 \) and \(k = 1, u_1 = 2 \) gives \(0 = C_1 + C_2 \) and \(2 = C_1 (3 + 2\sqrt{2}) + C_2 (3 - 2\sqrt{2}) \), from which \(C_1 = 1/\sqrt{2} \) and \(C_2 = -1/2 \). Hence

\[
u_r = \frac{1}{2\sqrt{2}} \left[(3 + 2\sqrt{2})^r - (3 - 2\sqrt{2})^r \right]
\]

(7)

To prove that this formula gives all terms of the sequence (5), that is, \(u_0 = 0, u_1 = 2, u_2 = 12, \ldots \), we show that \(2u_r + 1 \) is a perfect square.

\[
2u_r + 1 = 2 \left[(3 + 2\sqrt{2})^r - (3 - 2\sqrt{2})^r \right]
\]

= \[\frac{1}{4} \left[(3 + 2\sqrt{2})^r + (3 - 2\sqrt{2})^r \right]^2
\]

February/March 1982

Software Resources, Inc.

Microcomputer systems and software for financial and investment management

Lewis C. Cape, 58
Eric B. Rookfield, 75
Dan E. Sheekler, 74
Henry C. Stark, 71
186A Aweo Drive PlRwy
Suite 310
Cambridge, MA 02138
(617) 497-5990

Syska & Hennessy Inc.

Engineers
Mechanical-Electrical-Sanitary
John F. Hennessy
51111 19th St.
New York, N.Y. 10036

Stearns & Wheeler Engineers and Scientists

Civil and Sanitary Engineers
Consulting Engineers
Sewage Disposal and Flood Control, Water Supply and Distribution, Water and Waste Treatment, Municipal Engineering, Refuse Disposal
Donald E. Stearns
Essex, 50
W. O. Lynch, 47
S. G. Brown, 50
A. G. Warch, 53
D. E. Schrader, 59
10 Albany Street
Cambridge, MA 02135
(617) 655-8161

Steinbrecher Corporation

Contract Research and Development Consulting in Radio Frequency and Microwave Engineering and Related Areas
RF and Microwave Systems Design Industrial Applications of Microwave Power Precision Instrumentation Analogy and Digital Electronics
Manufacturing Facilities Available
185 New Boston Street
Woburn, Massachusetts 01888
(617) 935-8460

TAD Technical Services Corp.

Contract Technical Services to Industry and Government for 25 years
Home Office: 639 Massachusetts Avenue
Cambridge, MA 02139
(617) 668-1650

This Space Available

for your professional card ad

Steinbrecher

For new markets
Product enhancement
Display Game design, development and pilot editions
Frederick Vaughan, Jr.
300 North Fulton Avenue
Lindenhurst, Long Island, N.Y. 11757
(516) 899-8120

Frederick Vaughan Associates

Packaged Consultants
Technology Review A31
Fay, Spofford & Thorndike, Inc.

Engineering for Government and Industry

Ralph W. Hume 10
William L. Frieluck 32
Edward C. Koons 22
Charles R. Delan 31
William J. Khalek 32
Fred M. Cubley 33
George M. Pearson 35
Charles R. Kurt 48
Bruce Campbell 49
Paul I. Berge 50
Max D. Sobie 50
Rodney P. Peolette 58
John P. Turner 72
Edward P. Reed 50
Neil K. Deyton 67
One Beacon Street
Boston, MA 02108

We can conclude that there exist infinitely many solutions of the simultaneous equations (1) and (2), and that these solutions (A, B, C) can be most easily written down by using (6) to calculate values of \(n = \alpha \), in the sequence (5), calculating two corresponding values of \(m \) from (4), and finally getting \(A, B, \) and \(C \) from (3). A few such values are shown below:

\[
\begin{align*}
\alpha & \quad m & \quad A & \quad B & \quad C \\
0 & \quad 1 & \quad 0 & \quad 1 & \quad 1 \\
1 & \quad 0 & \quad 1 & \quad 1 & \quad 1 \\
2 & \quad 3 & \quad 12 & \quad 5 & \quad 13 \\
2 & \quad 9 & \quad 36 & \quad 77 & \quad 85 \\
12 & \quad 19 & \quad 456 & \quad 217 & \quad 505 \\
12 & \quad 53 & \quad 1272 & \quad 2665 & \quad 2953 \\
70 & \quad 115 & \quad 15540 & \quad 7421 & \quad 17221 \\
70 & \quad 309 & \quad 43260 & \quad 86736 & \quad 100381 \\
\end{align*}
\]

Better Late Than Never

MAY 3 Richard Hess admits that he lost the 26-10**. As penance he calculated the first 250 digits of

1.2912859597062663540407282590595600541498

613988574233173100024451399445387653444

555881414112942706894950792481503054

481040745904896416757916355534791395954

6697415687607979291799482730090256429230

5057209668381284670120536857459870300

12778941292822

A/B 3.3 J. Meier sent a beautiful solution, which he was inspired to write by his knowledge of Professor Norbert Wiener.

Proposers' Solutions to Speed Problems

FEB 811 Draw the circle with center at 0. Then at any point on the perimeter mark B, C, and D with chords AB, BC, and CD equal to the radius of the circle.

With a radius equal to AC and centers at A and D, draw arcs intersecting at E. With radius equal to BC and center at A draw an arc intersecting the circle at F. Arc AF is 90°. Proof: Let R equal the radius. Then AC = \(\sqrt{3R} \). By construction, \(\angle ACF = \sqrt{3R} \). The lines were drawn from 0 to A and E and from A to E. Triangle OEA would be a right triangle with base R and hypotenuse \(\sqrt{3R} \), making \(\angle OEA = \sqrt{3} \). Chord AF = \(\sqrt{2R} \), which is the length of a chord of a 90°-arc.

FEB 802 This is, of course, a binary distribution. She received 42 swans and 42 geese, but only 12 drummers and 12 partridges with accompanying pear trees.