When Casey Jones Has a Leaky Boiler

Allan Gottlieb is associate professor of mathematics at York College of the City University of New York; he studied mathematics at M.I.T. (S.B. 1967) and Brandeis (A.M. 1968, Ph.D. 1973). Send problems, solutions, and comments to him at the Department of Mathematics, York College, Jamaica, N.Y. 11431.

Since the October issue begins a new volume of Technology Review, we take this chance to explain the ground rules of "Puzzle Corner" every year.

In each issue we present five regular problems (the first of which is chess- or bridge-related) and two "speed" problems. Readers are invited to submit solutions to the regular problems, and three issues later one submitted solution is printed for each problem; we also list other readers whose solutions were successful. In particular, solutions to the problems you see below will appear in the February issue. Since I must submit that column sometime in November (today is July 12), you should send your solutions to me during the next few weeks. Late solutions, as well as comments on published solutions, are acknowledged in the section "Better Late Than Never" in subsequent issues.

For "speed" problems the procedure is quite different. Often whimsical, these problems should not be taken too seriously. If the proposer submits a solution with the problem, that solution appears at the end of the same column in which the problem is published. For example, solutions to the October "speed" problems are given below. Only rarely are comments on "speed" problems published or acknowledged.

There is also an annual problem, published in the first issue of each new year; and sometimes we go back into history to republish problems which remained unsolved after their first appearance.

All problems come from readers, and all readers are invited to submit their favorites. I'll report on the size of the backlog, and on the criteria used in selecting problems for publication, in a future issue.

Problems

OCT 1 We begin with a bridge problem from Emmet Duffy. South is on lead with hearts trump and is to take six of the remaining seven tricks against any defense:

\[
\begin{align*}
\spadesuit & 8, 3 \\
\heartsuit & J, 5 \\
\diamondsuit & 6, 4, 2 \\
\clubsuit & 5 \\
\end{align*}
\]

OCT 2 Jon Davis has sent us a geometry problem: An angle and a point within the angle are given. Using only a straightedge and compass, construct the two circles that pass through the point and are tangent to the lines forming the sides of the angle.

OCT 3 A number theory problem from Neil Hopkins. Consider summing each of the following eight arithmetic progressions:

\[
1 + 2 + 3 + \ldots + n \\
1 + 3 + 5 + \ldots + (2n - 1) \\
1 + 4 + 7 + \ldots + (3n - 2) \\
1 + 5 + 9 + \ldots + (4n - 3) \\
1 + 6 + 11 + \ldots + (5n - 4) \\
1 + 7 + 13 + \ldots + (6n - 5) \\
1 + 8 + 15 + \ldots + (7n - 6) \\
1 + 9 + 17 + \ldots + (8n - 7)
\]

For each of these series, when \(n = 1 \) the sum is \(1 = 1^2 \). Find the one series for which there is no \(n > 1 \) so that the sum is a perfect square. You might then want to find the two series for which there is an \(n \) so that the sum is the perfect number:

\[2305843008139952128\]

OCT 4 Frank Rubin offers us an energy-related challenge: An old-fashioned steam railroad runs parallel to a river 100 meters away. Unfortunately, the engine boiler has developed a small leak so that there is a loss of one liter of water per second for every ten meters per second the train travels. The conductor is dispatched to refill the train's water reservoir using a ten-liter bucket. He can walk three meters per second with the empty bucket and only two meters per second with the full bucket. What is the fastest constant rate of travel that the train can maintain under these circumstances?

OCT 5 L. Steiger wants to know the values of \(x \) and \(y \) at the two extreme positions for the device shown below.

OCT SD1 John O'Reilly was looking at Susan Lee's digital clock and noticed that at 12:22:22 the display was symmetric (i.e., 122221 is a palindrome). This led him to ask which two palindromes will occur with the shortest time in between?

OCT SD2 We close with a gambling quirk from William McGuinness. Mike offered Pat the following proposition in a wager on the proverbial beer: "Pick four coins from your pocket at random. Record the last digit in the date of each coin. This will give us four digits. I'll bet that half or more of the digits are the same. If I win, you pay for our next beer. If I lose, I'll pay for it." Who has the better of this proposition?

Solutions

NS17 This problem began as 1978 FEB 3, which was never completely solved. It was republished as NS17 in November, 1979. Given an \(n \times n \) checkerboard and \(n^2 \) checkers of different colors, and given that there are \(n \) checkers of each color, it is possible to arrange all the \(n^2 \) checkers on the board so that no two checkers of the same color lie in the same row, column, or diagonal? (By diagonal is meant all the diagonals, not just the two main diagonals.) After publication of this problem in 1978, an algorithm for placing the checkers
was given for it divisible by neither 2 nor 3 (i.e., n = 1, 5, 7, 11, 13, ...). What remains is to show that no solution is possible for the remaining values of n (or to find such solutions).

Now Matthew Fountain has submitted the following further partial solution:
The physical basis for my partial solution of NS17 is that with an even-ordered checkerboard, the board should balance on a center pivot when it contains one checker on each row and column. However, no such balance is possible if one checker is placed on each diagonal parallel to one of the two main diagonals, for all we can do to improve the balance is to change the torque about the main diagonal by switching checkers from one section of a diagonal to the continuation on the other side of the main diagonal. When we compute the torque about the main diagonal for any square starting position, we see that it cannot be reduced to zero, since the torque is not an integer multiple of the change of torque that we can bring about. Proof that no solution exists for checkerboard of even order n: On this board the focus of all squares on one main diagonal is given by \(x - y = 0 \) where \(x \) is the row coordinate and \(y \) is the column coordinate. Diagonals parallel to this are of the form \(x = y = k \) where \(k \) is an integer from 1 to \(n - 1 \) and \(k = 0 \) when \(x = y \) and \(x = n - 1 \). Let \(x_i \) and \(y_i \) be the coordinates of the \(i \)th checker placed so no two checkers are on the same row, column, or diagonal parallel to \(x - y = 0 \). If \(n \) checkers can be so placed, the following equation is true.

\[
\sum_{i=1}^{n} x_i - y_i = \sum_{i=1}^{n} 1 - mn.
\]

Here \(m \) is an integer that balances the equation. With one checker in each row and column, the left side is equal to zero. As

\[
\begin{align*}
\sum_{i=1}^{n} x_i & = n(n-1)/2 \\
\sum_{i=1}^{n} y_i & = n(n-1)/2
\end{align*}
\]

and \(n(n-1)/2 \) is not an integer, the right side can equal zero. Therefore, it is impossible to place \(n \) checkers on an even-order board so that only one checker is on each row, column, and diagonal parallel to one given diagonal.

In any chess situation, one side has a move that is a threat. This move will be the key to the solution of the problem. If there is a move available, the player must be able to win the game. If there is no move available, the player is in checkmate.

MAY 1 White to play and win:

```
  K R N B N B N K
  R N K Q N B N R
  N B N B B N B B
  N B B B R N B N
  B B N N N N N B
  B N N N N N N B
  N R B N N N N K
  N K N B N B N R
```

Many readers found brutal mates in three or four moves, but a quiet move permits a better mate. (By the way, \(P-B6 \) is answered by \(B-B4 \).) The following joint solution is from John Crenin and John Hornbeck.

White's first move is N-R3. Then...

If Black's response is...

K R ch

```
  N K M N K M N
  B N R B N R B
  N N N N N N N
  N N N N N N N
  N N N N N N N
  N N N N N N N
  N N N N N N N
  N N N N N N N
```

White's second move is...

K x R

```
  N K M N K M N
  B N R B N R B
  N N N N N N N
  N N N N N N N
  N N N N N N N
  N N N N N N N
  N N N N N N N
  N N N N N N N
```

MAY 2 The following two series have sums with a common characteristic for any number of terms \(n \):

\[
S_1 = (m+1)(m+2)^3 + (m+3)^3 + ... + (m+n)^3
\]

\[
S_2 = (m+1)^2(m+2)^2 + (m+3)^2(m+4)^2 + ... + (m+n)^2(m+n+1)^2
\]

The first term in each series is the sum of the cubes of the initial \(m \) positive integers, and the \(n \) in \(S_2 \) are integers defined as follows:

\[
N_1 = 1; N_2 = 2; N_3 = 3; N_i = N_{i-1} + (i - 1, 2, 3, ...)
\]

for any positive integers \(m = 1, 2, 3, ... \). The recursive definition of the numbers \(N \) generates Fibonacci numbers when \(m = 1 \). Find the general expression for the sum of each series and determine the common characteristic of the sums of the series for any \(m \) and \(n \).

Only James Lefferts and the proposer, Harry Zarembo, submitted solutions. They agree that the common tract is that both \(S_1 \) and \(S_2 \) are perfect squares. Specifically

\[
S_1 = \left[\frac{1}{2} (mn+1)(m+n+1) \right]^2
\]

\[
S_2 = \left[\frac{1}{2} N_1 N_2 N_3 \right]^2
\]

Mr. Lefferts' solution can be obtained from the editor.

MAY 3 For each \(N < 10 \), find the shortest possible English words containing \(n \) syllables. Do not use proper names, abbreviations, or initials.

Edwin McMillen found some words of Hawaiian origin — namely lo, ia, and iiee — which can be beaten for three, four, or five syllables. I have pooled the results of Steve Feldman, Michael Jung, Rich Rosen, and Avi Ornstein to form the following list:

<table>
<thead>
<tr>
<th>Syllables</th>
<th>Letters</th>
<th>Word(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>area</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>acutely</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>ovariometry</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>dihydrostibane</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>epidemiologically</td>
</tr>
</tbody>
</table>

MAY 4 Queen Bee is a game played by \(N \) people (\(N > 2 \)) who wager a sum of money \(A \) in the following manner. Initially, the entire group owes an amount \(A \) to an outside party, and each person's expected payout is \(A/N \). Each person flips an unbiased coin, and if there is an "odd man out" that person becomes the "queen bee." If there is no "odd man out" on any particular flip, all players flip again until a "queen bee" is chosen. The "queen bee," when determined, is permitted to paying the amount \(A \) to the outside party but has the opportunity to win that same amount back from each of the other players by means of a single (unbiased) coin toss by each other player.

1. What is the probability of determining a "queen bee" on each of the group tosses?
2. What is the expected number of tosses required to obtain a "queen bee" for three players? Four players? \(N \) players? How many players?
3. What is the expected payout for each player, prior to the toss for determination of the "queen bee"?
4. After determination of the "queen bee," what is the net expected gain or loss for each player? (i.e., for "queen bee" and for others).
5. Should the "queen bee" be considered a "winner" or a "loser" at the time he (an inappropriate pronoun — ed.) is chosen?

H. H. Hawkins & Sons Co.

Building contractors

Steven H. Hawkins, '57
188 Whiting Street
Hingham, Mass. 02043
(617) 749-5011
749-5012

Fay, Spofford & Thorndike, Inc.

Engineering for Government and Industry

One Beacon Street, Boston, Mass. 02108

Greene & Associates, Inc.

Consulting Services Related to

Energy and Chemicals
Feasibility Studies/Economic Planning
Economic Evaluations/Insurance Claims
Market Surveys/Forecasts
Investigations/Expert Technical Testimony

in Petroleum Refining
Natural Gas Processing
Petroleum Chemicals Manufacture
Atomic-based Fuels
and Related Industries

Robert L. Greene, Pres. '47
R. Rex Thompson, '61
1130 One Energy Square
Dallas, Texas 75208
214/691-3500

Haley & Aldrich, Inc.

Consulting Geotechnical Engineers and Geologists

Soil and Rock Mechanics
Engineering Geology
Environmental Geology
Foundation Engineering
Hydrology

Harl P. Aldrich, Jr. '47
Martin C. Murphy '51
Edward B. Kinney '67
Douglas G. Gifford '71

236 Main Street, Cambridge, Mass. 02142 617-465-5460

Technology Review A15
The following solution is from David Simen:

1. There are 2^N possible configurations for each toss. N of these correspond to there being exactly one head and N to exactly one tail. Thus the probability of a queen bee being chosen on any given toss is 2N/2^N.

2. The probability that the queen bee is obtained on the jth toss (and not before) is (2^N - 2N) / 2^N. Therefore, the expected number of losses required to obtain a queen bee is

\[E = \sum_{j=1}^{\infty} (2^N - 2N) / 2^N = 2N/2^N. \]

If we let \(p = (2^N - 2N)/2N \), this sum becomes

\[(1 - p) \sum_{j=1}^{\infty} j = p. \]

It is well known that this sum is 1/(1 - p); a proof follows: let

\[S_n = \sum_{j=1}^{n} j = \frac{n(n + 1)}{2}, \]

then

\[S_n - \alpha S_n = \sum_{j=1}^{n} (j - p - 1) = \frac{n(n + 1)}{2} - kp, \]

using the formula for the partial sums of a geometric series. Now

\[E = \lim_{n \to \infty} \left(1 - p \right) S_n = 1/(1 - p), \]

since \(p = 1/(1 - p) \) and \(kp = 0 \) as \(k \to \infty \). Thus

\[E = 1/(1 - p) = 2^N/2N. \]

For example, if \(N = 3 \), \(E = 4^3 / 2^3 = 4 \). If \(N = 4 \), \(E = 8 \).

3. By symmetry, the expected payout is \(A/N \).

4. Each non-queen bee pays zero with probability 1/2 and \(A \) with probability 1/2, so his expected payout is \(A/2 \). For the queen bee, the probability of winning exactly \(q \) tosses (0 ≤ \(q \) ≤ \(N - 1 \)), and so taking \(q \) dollars, is

\[\frac{N!}{q!(N-1)!} \left(\frac{1}{2} \right)^q \left(\frac{1}{2} \right)^{N-1-q}. \]

Therefore, the expected gain for the queen bee is immediately output on the lowest-numbered non-busy output line. This immediately makes that output line busy, and it remains busy for one minute, after which it is non-busy until a new message is output on it. The question is: What is the "duty cycle" (percentage of the time the line is busy) of each line? Note that the obvious answer based on the Poisson distribution is wrong. If N messages have been input in the last minute, N output lines will be busy, but they won't necessarily be the first N, because at the time one of these N messages finished coming in all of the first N lines might have been busy with previous messages, forcing this message "up" to a higher-numbered line.

The proposer, Richard King, submitted the following solution:

The duty cycle for line L_i is derived as follows: L_i receives any message that comes in if it is free, since it is the lowest-numbered line. Its usage consists of a large number of one-minute busy intervals followed by free intervals of varying length. Since the free intervals and with the next arriving message and the latter are Poisson-distributed, averaging two arrivals per minute, the average length of a free interval is half a minute. Thus the duty cycle is 2/3.

Better Late Than Never

NS19 Robert Lutton has responded. 1979 OCT 4 Alan Davis found a substantially simpler solution.

Proposers’ Solutions to Speed Problems

OCT SD1 95958 and 100001.

OCT SD2 Pat wins if the four digits are unique. The likelihood of this happening is 1010 - 910 - 810 - 710 = 63/125, assuming that the digits are chosen randomly. But the digits aren't random, since coins from recent years are more common. Thus this can be enough to change the odds to favor Mike. Try it!