Thousands of Rocks

and One Pirate

Our first yearly problem, Y1975 (see
January, p. 62) has evoked some interest
and some questions, and a few additional
comments are in order. First, [ do not
guarantee that there is a full solution; that
is, I do not know that there exists an ex-
pression according to the rules of the
problem for each integer between 1 and
100. Second, I will follow the suggestion
of several readers that if two expressions
for the same integer yield the same point
value and one uses 1975 in the proper
order, that one will be selected. Third,
decimal points are not allowed. Fourth,
the asterisk (*)} denotes multiplication
(standard in computer programming).
Parentheses do not denote multiplication;
they are only to be used to indicate the
order in which operations are to be per-
formed (that is why they are not assigned
any point value). Thus 1 + 9 + (7) (5) is
illegal and should be written 1 + 9 + 7 *
Sorl+9 + (7% 35).If parentheses are not
used the “normal order of operations”
applies: all ** are done first (from right to
left), then all * and / (from left to right),
and fnally all + and — (from left to right).

Sinice these “few additional comments”
have rambled on to such a length, let me
simply close this introduction by assuring
T. Schaeffer that I am no relation to the
pinball magnate who has become rich off
his habit; and by reporting that a further
solution to O/N1 will appear in June (see
February, p. 62).

Problems

MAY1 We start with a bridge problem
from Michael Kay. After years of prolifer-
ation, these problems are suddenly in
short supply.
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South dealt with neither side vulnerable.
North-South use Blackwood, and the bid-
ding was:

S w N E
1D 1H 18 P
3D P 4D P

ANT P SH P
6D P P p

You are to use the bidding (and not the
Fast-West hands) to guide you to South’s
winning play. :

MAY2 Eric Jamin poses the following
geometry problem: Given three lengths a,
b,andc(a<b+c¢,b<a+candc<a
+ b), find the side of an equilateral

triangle, inside which a point joins the.

three vertices with distances a, b, and c.
(Hint: a geometric solution exists, with
only six lines to draw.)

MAY3 Winthrop Leeds wants you to
show that for any integer A > 2, there
exist integers B and C such that A% + B2 =
Cx

MAY4 The following problem, entitled
“A Rhumb Line Flight,” is from R.
Robinson Rowe; he describes it as “an ex-
ercise in geodesy, on the rhumb line or
loxodrome (from the Greek loxo meaning
‘oblique’ and dromos meaning ‘running’
— thus running oblique). As used in
navigation, it was very convenient: draw a
straight line on a Mercator map from
origin to destination and determine a con-
stant azimuth for the entire trip; it isn’t
much longer than a great-circle course for
short voyages or small azimuths and is
lots easier to steer.” The problem:

— Starting at zero-zero latitude and lon-
gitude at 12:00 M on Sunday, Aaron Ott
flew his plane at a constant 225 knots
loxodromically North 60° West. Where
was he at 12:00 M on Monday? Mr.
Rowe adds three notes: A £ in the dif-
ferential equation makes it adaptable
to all directions in both hemispheres; here
one would use the minus sign because
longitude is increasing and colatitude de-
creasing. A knot is a convenient unit in
navigation, being one nautical mile per
hour, or one minute of arc per hour; thus
60 knots is one degree per hour and 225
knots is 225/60 = 3.75 degrees of arc per

Puzzle Corner

by
Allan J. Gottlieb

hour. The following differential diagram
in spherical trigonometry illustrates the
derivation of the general differential equa-
tion:

N = pole

In right triangle PP’'Q:
tan A = PQ/P’Q = (AA sin ¢)/A¢ = constant
wc A = PPIP'Q = AS/Ad.

At limit:
d\ = tan A - ddisin ¢
dS = sec A - d¢.

MAYS5 We close with the following prob-
lem from Karl Kadzelski: A band of pi-
rates was chased, and one was caught. A
search of the pirate was made, and a de-
scription of the location of buried treasure
was found; it read: “From the great tree
are nine rock formations. Counting from
left to right turn around at the ninth rock
counting the eighth as ten then again turn-
ing around at the first rock counting it as
the seventeenth, the second rock the eigh-
teenth, etc. When the number 1,000 is
reached, the treasure is buried five paces
north of this rock.” One of the natives
read this description and immediately
figured out where the treasure was located
without going through all the steps. What
formula did he use? And near what rock
was the treasure buried?



Speed Department
MAY SD1 Jack Parsons asks:
If eight spades are held by your opponents
in bridge (hopefully, spades are not
trump), what is the probability of the
most probable split?

MAY SD2 John Sowa submitted the
following:
You are taking the Graduate Record Ex-
amination, a test with multiple-choice
questions. The next problem is to evaluate

f’; cqs‘zx dx

You are under severe time pressure. Your
mind goes blank, and the only trigono-
metric identity you remember is sin?x —
cos’x = 1. But that is all you need! The
answer is obvious; without further calcu-
lation you select the correct answer.
How?

Solutions
The following are solutions to problems
published in January:

JAN1 White to play to win:

Although
Schaeffer) is not as pretty as some solu-
tions, it is “‘better” by virtue of using the
minimum number of moves, all forced:

the following (from T.

1 N—QB7ck K—Q5
2 RxPck RxR
3 B — N1 ¢k R — K6
4 BxRck PxB
5 QxPck BxQ
6 P x B mate

Also solved by H. ]. de Garcia, Jr., and
son Mark, Richard Hess, Michael Laufer,
Winthrop Leeds, Michael Middlebrooke,
Ron Moore, Paul Reeves, Frank Rubin,
Stephen Strauss, Jerome Taylor, and
S. J. Zaroodny.

JAN2 Prove that among triangles of a
given perimeter the equilateral has maxi-
mal area.

The key is to use the semiperimeter,
s = Perim/2. The following is from Avi
Ornstein:

Given a triangle with perimeter P, let P =
2s. If the sides are expressed as a, b, and ¢,
then the area, A, can be expressed as

A =Vs(s —a)(s ~ b)(s — ¢

If it is an equilateral triangle, a = b = c.

Assume, however, that ¢ = P/3 but a # b.
Then a + b = 2c¢. In finding A, the differ-
ence from an equilateral triangle depends
on (s — a)(s — b) compared to (s — ¢)(s —
¢); this is equivalent to comparing s? — as
— bs + ab with s> — 2¢s + ¢2, and s — s(a
+ b) + ab with s* — s(2¢) + ¢2 Since a +
b = 2¢, the difference in A can be reduced
to comparing ab to ¢% Since a + b = 2¢
(again), take a real number x, such that a
=c+ xand b = ¢ — x. Subsituting these
values into ab, one gets (¢ + x)(c ~ x), or
¢ — x% Whatever the value of x, ab < 2.
Thus the triangle with sides a, b, and ¢ has
an area smaller than that of the equilateral
triangle. What about the case of a triangle
abd, where a + b + d = P and none
equals ¢? Compare this to a triangle efd,
where a + b = e + f. Let a and e be the
larger number in each pair, and let a and b
be closer to one another, which means
that a — b is less than e — f. Then by using
a positive number x,e =a + xand f = b
= X. In comparing areas, the varying fac-
tors are (s — a)(s — b) and (s — e)(s — f)
which can be expressed as sz — s(a + b) +
ab and s* — s(e + f) + ef, respectively.
Since a + b = e + f, the differences in
areas vary by ab and ef. But ef = (a + x)(b
—x) =ab — ax + bx — xx. Since a > b, ef
< ab. Thus the area of abd is greater than
that of efd. This shows that the closer the
values of the sides of a triangle, the greater
the area for a given perimeter. Hence an
equilateral triangle has the maximum size
for P.

Also solved by Gerald Blum, Winslow
Hartford, Richard Hess, Ken Kahn, Jack
Parsons, John Prussing, Paul Reeves, R.
Robinson Rowe, Frank Rubin, Les Servi
(the proposer), Dave Taenzer, Smith D.
Turner, and Harry Zaremba.

JAN3 What is the maximum time a
truly parabolic comet can remain inside
the earth’s orbit?

I wondered why I found this difficult,
but now I know! Knowledge of astronomy
is helpful; solutions contained references
to Lambert’s theorem or equations,
neither of which is in Gamow’s Matier,
Earth and Sky (my total “astronomical’”
knowledge). The following is from Rich-
ard Hess:

Lambert’s theorem gives the time to
traverse a parabolic orbit as:

t=u Y2 2232 4 (5 — ¢)¥2)3 (6 = 180°)
t = ulZ 2VE¥2 — (5 — c)¥2)/3 (9 = 180°)
where u is the force constant and s =
(r; + ry + C)/2. (See diagram at the top

of the following column.)
The time expression is maximum when C

is maximum. For a parabolic orbit within
the earth’s orbit, r, = r, = r and for max-
imum time

C = 2r Dtpay = U™Y22V2(2r)3%/3 = 41323y Y2,

The period of the earth around the sun is
p = 2mu 2 %2 = 1 year = 132 = 1/2 years >
tmax = 2/37 years =~ 0.212207 years = 77.5 days.

Also solved by Winslow Hartford, John
Prussing, and R. Robinson Rowe.

JAN4 Find all x such that x* = i.

Another tough one, but at least it’s
“only” mathematics. The following is
courtesy of Robert Pogoff:
x is complex. Therefore, let x = 2 + ib =
¢ +¢'? where ¢ = Va%+ b2and 6 = arctan
(b/a). Then follows the development in the
box on the next page. Thereafter, Mr.
Pogoff proceeds: For m = 0, first approx-
imations, a, and b, are made for a and b
respectively. Let a, = 1, b, = 1. Closer
approximations are:
a =a,—-Y,/Y,
by =b, - Z,/Z',
Substitute these values in equations (12),

{13), (14), and (15) to obtain closer ap-
proximations:

a, , =a, — Y,/Y,
by, = b, — Z,/Z',.

Continue until differences |a,-; — a,| and
|bp—; ~ by are small enough. Repeat the
procedure form = 1, £2, +3, . .. Note,

also, that by a similar procedure, solu-
tions can be obtained for

x* =
x*=1
x* = -1

where the angle in the right hand side of
equations (5), (7), (9), and (14) is respec-
tively, (4m + 3)@/2, 4mm/2 = 2msr, and
(4m + 2)wl2 = (2m + 1)m. Finding the
solutions to x* = any complex unity vec-

2239 57947 31817 40039
10663 54979 21433 41603
19333 42863 11923 52879
30557 42139 4339 56687
40879 29297 57107 4759
42443 18913 54139 13183
55399 11083 40343 20173
59207 3499 39619 31397

11503 55819 20593 40763
3079 58787 30977 39199
29717 41299 5179 57527
18493 42023 12763 53719
43283 19753 53299 12343
41719 30137 56267 3919
58367 2659 40459 32237
54559 10243 41183 21013
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Development of JAN4 Solution
by Robert Pogoff (see page 67)

But ¥* = i. Therefore
a0 065 (2 + b Inc) =0
gamebdginad+bincg) =1

From equation (2),

cos (a@ +blnc) =0

a0 +blnc=(2n+ U)m/2 n=0,+1,+2, +3,...
sin (ad + b In¢) = sin [(2n + D)m/2] = =1,
However, the negative sign does not

satisfy equation (3). Therefore n must be
even. Let n = 2m. Then

sin (af + b 1In ¢) = sin [(4m + 1)7/2] = 1
e(a n c=bo — 1

alnc~bo =0

and, from equation (4),

Substituting for ¢ and 6, in equations (6)
and (7),

a In(a®? + b2%/2 — b arctan (bla) = 0

a arctan (bfa) + b In(a? + b%/2 = (4m + 1)7w/2.

Solutions to the pair of equations (8) and
(9) can be obtained by a version of the
Newton-Raphson numerical method. Dif-
ferentiate (8) with respect to b; a’ =

da/db:

Therefore,

daidb = ' = —_— arctan bla
1 — [In(a® — b%)1/2

Differentiate (9) with respect to a; b’ =
db/da:

Therefore

dblda = b’ = _— arctan (bla)
1+ In(a® + 6272

Let

Y = a In(a®? + b?)/2 — b arctan (b/a);

then
dY/da =Y’ = 1 + 1n(a® + b%/2 — b’ arctan (b/a).

Substituting for b’ from (11)

[arctan (b/a)]

Y’ =1 + 1n(a? + b)2 — L2rctan (va)l
1+ 1n{a® + b2

Let

dZ/db = Z' = 1 + 1n(a® + b?/2 + a’ arctan (b/a).

Substituting for a’ from (10),

[arctan (b/a)]?

Z' =1+ 1n(a®+b?)2 + ————=1-__
1 + 1n(a? + b?/2

0 +blinc=(4m + Daf2.m = 0, +1, +2, *3,. ..

Z = a arctan (b/a) + b 1In(a® + b%/2 — (4m + 1)m/2

XX = (C - elf)RHb = glin oHO - @D
XX = e(a In c-b&+ilad+b in ¢} — e(a in e—bo ., ei(afH—b m o
XX =¢e@medd o5 (af + b Inc) +1e® PP gin (af + b 1In ¢) (1)

a/2 (2aa’ + 2b)/{a® + b?) + a’ In{a® + b?/2 = (ba — b*a')i(a® + b?) + arctan bla.

(10)

(aZb’ + b?b')/(a? + b2 + arctan {b/a) + b’ In(a® + b2/2 = 0.

(11

(12)

(13)

(14)

tor is similarly solved by substituting the
corresponding angle in those equations.
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Mr. Pogoff then lists solutions for a, b,
and x* for values of k ranging from —79

to 121; the list is too long for publication
here, but readers may obtain it by writing
to the Editors of the Review at Room
E19-430, M.LT., Cambridge, Mass.,
02139.

Also solved by Gerald Blum, Winslow
Hartford, Richard Hess, and R. Robinson
Rowe.

JANS Can you have a magic square with
each entry prime? With each entry a dis-
tinct prime?

This one is somewhat of a breather
after the last two. Roger Milkman submit-
ted over a dozen solutions; one is

73 349 157
277 193 109
229 37 313

The proposer claims his seven-year-old
daughter, after being told the definitions,
gave the following solution. Personally, I
suspect the only seven-year-olds who
could generate such a solution come from
L.B.M., etc.; the solution appears in the
box at the bottom of this page.

Also solved by Gerald Blum, Loren
Dickerson, Emmit Duffy, John Feldman,
Mrs. Leonard Fenocketti, Richard Hess,
Avi Ornstein, Walter Penney, R. Robin-
son Rowe, and Harry Zaremba.

Better Late Than Never

1973 J/A3 Frank Rubin has explained
why integers appeared.

1974 MAY 5 Howard Ostar has reponded
1975 OIN1 Winthrop Leeds and William
Ackerman have responded.

1975 O/N2, O/N3 William Ackerman has
responded.

1975 O/N4 Dean Worcester, Daniel Pratt,
and Irving Hopkins have responded.
1975 O/NS William Ackerman has re-
sponded with a very detailed and beauti-
fully organized solution which should be
published if space permitted; note that no
solution has previously appeared. Copies
of Mr. Ackerman’s solution can be had
from the Editors at Room E19-430,
M.LT., Cambridge, Mass., 02139. (An
anonymous reader has also responded.)
DEC1 Responses have come from Emmet
Duffy, Joseph Evans, Winslow Hartford,
Richard Hess, Fred Price, Ben Roberts,
and Stephen Strauss.

DEC2 Responses have come from Emmet
Duffy, Winslow Hartford, Richard Hess,
Paul Reeves, and Frank Rubin.

DEC3 Responses have come from
Michael Goldberg, Winslow Hartford,
Richard Hess, Irving Hopkins, Robert
Lutton, Robert Pogoff, Paul Reeves, and
Frank Rubin.

DEC4 Responses have come from Wins-
low Hartford, Richard Hess, Craig Pres-
son, and Frank Rubin.

DECS Several readers obtained methods
requiring more fuel than the printed solu-
tion; others used the same method and
obtained the same answer. These re-
sponses came from Christopher Brooks,
Thomas Collins, Gregory Dorner, Emmet
Duffy, Richard Hess, Robert Pogoff, Paul
Reeves, Frank Rubin, and Stephen



Strauss. Robert Lutton has used a differ-
ent method and obtained a better result —
once more a solution for which there is no
space. A copy can be had from the
Editors, Room E19-430, M.I.T.

Proposers’ Solution to Speed Problems
MAYSD1 Not 4-4 but 5-3, for which the
probability is 7/16.

MAY SD2 The curve for cos? x is the same
as the curve for sin® x displaced by /2.
Over- the interval (0,7), the areas under
the two curves are equal. Therefore,

f;coszxdx =1 ﬂ;(sin2 x + cos? x)dx

= 1/2f:dx=17-/2.

Allan J. Gottlieb studied mathematics at
M.IT. (S.B. 1967) and Brandeis (A.M.
1968, Ph.D. 1973); he is now Assistant
Professor of Mathematics at York College
of C.UN.Y. Send problems, solutions,
and comments to him at the Department
of Mathematics, York College, 150-14
Jamaica Ave., Jamaica, N.Y. 11432.

Nisbet

Continued from p. 9

Such a question is in fact difficult to
answer without making subjective ex-
trapolations. The levels of these chemicals
In remote areas are relatively low; most of
the effects likely to take place are sub-
lethal, often subtle functional changes;
uncontaminated populations are not
available for comparison. Although a
number of effects have been reported
which are more or less plausible, almost
the only well-documented ones are ef-
fects on the reproduction of birds. These
will be discussed in the next issue.

Ian C. T. Nisbet, who writes regularly for
Technology Review, is a member of the
Scientific Staff of the Massachusetts Au-
dubon Society. His Ph.D. (in physics) is
from Cambridge University.

Bouldingﬁ

Continued from p. 12

of whether income from pure ownership
is or is not a reward for some “function.”
The really significant problem, however,
revolves around the syndromes of cen-
tralization and decentralization. If we
look upon private property as the price we
must pay for decentralization of
decision-making — and hence for the rela-
tive security of an ecological rather than
an organismic system — the whole debate
looks very different. One could offer
many other examples, and a serious at-
tempt to widen agendas in this debate
could hardly fail to be productive.

Kenneth E. Boulding is Professor of
Economics and Director of the Institute
of Behavioral Science at the University of
Colorado.

Book Review

Continued from p. 17

own. But none of these can match the
power of the public’s collective eye and its
visual consensus.”

Rolf Jensen in Cities of Vision, while
agreeing that visual communication is
primary, takes the opposite view: “Unfor-
tunately, it is the lot of . . . nearly all plan-
ners to be continually confronted with
situations in which, in spite of their ex-
perience . . ., a lay committee or the pub-
lic as a whole profess to know better and
as frequently insist on pressing their indi-
vidual and collective points of view
against sound advice.”” And in one of the
most interesting criticisms of Lewis Mum-
ford on record, referring to some Mum-
ford Senate testimony: “He claimed that
he saw his vital role as one of knocking
heads of specialists together, and taking a
lofty overall view of their activities which
they were incapable of doing themselves.
Coming from a layman who does not ap-
pear ever to have been involved profes-
stonally in city planning, this damaging
and presumptious assertion seems to stem
from what might have been hoped was the
long-dead fallacy of equating specializa-
tion with narrowness. The statement was
made, as might be expected, without any
suggestion of evidence to support the be-
lief that the trained professional expert
was a fool who needed to be taught his
business by the bystander.”

People versus Professionals
Thus, one of the major (largely unspoken)
issues in today’s urban planning scene is
confronted by two very able, experienced,
and articulate men. Mr. Clay is a re-
spected urban journalist, editor of
Landscape Architecture Quarterly,
formerly real estate editor of the
Louisville Courier—Journal and Presi-
dent of the American Society of Planning
Officials. Professor Jensen has had 40
years of varied experience in architecture
and planning in Britain, Southeast Asia,
and Australia; he is Dean of the Faculty of
Architecture and Town Planning at the
University of Adelaide. Close-Up deals
with observations and trends, developing
new, more accessible phrases for estab-
lished urban design terms. Cities of Vision
is a more conceptual and historical pre-
sentation, devoted to more professional
concerns, :
Clay and Jensen are both critical of
computerized systems and systems
analysis. Clay supports Harvard Professor
Alan F. Westin’s conclusion that “access
to expensive computer systems ... has
turned into ‘a factor in consolidating
rather than in redistributing government
power,” and that access to this new source
of power remains so expensive that ‘the
poor, the black ... cannot harness com-
puters to their causes.” The gap between
the power of experts to manage data and

that of the ordinary citizen to have access
to it must be narrowed.”

While not totally discounting these
methodologies, Jensen thinks systems
analysis “must inevitably fall far short of
the essential creative act required to pro-
duce a humane environment. It was
neither the plumbers nor the
economists who provided the physical en-
tity of the traditional city we admire. . ..
The cities of vision . .. thus becomeé the
creative masterpieces of enlightened indi-
viduals . . .”

Of course, it is clear to planners that no
present information system has been
adequately coupled with an enlightened
individual andor a citizen-interaction
process at the city level over a significant
period of time. Certainly there is potential
here requiring strong governmental lead-
ership and sustenance.

A compromise is perhaps our best
course: it is desirable that urban visual
values for use in design should transcend,
but not ignore, the common denominator
of any present transitory population.
Human and other resources will be pro-
tected if city designers value the wants of
their contemporaries, the needs for their
social development, and the goals for
achieving the best possible society in the
future.

“Wants” refers to the routine expres-
sions of individual desire by citizens who
have not been exposed to a significant
range of options. ““Needs” are those
things that can be determined through a
systematic application of current facts and
evaluation systems. “Goals,” inherently
dealing with values, must be imaginatively
developed and constantly and explicitly
referenced to the most desirable faces of a
changing society.

Clearly, Close-Up is devoted to re-
trieval of and concern for the wants of the
current population, and Cities of Vision is
most substantially concerned with needs
and goals. Twentieth-century urban plan-
ning has given most weight to our needs,
with oscillations toward goals in the first
quarter and toward wants in the last. En-
vironmental protection and energy con-
servation are major forces currently
swinging the pendulum again toward
goals. The peruser of these books will find
himself asking many questions: the rela-
tive weights of current needs of individu-
als, needs of society in general, and goals
for future developments; the appropriate-
ness of the valuations given these in past
and current decisionmaking processes;
and the needs for improvement in the im-
mediate future.

Ralph  Warburton is Professor and
Chairman of the Department of Architec-
ture, Architectural Engineering, and
Planning at the University of Miami,
Coral Gables, Florida. He studied ar-
chitecture at M.LT. with the Class of
1957.
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