How Much Luck in the First Transfusion?

I have received several letters concerning my question in the January issue about games of strategy, particularly RISK. David Rosenthal sent a partial computer analysis of RISK. In addition, I have been sent some hints on games in general which I would like to pass along. Liz and Neil Doppelt recommend BROKER and a card game called "Six-Pack Bezique" (Winston Churchill's favorite). Finally, Tom Stockfish suggests writing to Simulation Publications, Inc. (44 E. 23rd St., New York, N·Y. 10010) for a catalogue of their many strategic games.

Problems
J/A 1 The following problem on the subject of "keyword bridge" is from Walter F. Penry:
A scrambled sequence of letters is formed by choosing a keyword (containing no repeated letters) and writing the remainder of the alphabet in order after it. The letters of this sequence are written as capitals on the 26 cards of a to 2. The letters of another sequence (based on a different keyword) are written as small letters on the 26 cards of a to 2. A Bridge game, contract 4 by S, down one, might be written as shown below.

What are the keywords?

J/A 2 While working on an old prob-
lem, x , Neil Judell has come up with the following variant: For positive x, let y₀ = x, y₁ = x², and in general y₀ = x²⁻. Now let z₀ = lim y₀. In terms of n, what is z₀?

J/A 3 The following was submitted by Joseph Horton, who notes that the first reported blood transfusion was performed before the nature of blood typing and matching was known; therefore, it was fortunate that luck was on the patient's side. The problem: What was the probability of a successful transfusion (one in which no adverse reaction occurred: among major factors)? You need to know:

<table>
<thead>
<tr>
<th>Donor Type</th>
<th>A</th>
<th>O</th>
<th>B</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient A</td>
<td>ok</td>
<td>ok</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>O</td>
<td>ok</td>
<td>ok</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>ok</td>
<td>ok</td>
<td>x</td>
</tr>
<tr>
<td>AB</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
</tr>
</tbody>
</table>

The distribution of blood types in the population is approximately as follows: A—40 percent, O—40 percent, B—15 percent, and AB—5 percent; rh+—85 percent and rh—15 percent. Types and rh's are randomly mixed—that is, 85 percent of each type is rh+ and 15 percent is rh−. (My wife Alice, budding immunologist, says that the above is only a rough approximation and that in reality there are many other factors besides type and rh; but for the sake of the problem, ignore her complications.)

J/A 4 Here is a problem from John G. Connone, who describes "a lesser known game of solitaire played here in the snowbelt during long winter nights" (it is also played here in the pollution belt). A standard deck of 52 cards in shuffled and placed face down upon the table. The cards are then turned face up one at a time by flipping over the top card of the face-down stack. As this is done, the player simultaneously calls out the sequence A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A, 2, etc., one card being moved for each card flipped over. To win the game, one must go through the deck without matching a card flipped over with the card called. Suits don't matter, so, for example, any 4-spot flipped over on the 4th, 17th, 30th, or 43rd turn results in a loss. "Since winter will surely come again," Mr. Connone would like to know what are the chances of winning the game. How about a second solution for the same game with a 48-card pinochle deck?

J/A 5 Frank Rubin wants you to place six points inside a unit square so that the nearest two are as far apart as possible.

Speed Department
SPEED 1 The following is from Dick Boyd: Larry and Bill enjoy hot coffee with cream. What strategy should they use in adding the cream to keep the coffee hottest longest?

SPEED 2 Mary Lindenberg asks the following real estate problem: A realtor bought a house for $16,000, sold it for $17,000, bought it back for $18,000, and resold it for $19,000. How much did the dealer make or lose?

Solutions
Following are solutions to problems published in the March/April issue:
M/A 1 On a usual chessboard, define a new piece, the knighting, by letting its move be three up and two over or two up and three over (also allowing down for up, of course). Can you devise a knight tour—that is, find a series of knight moves such that each of the 64 squares is landed on exactly once?

This problem requires the touch of a combinatorist for its solution. Since this is one of Frank Rubin's primary interests, it is not too surprising that he did not have too much trouble: No knight's tour is possible. Notice that at the 16 encircled cells there are exactly two moves available. Either both of these moves are taken in the tour, or that cell must be a terminal. Next note that the two moves at 10 and 55 both end at 29 and 38. Either the tour contains the closed circuit 10-29-55-36-10, which is impossible, or one end of the tour is a 10 or 55. The same reasoning shows that the other end of the tour must be at 15 or 50. Since both ends of the tour have now been located, all
of the other moves at the circled cells must now be in the tour. But these moves include a closed circuit 1-20-7-29-16-38-64-45-38-36-49-27-1. Since a tour cannot visit the same square twice, no tour is possible.

For more details the reader is urged to see an article of Dr. Rubin’s to appear this fall in the Journal of the Association for Computing Machinery.

Also solved by R. Robinson Rowe.

M/A 2 Find a closed form for $1^1 + 2^2 + 3^3 + \ldots + n^n$.

Judith Q. Longyear points out that no closed form is known and cites a reference p. 471 of Vol. 53 of American Mathematical Monthly. In this article it is shown that $(\text{let } f(n) = 1 + 2^2 + \ldots + n^n) n^n \left(1 + \frac{1}{4(n-1)}\right) < f(n) < n^n \left(1 + \frac{2}{e(n-1)}\right)$

Richard T. Bumbry fiddled around with $f(n) \mod q$ for various qs and has some evidence to suggest that no closed form is possible.

M/A 3 Sometime in the morning it began to snow, and the snow continued at a constant rate all afternoon. A snowplow, which moves a constant volume of snow per unit of time, traveled twice as far between noon and 1 p.m. as it did between 1 p.m. and 2 p.m. When did it begin to snow?

This problem was somewhat more subtle than it first appears. Some of the giants of puzzledom (at least of Puzzle Cornerdom) erred by assuming that there was twice as much snow on the ground at 1:30 as at 12:30. This, however, is incorrect. As the following solution (from Robert Pokoff) indicates, we must integrate the inverse proportionality:

Using C's as constants, let:

- volume of snow plowed = $V = Ct$,
- depth of snow = $h = Cst$,
- Width of plow = w, and
- distance plowed = x.

Then $dV = hwdx = Cwt wdx$. Then $dV/dt = C\omega t (dx/dt)$. But, from (1), $dV/dt = C_1$.

Therefore,

$C\omega t (dx/dt) = C_1$,

$dx = C (dt/t)$

$x = \int (dt/t)$

If T is the interval in hours from the time the snow started until noon, and x_1 and x_2 are the distances plowed between noon and 1 p.m. and between 1 and 2 p.m., respectively, then

$x_1 = C \int_T^{T+1} (dt/t) = C \ln [(T + 1)/T]$

$x_2 = C \int_T^{T+2} (dt/t) = C \ln [(T + 2)/T]$

$(T + 1)$]

But $x_1 = 2x_2$; therefore

$\ln[(T + 1)/T] = 2\ln[(T + 2)/T]$

$(T + 1)] = \ln[(T + 2)/(T + 1)]^2$.

Therefore $(T + 1)^3 = T(T + 2)^2$,

$T^2 + T - 1 = 0$, and $T = 0.618$ hours before noon, or 11:22:55.

Responses were also received from R. Robinson Rowe, Avi Ornstein, John E. Prussing, Frank Rubin, Winslow H. Hartford, David Geisler, Ted Mita, Harry Zaremba, Jack Parsons, and the proposer, Doug Hoyman.

M/A 4 This problem was revised in June, and its solution will appear with the solutions to the June problems.

M/A 5 In each of the 16 equal squares shown place a different letter of the alphabet in such order that they will correctly spell eight different four-letter words, one word in each of the four horizontal rows (reading from left to right) and at the same time one word in each of the four vertical columns (reading from top to bottom), making a total of eight different four-letter words possible. Do not use plurals or proper nouns. All words must be defined in any one dictionary of your choice. How many words can you get?

Only George H. Lopes was able to give a complete solution. All other solutions used the same letter more than once or did not have eight words. In fact, Mr. Lopes asks for extra credit since his solution has nine words (flat diagonally upward):

CYST

OPAH

RIMU

FLED

All of these words appear in Webster's New International (2nd ed.).

Other respondents were Winslow H. Hartford, Frank Rubin, and Jim Schott.

Better Late than Never

PERM I As usual several more replies have been received. However due to the time delay between my deadline and your receiving TR, most of the “new” responses received this month contain material already published in previous issues. The one exception is the following, almost humorous, contribution from Stuart D. Casper. His up arrow is the usual teletype method of signifying exponentiation.

$300 = (\sqrt[3]{9} / \sqrt[3]{1}) \cdot 17$

$400 = (\sqrt[6]{9} / \sqrt[6]{1}) \cdot (\sqrt[6]{7} - 1)$

$500 = (\sqrt[15]{9} / (\sqrt[15]{1}) + (\sqrt[15]{7}) - 11)$

$600 = (\sqrt[21]{9} / (\sqrt[21]{1}) - (\sqrt[21]{7}) - 93)$

$700 = (\sqrt[33]{9} / (\sqrt[33]{1}) - (\sqrt[33]{7}) - 15)$

$800 = (\sqrt[39]{9} / (\sqrt[39]{1}) - (\sqrt[39]{7}) - 61)$

$900 = (\sqrt[51]{9} / (\sqrt[51]{1}) - (\sqrt[51]{7}) - 91)$

$1000 = (\sqrt[63]{9} / (\sqrt[63]{1}) - (\sqrt[63]{7}) - 101)$

$1100 = (\sqrt[75]{9} / (\sqrt[75]{1}) - (\sqrt[75]{7}) - 111)$

$1200 = (\sqrt[81]{9} / (\sqrt[81]{1}) - (\sqrt[81]{7}) - 121)$

$1300 = (\sqrt[93]{9} / (\sqrt[93]{1}) - (\sqrt[93]{7}) - 131)$

$1400 = (\sqrt[105]{9} / (\sqrt[105]{1}) - (\sqrt[105]{7}) - 141)$

$1500 = (\sqrt[117]{9} / (\sqrt[117]{1}) - (\sqrt[117]{7}) - 151)$

$1600 = (\sqrt[129]{9} / (\sqrt[129]{1}) - (\sqrt[129]{7}) - 161)$

$1700 = (\sqrt[141]{9} / (\sqrt[141]{1}) - (\sqrt[141]{7}) - 171)$

$1800 = (\sqrt[153]{9} / (\sqrt[153]{1}) - (\sqrt[153]{7}) - 181)$

$1900 = (\sqrt[165]{9} / (\sqrt[165]{1}) - (\sqrt[165]{7}) - 191)$

$2000 = (\sqrt[177]{9} / (\sqrt[177]{1}) - (\sqrt[177]{7}) - 201)$

$2100 = (\sqrt[189]{9} / (\sqrt[189]{1}) - (\sqrt[189]{7}) - 211)$

$2200 = (\sqrt[201]{9} / (\sqrt[201]{1}) - (\sqrt[201]{7}) - 221)$

$2300 = (\sqrt[213]{9} / (\sqrt[213]{1}) - (\sqrt[213]{7}) - 231)$

$2400 = (\sqrt[225]{9} / (\sqrt[225]{1}) - (\sqrt[225]{7}) - 241)$

$2500 = (\sqrt[237]{9} / (\sqrt[237]{1}) - (\sqrt[237]{7}) - 251)$

$2600 = (\sqrt[249]{9} / (\sqrt[249]{1}) - (\sqrt[249]{7}) - 261)$

$2700 = (\sqrt[261]{9} / (\sqrt[261]{1}) - (\sqrt[261]{7}) - 271)$

$2800 = (\sqrt[273]{9} / (\sqrt[273]{1}) - (\sqrt[273]{7}) - 281)$

$2900 = (\sqrt[285]{9} / (\sqrt[285]{1}) - (\sqrt[285]{7}) - 291)$

$3000 = (\sqrt[297]{9} / (\sqrt[297]{1}) - (\sqrt[297]{7}) - 301)$

(Continued on p. 63)
Chase
Continued from p. 13

We should embrace the notion of the "negative income tax," which means family income subsidized, if necessary, to meet a decent standard of living for every American; such a plan should replace the majority of our current relief programs. Even President Nixon has advocated this priority.

We need compulsory arbitration for union contracts in all public services essential to the life of the community—fire, police, sanitation, hospitals, and the like. No more economic blackmail by strikers, any more than by Saudi Arabia. To find the able and fainthearted arbitrators needed may not be too difficult after the lessons of Watergate. Ask for a list from Messrs. Cox, Richardson, and Rockelshaus.

We should establish a high-powered Office of Technology Assessment in the federal government to examine new scientific findings and advise on how far they should go into mass production and mass use. Had such an agency existed in 1916 (the year of the Model T'), the internal combustion engine might have been curbed instead of becoming, in the words of one despondent critic, "the greatest disaster to overwhelm the human race since the flood." Such an agency has already been set up in a small way in Washington. The generalist hopes for its development in a big way.

Such an agency could be of great help, too, in countering the growing—and largely ignorant—popular attack on many aspects of technology. To use the semantic approach: technology, it is not technology—an oxygen tent is not an atomic missile. What kind of "technology" are we talking about? What are the referents?

Any generalist who tries to concentrate on issues can in fact think of many other necessary changes—economic, political, and military—to improve the quality of American and global life. The priorities of this particular generalist as the decade to 1984—that ominous date—begins are those listed above.

How would you amend them?

Stuart Chase, who studied at M.I.T. with the Class of 1910 in the course in general engineering, is a prolific writer on subjects relating to economics, communication, and social affairs. Among his major books are The Process Study of Mankind, The Tyranny of Words, and The Most Probable World.

Puzzle
Continued from p. 61

As Mr. Casper's solution makes clear, getting really large numbers using the greatest integer function is quite possible. I would really appreciate (in the mathematical sense as well) a rigorous proof of MAX 2 which asserts as a corollary that FERM 1 (in the loose sense) is possible for all numbers. A "constructive" proof would, of course, be preferred. I might also point out that FERM 1 (in the strict sense—no greatest integer) is still quite a challenge. In June I published Eric Jamin's list, which has 20 gaps up to 256, and I have no answers beyond that. So how about 152, 155, etc., without greatest integer?

Responses were also received from Dr. Efrem G. Mallach, Ray Ellis, Tom Davis, Bob McConaghy, Ermanno Signorelli.

Proposer's Solutions to Speed Problems

SPEED 1 Add the cream immediately in order to get the mixture temperature down to reduce the loss of heat from radiation. Radiation heat losses go as the fourth power of temperature differential. Hence the mixture will stay hotter longer if the cream is put in at once than if you wait for the coffee to cool and the cream to warm up before mixing.

SPEED 2 Since the total expenses were $34,000 and the income was $36,000, the profit was $2,000.

Allan J. Gottlieb studied mathematics at M.I.T. (S.B. 1967) and Brandeis (A.M. 1968, Ph.D. 1973) and is now Assistant Professor of Mathematics at York College of C.U.N.Y. Send problems, solutions, and comments to him at the Department of Mathematics, York College, 150-14 Jamaica Ave., Jamaica, N.Y. 11432.

Bucharest and Transylvania

(See insert at page 8)