Puzzie C‘brner
Allan J. Gottlieb

Five Problems, Three Corrections

Hi. Since this column starts a new volume
of Technology Review, et me briefly men-
tion the ground rules for the benefit of
new readers.

In each issue we’ll publish five problems
and two ‘‘speed” problems, selected
from those submitted by readers. Three
. months later we’ll publish an answer—as
, received from a reader—to each problem;
but normally the “speed” problems re-
main unanswered.

Thus the column depends on reader re-
sponse. None of the problems or solu-
tions is mine, so all the credit (and
blame) belongs to all of you out there in
magazineland. As of now (August 13) |
have a backlog of proposed problems
which will last almost until the snow
- melts, so please be patient if your master-
pieces don’t appear for a while. “Speed”
problems, on the other hand, are in short
supply.

Before getting to the problems, let me
clear up three points from previous col-
umns. First, the magic punctuation is
John when James had had “had had”
had had “had” “had had” had had the
teacher’s approval. Apparently John
shouldn’t have changed James’ “had
had” to a mere “had.” Second, while
very pressed for time last spring | of-
fered a lifetime subscription for anyone
who could separate my sunsets by 42
hours. Since then many people have sug-
gested that 1 go into earth orbit. Although
this would surely solve the solid waste
problem at my mother’s house, | am not
giving credit; the obvious intent of the
problem was to increase my working
hours. Finally, in the July/August issue |
gave Gauss credit for proving the im-
possibility of constructing certain poly-
gons with straight edge and compass.
Michael Goldberg has pointed out my
error and refers interested readers to the
American Mathematical Monthly, Volume
75 (1968), p. 647.

Problems

We start the volume off right with a
bridge problem from Winslow H. Hariford:

1 Given the following hands, with the
contract four spades:
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West leads WK and $J and continues
with ¥Q (his best play). Can you make
the contract?

Frank Rubin submits the following:

2 Let N be some fixed positive integer.
Show that there exist positive rational

numbers ay, .

.., ay such that for any

m1=m=N

S(m) = i a3;
i=1

is the square of a rational number, and
S(N) = 1.

Here’s an interesting problem from
Douglas J. Hoylman:

3 Pascal’s triangle can also be written
in rectangular form, in which case it
looks like this:
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The first row and first column constst
entirely of 1's and the other entries are
found by adding the number to the left
and the number above. If this array is
continued to n rows and n columns,
where n is any positive integer, prove
that the determinant of the resulting
matrix is 1.

Here is some magic from David DeWan:

4 A magic square is a square matrix of
numbers such that rows, columns, and
diagonals all sum to the same total.
Create a 5 x 5 magic square using 25
two-digit numbers composed of the digits
0, 1, 6, 8, and 9. The magic square must
also work when turned upside-down (90
becomes 06, etc.).

Smith D. Turner writes:

5 Determine a rational number whose
square, when increased or decreased by
5, is still a square.

Speed Department

Donald F. Morrison figures the Penn
Central needs some help:

SD1 On the railroad below, the tank car
and boxcar can be pushed or pulled,
singly or in tandem, but cannot move on
their own. Only the engine can pass
through the tunnel; the other two cars
are too large. The problem is to inter-
change the tank car and boxcar and end
up with the engine on the same siding

it started on.

BOXCAR

TUNNEL

*OFFFO
TANK CAR

ENGINE



Frank Rubin proposes the following:
SD2 Arrange three points within a unit
square so as to maximize the minimum
between two of them.

Solutions

This month’s solutions are to problems
published in the May, 1970, issue of
Technology Review.

31 The number 1,729 is an “interesting”
number because it is the first number
which is the sum of two positive cubes.
Solve the corresponding problem for
squares, fourth powers, and fifth powers.

Judith Q. Longyear writes:

Presumably what is wanted is the first
number which can be written in two
different ways as the sum of k

powers; otherwise 2 = 1¥ 4 1k solves all
of them. If either of the proposers has
the solution for k = 5, any journal on
number theory or diophantine analysis
will enjoy publishing it.
11431 =21 421=4

12 4 72 = 52 4 52 = 50

18 4 123 = 93 4 103 = 1,729

1344 |- 1334 = 158¢ 4 59¢ = 635,318,657

William Ackerman, Michael Rolfe, R.
Robinson Rowe, and Samuel S. Wag-
staff, Jr., the proposer, also responded.

32 In a league of 2n teams, each team
plays every other team exactly once dur-
ing a season. What is the greatest pos-
sible number of teams that can have a
winning season? (Assume no ties.)

The following is from Robert Lack:

The answer is 2n — 1 teams. In a league
of 2n teams, each team would play

2n — 1 games (under the conditions
specified). In order for a maximum num-
ber of teams to have a winning record,
2n — 1 teams would have records of n
games won and n — 1 games lost, while
one team would have a record of no
games won and 2n — 1 games lost. This
works out in all cases because if 2n — 1
teams have each +1 in the won column
(one more game won than lost), this
equals 4+2n — 1 in the won column total.
To balance this, one team has +2n — 1
in the /ost column and 0 in the won col-
umn. (The total games won and lost for

all 2n teams must be equal.) To demon-
strate this, let n = 3 or six teams. At
best, 5—or 2n — 1—teams can have a
winning record:

Won Lost Won Lost
3 2 or n n—1
3 2 n n—1
3 2 n n—1
3 2 n n—1
3 2 n n—1
0 5 0 2n — 1
15 15 5n n — 6

Since — 6 = — 2n,7n — 6 = 5n.

Therefore, in a league of 2n teams (under
the conditions specified) a maximum of
2n — 1 teams can have a winning
season.

Also solved by William Ackerman, Daniel
S. Diamond, James W. Dodson, Donald
Forman, Winslow H. Hartford, Leon M.
Kaatz, Judith Q. Longyear, Donald F.
Morrison, John E. Prussing, R. Robinson
Rowe, Frank Rubin, Les Servi, and the
proposer, Douglas J. Hoylman.

33 Given any triangle ABC and a point
D on segment BC, find (without using
calculus) points E on AC and F on AB
such that triangle DEF has maximum
area.

| hate to keep appealing to Frank Rubin,
but all other responses were either in-
complete or nearly illegible. Here is Mr.
Rubin’s:

Answer: If BD = DC, then choose E =
A, F = C;if BD = DC, then choose E =
B, F = A. (Note that when BD = DC,
there are two equally good choices). For
proof, we will consider only the case
where BD = DC. Then the area of

ADEF = AA’-DC. Suppose we chose

some other ADE;Fj, then if FyFy’ = EEy’,
A(DE;F;) = A(DE;F) = E{Ey’-DC = AA’-
DC = A(DEF), with equality maintained
only when E; = E and F; = F. On the
other hand, if FiFy" > E1E;’, then we

have by the same argument A(DE;F;) =
A(DBF;) = A(DBA) < A(DEF). This proves
that the choice E = AandF = C is
maximum when BD = DC, and the argu-
ment for BD = DC is the same.

William Ackerman, John E. Prussing,
and Michael Rolle also responded.

34 A census taker stops at a house,
notes down the number on the door, and
knocks. When a woman answers, he asks
her age and notes the answer. Then he
asks if anyone else lives at the house; she
replies that three other people live there.
Upon asking their ages, he is given the
reply that the sum of their ages equals
the number on the door and their product
equals 1,296. He does some quick com-
putation and then asks if the oldest of
the three is older than the woman to
whom he is talking. She replies that the
oldest is younger than she. What are the
ages of the three? What is the house
number?

James P. Friend notes:

Of all the possible triple factorizations of
1,296, only two have the same sum: 2, 8,
81 and 1, 18, 72. The census taker knew
the house number was 91, and he knew
the above factorizations. Obviously the
woman answering the questions was
between 72 and 81 years of age (assum-
ing an 18-year-old does not qualify as
a woman). Since the oldest of the three
other residents was younger than the
woman answering the question, the ages
of the three residents are 1, 18, and 72.
(The assumption of an 18-year-old not
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being a woman may be dubious if she is
the mother of the one-year-old.)

Also solved by High C. Barrett, Richard S.
Galik, Woodrow M. Hazel, R. Robinson
Rowe, and Frank Rubin.

35 Given the following hand, with the
bidding as indicated, show how the de-
clarer can take 11 tricks, assuming the
diamond finesse must be successful.

AB42

WA65

$QJ98

K87
AAQ963 AJ10
¥YKQJ1087 ¥v932
¢ — ¢K765432
&% 103 &9

AKT75

v4

¢A10

®AQJE542

The bidding: South—one club, West—
double, North—redouble, East—one
diamond; South—three clubs, West—
four hearts, North five clubs, East—pass.
West opens with &K.

‘Rex Ingraham solved all the problems
involved—including some that were not
intended; he proposes three of the latter:
What card did West lead, really? Who
goofed, and why? Why did Warren Him-
melberger, the proposer, guarantee the
diamond finesse?

In last-things-first-order: If Warren Him-
melberger didn’t mean to cue the solu-
tion he must have meant to hide it; either
way I'd only fault him for the mention of
the finesse because a bridge player
would have to risk it on his own, anyway.
It must have been a proofreader who
goofed—not a bridge fan—because Allan
Gottlieb certainly knows &K -« ¥K and
Warren Himmelberger knows &K is not
among West's assets. West must have
opened WK, because of all his cards this
is the only opening to present a problem
which can be solved without depending
on a pure guess by the declarer.

A complete solution and adequate expla-
nation of the reasoning goes something
like this, I think: West opens $K. The
declarer considers the old common-law
“Who looks ere leaps may live to leap
another day” and the ancient adage,
“Aces ain’t always assets,” sees that he
will win no spade trick without a helpful
lead from West, and concludes that he
can well afford to duck the first trick and
does so. West now has no lead which
will not give the declarer 11 tricks; he
has already blown the defense, although
he cannot know this. If he buys the temp-
tation, to lead a low spade (East’s AK and
diamond return could set the declarer
down three or four tricks), the declarer’s
AK will actually score him an overtrick.
If West opts to fill his book while sure of
AA, then any lead to the third trick will
put the declarer in to score 11 tricks.
Whether at the second or third trick, the
declarer can win in his own hand (the
dummy would again duck any heart con-
tinuation), complete drawing trumps to
the dummy’s &K, and play Q. East’s
temptation to cover in desperate hope to
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lead a space through the declarer’s
weakness could prevail; if so, the de-
clarer’s ¢ A will win and at once give

him 11 or 12 established tricks. But when
East ducks the ¢Q, so also must the
declarer duck—not because Warren Him-
melberger guaranteed the finesse but
because its success is vital to fulfillment
of the contract and practically assured by
East’s bid and West’s repeated failure to
lead any diamond. When 4 Q holds,

# A is suddenly changed from asset to
liability. But the declarer can purify his
hand by stashing it beneath dummy’s
¥A—and does so. Now the declarer can
continue dummy’s diamonds to ruff away
East's 4K, return to the dummy’s &8, to
cash any remaining diamonds, and claim
his remaining trumps for 11 or 12 tricks,
as the case may be.

Also solved by James W. Dodson, James
P. Friend, Donald Forman, Cmdr. R. H.
Gaunt, Winslow H. Hartford, Leon M.
Katz, T. C. Robinson, Patrick J. Sullivan,
Edmund J. Thimme, Alan B. Wright, and
the proposer, Warren Himmelberger.

Better Late Than Never

13 Find conditions on the ratio of the
altitude to the base of isosceles triangle
ABC such that the inscribed triangle DEF
with maximum area (D is at the midpoint
of AB) has FE parallel to AB.

Charles S. Rall notes that the solution as
published in the April, 1970, issue is in-
correct. Indeed, he says, as the problem
is worded there is no solution:

As was done in the published solution,
let the area of DEF = A and the area of
ABC = A’. In addition, let f = (u 4+ v —
4uv) and

u
X =
- v
so that the matrix notation may be used.
As published in the solution, one has
A" = Yzkc2and A = (U + v — 4uv)
A’ = fA’. One should note here that be-
cause A/A’ = f is not a function of k,
the ratio of the altitude to the base can-
not affect the answer, as could be seen
from the published solution. Continuing,

L G =) =( )

Equating this quantity with zero does in-
deed give a stationary value at

==

However, looking at the matrix of second
derivatives,

o [ 0 —4]
ox L —4 od’

one sees that this stationary point pub-
lished in the solution as a minimum is
instead a saddle point. Let us look at the
value of the function f over the range of
permissible values for u and v,

u, vel0, 121.

The permissible interval for u and v is
assumed to be closed so that a maximum
actually does exist. The sketch below of
the value of f versus u and v in the per-
missible region demonstrates that there
are two maxima,

0 Ya
X = and x = .
- {‘/2} - {0}

In other words, the inscribed triangle
with maximum area and with D the mid-
point of AB occupies either the left half
or the right half of triangle ABC and has
an area of exactly one-half the area of
the larger triangle. FE is not parallel to
AB but is coincident with either AC or
BC.

14 Find a function f defined on the en-
tire real line such that
1. f is bounded and strictly increasing;
2, f is continuous at each point x; and
3. lim f'(x) 5 0 5« lim f'(x).

X=>— o0 X— 0
Two mistakes in a row; William Ackerman
corrects me, writing that there is no func-
tion f defined on the reals as specified.
His proof:
Since lim f'(x) 4 0 and f is increasing,

X—> o0

#(x) = 0 everywhere, and VS, 3X
such that

X>X= [f(x) —limf(y) | <8
V> 0
lim f'(y) must be greater than 0, so, let-

V- o0
ting
o = [lim f'(y)]/2,

Y=> 0
IXyg x> X=> f(x) > [limf(y)]/2,
Y=
so f (x) is bounded away from zero for
x > X, and so f(x) grows faster than a
first-degree polynomial. Specifically, by
the Mean Value Theorem, x > X =



f(x) — f(X) = f'(¢) (x — X) for some &
(X, x), so
f(x) — f(X) > [lim f'(y)]/2(x — X).

Y
Since f is bounded, f(x) = D Vx, but if

b~
T lim P(y)l/2
Y-

then
D — #(X) = [lim f'(y)]/2(x — X).

; y-> ®
Therefore f(x) — f(X) > D — f(X),
so (%) > D.
The published solution correctly satisfied
properties 1 and 2 (tan—1, tank, and
error function are other examples),
but the attempt to add a discontinuity
to f’ at infinity failed because:
1. f’(c0) is not defined;
2. Even if it were, adding a discontinuity
there would not solve the problem. The
problem concerns lim f'(x), and hence

X—> ©

constrains f' near co, not at co.
It does not matter whether the limit does
or does not equal f'(), as long as it
does not equal zero.
3. The attempt to add the discontinuity
at 1 and shift 1 to co by mapping (0, 1)
to (0, o) would not work in any case
because 1¢(0, 1) and 7%(0, 0).

16 Find a curve having nonconstant
radius of curvature such that all the
centers of curvature lie on the x axis.

Donald E. Savage writes that R. Robinson
Rowe’s solution as published in May,
1970, is in error:

First, as a minor point, equation 3 is

in error (by a minus sign) as one can
see from either of his diagrams. For
example, along the arc OU,y > 0,

y’ > 0, and yet y” < 0. But my major
criticism is of his equation 4. Differen-
tiating both sides, | get

Yy’ = — 2[vat — yi/y?

+ [y/v/at — yily"

Substituting for y’ and then multiplying
by y, I get

yy” = —2at/y4.

But1 + y2 = at/y* =£ yy”, as equation
3 requires.

Having criticized his solution, | will now
make my own available for criticism:
Part I: “Nice” functions. From Burington’s
Tables, the y coordinate of the center of
curvature corresponding to the point
x,y on y = f(x) is given by

k=y+ 1+ Y2y

Setting this equal to zero, | get

yy' = — (1 +y?).

To solve this, let p = y’, so that

y" = dp/dx = dp/dy - dy/dx =
p(dp/dy).

Substituting this ln the above equation,
and letting u =

yy” = yp(dp/dy) = y/2(du/dy) =
—g+y;2)——(1+p2>—
Therefore du/(1 4+ u) =
Integration gives
u+4+1=p24+1=(y/a)"2
where a is an integration constant.
Therefore

p = dy/dx = (\/a% — y2?)/y.
Integrating again,

— /a2 — y2 = X — X,

— 2dy/y.

where xg is the second integration
constant. Thus (x — X)2 + y2 = a2,
which is the equation of a circle of radius
a and center at Xo, 0. Thus for “nice”
functions (having continuous second
derivatives) it appears that there are no
curves of nonconstant radius having all
centers of curvature on the x axis.

Part Il: “Goshawtful” functions. A facetious
answer to problem 16 is, “That’s easy;
two circles of different radii with centers

. on the x axis.” To get around the possible

objection that this is really two curves,
one can put the circles together and
erase certain parts:

Pursuing this line of reasoning

ad infinitum (or, perhaps, ad nauseam),
the answer to problem 16 can be shown
to be “any ol’ continuous curve of non-
constant radius.” To show this, note that
any ol’ continuous curve can be approxi-
mated by another one cbtained from the
first by (1) marking off the first into smali
segments, (2) approximating each seg-
ment with a circular arc whose ends lie
on the ends of the segment and whose
center of curvature lies on the x axis.
Then by making the segments smaller
without limit, the approximating curve
comes arbitrarily close to the original
curve, all the while having the required
properties—almost everywhere. (Do |
hear you muttering something about the
“measure” of the points where it
doesn’t?)

Responses were also received from
Donald Forman and Michael Rolle.

20 A said to the farmer, ““I know you

own a rectangular plot in that 20-by-20
section, and | know the area of your plot.
Is the length greater than twice the
width?” B said to the farmer, “Before you
answer let me state that | knew the width,
and | now know the length.” C said, “I
did not know the length, width, or area,
but | now know the dimensions.”

What are they?

The proposer, John Mandl, disagrees
with the solution published in the May
issue. He writes:

The solution stated that Lyax = 20. This

is incorrect. The upper limit of L is 20N/2,
since the rectangular plot could lie along
the diagonal of the 20-by-20 section. The
solution stated that W = 10, and yet the

final statement is thatL = W = 10/2;
these statements are contradictory.

This approach to the problem is one |
had not considered; my original approach
was one which confined the analysis to
the case of integer length and width.
This approach resulted in the following:
1. Of all possible values for the area, we
can immediately discard those areas
bounded by unique L and W. For instance,
if A knew the area to be 7, the dimen-
sions would have to be 7 x 1, and there
would have been no need for his
question.

2, A’s question, “Is the length greater
than twice the width?”’ was designed so
that either a Yes or No answer would
enable him to determine the dimensions.
The question itself eliminates several
possible areas—namely, those areas
which show up twice on either side of
the line defined by L > 2W (such as A
= 18, which can be formed by 18 x 1,

9 x 2, or 6 x 3, because a possible Yes
answer would not have told A whether
the dimensions were 18 x 1 or 9 x 2).

3. After eliminating all the unique and
the duplicated areas, B—knowing the
W—had only one possible area left and
consequently could determine L.

4. C examined all the widths for the re-
maining areas, found only one W which
was accompanied by a single area, and
was able to duplicate B’s analysis.

The final solution with this approach is
W = 11, L = 12, (Incidentally, plots

of 27 x 1, 26 x 2, etc., will fit in the
20-by-20 section.)

Responses also received from M.B.
Brilliant, Robert C. Fleetham, and T. A.
Ginsburg.

There have been a number of additional
responses to other earlier problems:

12 John Price

18 James W. Dodson

21 Frank Rubin

22 Frank Rubin

23 Donald F. Morrison

25 Frank Rubin

27 James W. Dodson, Robert Pogoff,
and Robert C. Hall

30 William Ackerman, R. N. Assaly,
Gerbert Barnard, Harold Donnelly, Wood-
row M. Hazel, Charles Heiberg, Thomas
H. Kick, J. A. Jacobs, J. T. O’Connor,
G. Stephen Pittman, Victor W. Sauer,
Balbir Singe, and—of course—

Frank Rubin.

Allan J. Gottlieb, who studied mathe-
matics at M.I.T. in the Class of 1967,

is a member of the Mathematics Depart-
ment at Brandeis University, Waltham,
Mass. 02154. Send problems and solu-
tions to him at that address.
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