Problems

N/D 1 For variety we begin this month with an Othello problem from Scott Byron: What is the shortest possible game of Othello?

N/D 2 Craig Murphy asks you to find angle x in the isosceles triangle ABC shown below ($AB = AC$). He demands that the solution use only plane geometry; in particular, he forbids trigonometry. However, he adds, "If you become sufficiently frustrated, you may use trigonometry to find x, since knowing the result may help point the direction in which to look for a geometrical solution."

Let me begin with responses from several readers.

As you may recall, earlier this year we had a plea from Larry Bell for suggestions of books containing mathematical puzzles. Smith Turner has recommended three: Steinhouse, Mathematical Snapshots (Oxford University Press, New York, 1960); Phillips, Showalter, and Marshall, Calibraos Problem Book (T. de la Rue and Co., London, 1933); and Schuh (translation by Gobel), The Masterbook of Mathematical Recreation (Dover, New York).

Robert Cutler writes that he has studied the function C obtained by factoring a positive integer into primes, summing the primes, and iterating the procedure until a prime results. By definition $C(p) = p$ when p is a prime and $C(1) = 1$. $C(4)$ is undefined. For example, the calculation that $C(98) = 5$ proceeds as follows:

$98 = 2 \cdot 7 \cdot 7; 2 + 7 + 7 = 16; 16 = 2 \cdot 2 \cdot 2 \cdot 2; 2 + 2 + 2 + 2 = 8; 8 = 2 \cdot 2 \cdot 2; 2 + 2 + 2 = 6; 6 = 2 \cdot 3; 2 + 3 = 5.$

Mr. Cutler wonders whether C has been studied before. Can anyone help him?

Finally, to answer a question from John Rutterford: I very rarely play bridge (perhaps 15 hands a year)—and not especially well (I finesse but don’t squeeze).
any order. Subtract B from A. Ask your friend to tell you the final answer, C. For example,
A 65,835
B 5,653
C 60,182
You can find the unknown added digit (8 in the example) as follows: add together the
digits of C, and if this result contains
two or more digits, add these together in
turn, and so on, until only one digit
remains. This will be the extra digit that
was added in forming A. Why? (In the
element, 6 + 0 + 1 + 1 + 8 + 2 = 17; 1 + 7 = 8; and 8 was the added digit.

N/D 4 John Trifiletti has a square root
problem with only one known digit:

\[\sqrt{xxxxxxx} \]

\[\frac{x}{xxx} \]

\[\frac{x}{xx} \]

\[\frac{x}{xxxx} \]

\[\frac{x}{xxxxx} \]

\[\frac{x}{xxxxxx} \]

\[\frac{x}{xxxxxxx} \]

The problem is to fill in all the x’s.

N/D 5 Roger Milkman asks what I believe is our first horticultural problem. He writes:
In my garden are red columbines, which produce an average of 100 seeds per pod (with a normal distribution, standard deviation = 10), and yellow columbines, which produce an average of 99.8 seeds per pod (also with a normal distribution, standard deviation = 10).
The number of red plants equals the number of yellow plants, and all plants bear the same number of pods. I might collect only those pods with 110 or more seeds. Alternatively, I might collect all the pods with 110 or more seeds, 90 percent of the pods with 109, 80 percent
of the pods with 108, 70 percent of the pods with 107, etc. Whatever I do, the proportionate deficiency of yellow seeds will be approximately equal to the product 0.010.2, where i is the average
umber of seeds per collected pod minus 99.9. Show that this last statement is correct.

Speed Department

N/D SD 1 Adam Becker wants to know how many triangles can be found in the
figure at the bottom of column 1.

N/D SD 2 R. Steffens sent us the following counting problem.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

A straight line drawn across the figure will traverse a subset of the nine squares, for example 1,2,3 or 1,4,7. How many of the possible subsets so determined include square 1?

Solutions

JUL South to lead and make all seven remaining
tricks:

| ♠ J 8 6 |
| ♦ A |
| ♠ K |
| ♦ K 8 |
| ♠ 9 |
| ♦ K 8 6 |
| ♠ Q 7 |
| ♠ J 10 3 |

Unfortunately, we failed to specify the trump
suit. But several readers, including W. Cutler, interpreted that omission as part of the problem
and deduced the answer. Mr. Cutler wrote:
The last time I submitted a solution to a bridge
problem, back when you were a student at M.I.T., I
was chided by one of your readers on the grounds
that I had peeked at the East-West hands. To avoid
that this time, let me say that I refrained from peeking
until the problem was solved. However, in solving
the problem, I assumed that the key cards in the
opponents’ hands were so located that the hand
was makeable; otherwise the problem would not
have been submitted. Although not mentioned, I
also assumed that hearts were trumps. I could find
no possible way for South to lead and take the
seven remaining tricks with any other suit as
trumps or no-trumps. With the above as a preface,
here is the solution:
1. South leads ♠ J. West must cover with ♠ K (obvi-
ous). North trumps with ♠ 4.
2. North leads ♦ A. South trumps with ♦ Q.
3. South leads ♦ 7 to, North’s ♦ A over West’s
♦ K.
4. North draws remaining trumps. South discards
♦ 3.
5. North leads ♦ 6 to South’s ♦ A.
7. South leads ♦ 8 to North’s good ♦ J.
Also solved by George Holderness, Mike
Bercher, Doug Van Patter, Roland Poffenberger,
Matthew Fountain, Richard Hess, Robert Garrels,
Peter McCall, John Ruttersford, and the proposer,
Emmet Duffy.

KULITE

METALLURGY
Tungsten, molybdenum, cobalt, special alloys — fabrica-
tions. “HI-DENS” tungsten alloys — for counterweights
and shielding.

SOLID STATE SENSORS
Semiconductor strain gages, integral silicon force sensors
and temperature sensors for measurement and control
applications.

Anthony D. Kurtz, 1951
Ronald A. Kurtz, 1954

KULITE
(Kulite Semiconductor Products, Inc., Kulite Tungsten Corporation)
1030 Hoyt Avenue, Ridgefield, N. J.
What is the smallest multiple of nine that has n, 7-ad digit, calculated in base 10? What is the answer if other bases are used? And how many ways are there of doing it?

The key to this puzzle is to recall the "casting out nines" rule. For example, Avi Ornstein writes: The digits in any multiple of 9 must add up to produce a number which is also a multiple of 9 (in base 10, that is). [This is "casting out nines."—Ed.] To have no odd digits, the sum must be even, so the digits must add up to a multiple of 8. The smallest number that meets these specifications is 288. If the problem were not limited to base 10, the smallest possible solution would be 22, in various bases. In base 8 this is equal to 18. If you choose to state that 9 does not exist in base 8, then you can use 22 in base 17, which is equal to 4x9, or 36, in base 10.

JUL 3 A falling person reaches a terminal velocity of about 55 m/sec. Entering feet first, one can survive falls into water at speeds of up to 34 m/sec. Starting from rest, what is the maximum distance one can fall before entering water, and survive? Assume that drag is proportional to velocity and that gravitational acceleration is 9.8 m/sec².

Michael Jung sent us the following solution:
Let the drag acceleration be \(d = kv \). Since 55k = 9.8, k = 9.8/55. Starting with \(v = 9.8 - kv \), we obtain \(v = \frac{9.8}{9.8/55} = 9.8 \).
\[v_{exp}(t) = \frac{9.8}{9.8/55} \times \exp(-9.8t) \]
\[v_{exp}(t) = 9.8 \times \exp(-9.8t) \]
\[v = 9.8 \times \exp(-9.8t) + C = 55 \exp(9.8t) + C \]
\[v = 55 + C \exp(-9.8t) \]
Since \(v = 9.8 \times \exp(-9.8t) + C = 55 \exp(-9.8t) + C \), applying the boundary condition \(d(0) = 0 \), we obtain \(d = 55 (1 - 9.8 t) / 9.8 \).
Since the maximum velocity is 34, we see by plugging into the formula for \(v \) that the maximum velocity occurs at \(t = \ln(55/2.21) \).

Finally, inserting this last value into the formula for \(d \) gives
\[d = 55/9.8 \times [55(55/21) - 34] = 106.38 \mathrm{m} \.

JUL 4 Five coins, arranged as in (a) below, are to be shifted into arrangement (b), using only four accurate sliding moves [such as the move shown in (c)]. There is no restriction on the position of arrangement (b) relative to (a), but the new location of any coin moved must be fixed by definite contact with two other coins: estimated contacts [to form straight lines, as in (d)] are not allowed. Move only one coin at a time, without lifting. Our analysis of this old puzzle shows that there are no less than 24 straightforward solutions.

Richard Hess was able to find and describe all 24 constructions:
From the starting position (a), we can move to the positions shown below in the first move:

\[
\begin{bmatrix}
12 & 21 & 31 & 32 & 33 & 34 & 35
\end{bmatrix}
\]

From the two basic positions created above (each with a multiplicity of two), we can move to the positions shown on the next page in the second move.
Syska & Hennessey, Inc.

Engineers
Mechanical-Electrical-Sanitary
John F. Hennessey '51
11 West 42nd St,
New York, N.Y.
10036
1111 19th St., N.W.
Washington, D.C.
20036
575 Mission St.
San Francisco, CA
94105
5901 Green Valley Circle
Culver City
Los Angeles, CA
90230

TAD Technical Services Corp.

Contract Technical Services to Industry and Government for 25 years
Home Office:
639 Massachusetts Avenue
Cambridge, MA
02139
(617) 868-1650

Offices in:
Arizona
Missouri
California
New Jersey
Colorado
New York
Florida
North Carolina
Georgia
Ohio
Illinois
Pennsylvania
Kansas
Tennessee
Maryland
Texas
Massachusetts
Virginia
Michigan
Washington, D.C.

Frederick Vaughan Associates

Package Consultants
New markets
Product enhancement
Display
Game design, development and packaging
Frederick Vaughan '34
300 North Fulton Avenue
Lindenhurst,
Long Island, N.Y. 11757
(516) 688-8120

From the two basic positions created above (one with multiplicity 4 and one with multiplicity 8), we can move to the positions below in the third and fourth moves:

The two ways in each case to move from the third to the fourth position times the multiplications of 4 and 8 give the 24 ways to reach the final position. Also solved by Marilyn Weiss and Matthew Fountain.

JUL 5 What is the smallest square matrix in which can be written the names of 50 U.S. states, horizontally or vertically in crossword-puzzle fashion? Matthew Fountain sent us the following 27 x 27 solution:

The solution includes states such as Wyoming, South Dakota, Colorado, and Nebraska, among others. The puzzle is solved by placing the states in a grid format, with each state appearing exactly once in a horizontal or vertical orientation. The solution is presented as a grid of 27 x 27 cells, with each state occupying a specific position in the grid.