Puzzle
Corner

Year-end report on amplifier: My new
roommate, Ron Kadomiya (M...T. '67) is
a mechanical engineer at Raytheon here
in Waltham. He came over and we traced
the trouble to the right channel (the
same channel on which Dynaco pre-
viously replaced a capacitor). He gave
the amplifier to an electrical engineer
friend of his at the laboratory who
ascertained that four—count ’em, four
—transistors were blown. Of course the
two output transistors were among them.
| have purchased replacements and he is
to check everything out before | reuse

the amplifier. We're so hopeful now that '

Ron is thinking about buying speakers.
| find this definitely a better idea than
my buying the speakers.

As promised, no new problems this
month, since the answers could not be
published until fall.

Solutions

25 Let N be the number of positive in-
tegers which contain no digit more than
once when they are expressed in base b
where b is an integer greater than 2.
Show that N is always composite.

The following is from Stephen Owades,
who is a freshman at M.L.T.:

“In a base b, one can have positive
integers of from 1 to b digits in length
without repeating digits. There are

(b — 1) ways of filling the first digit

(1 through b — 1), (b — 1) ways for the
second (0 through b — 1 less the one
in the first position), (b — 2) for the
third, and so on through (b — k 4 1)
for the last, where k is the number of
digits. Summing for all k, we get

b
N= > b—1Ib—1)(b—2
k=1
cob—k 4 1]
b
=(b—1) [(b—1)(b—2)

coob—k 4+ 1)]

Forb > 2, (b — 1) > 1, and it is ob-
vious that the sigma expression is like-
wise > 1. Therefore, N is the product of
two integers greater than 1 and thus is
composite.” '
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Also solved by Eric Hovemeyer and
Messrs. Friedman, Grant, Hauser, Karger,
Prussing, Ross, and Rubin.

26 Find the smallest integers m and n
such that m — n3, m, and m + n3
are all perfect squares.

Douglas J. Hoylman solved this one.
He writes:
Let

m—nd=pZm=aq%andm 4 nd = r2.

Then we obtain the equations

g2 — p2 = nd,

r2 — g2 = n3, and

r2 — p2 = 2n3.

Since r2 — p? is even, r and p must be
of the same parity. But since even and
odd squares, respectively, are congruent
to 0 and 1 mod 4, r2 — p2 must be
divisible by 4. Hence n3, and thus n, is
even. Now suppose n is not divisible by
3. Then neither is n3 or 2n2, If the dif-
ference of two squares is not divisible by
3, it is easily seen that one of the two
numbers must be divisible by 3 and the
other one not. But this cannot be true
of all three pairs (p,q), (p,r), and {q,r).
So we derive a contradiction, and n
must be divisible by 3. Hence n is di-
visible by 6. We try the smallest possible
value, n = 6. Then we must find in-
tegral solutions of r2 —p?2 = 432.
Factoring the left side, we see that we
must have

2r=(r—p)+ (r+p

— 2a3b _ 2(4—a)3B—b)

wherea = 1,2,or3and b = 0or1.
(We exclude a = 0, 4 because the
right side must be even, and b = 2,

3 by symmetry.) Of the six values for r
thus obtained, the smallest is r = 21
(from a = 3, b = 1). Then we obtain

p = 3,q = 15, and m = 225. This is
clearly the smallest solution.

Also solved by Robert G. Hall, Hubert
du B. Lewis, Captain George Martin,
Robert G. Mays, John E. Pruessing, and
T. Terwilliger.

27 Smith D. Turner wrote, “For betting
purposes, a horse race is sometimes
simulated by having a number of wooden
horses run a course of several moves,
the one to move each time being deter-
mined by lot. For example, use six
horses, throw a die, and the first whose
number is thrown (say) 10 times wins.

To make this more interesting, | have
set it up where one horse must move
only a few times, and others increasingly
more, to win—thus creating a ‘favorite’
and ‘long shots’ in the betting—say 2, 3,
5, 6, 8, and 10 moves with six horses.

“I have found it extremely difficult to cal-
culate the probabilities for such a set-up.
Even with a much simplified race—e.g., .
three horses having to move 5, 4, and 2
times (below)—the calculation was

very laborious. In the case illustrated, |
get the probability of the favorite C to
win as 15001/19683.

“Could anybody check this and—more
importantly—come up with a method,
computer or otherwise, of handling a
more complicated race, say the 2, 3, 5,
6, 8, 10 above?”

Here are the best parts of two solutions
received. Harold D. Shane supplies the
method:

Let us have k possible outcomes to an
experiment, and let the jth outcome have
probability P;, j = 1,...,k Py 4 Py
+ ...+ Px = 1. Let t, ; equal the
number of occurrences of outcome j in n
trials. Let nj be the number of outcomes
needed for the “jth horse to win.” Then
Pr {jth horse wins on trial n}

= Pr {outcome j on trial n} X

Pr {(tn—l,j = Nj— 1)

t=nm—1 i=1,...,kiz*j)}

Let Py;; be the probability given above.
Now

njénénj—z (ni—1)

i=1



ni— (k—1)

L= =
nj=n=

e

-
]

1

k
2 ni, then

LetN =
I i=1
nj=n=N+41-—k
To somewhat simplify the notation, let
us ‘assume that we shall renumber the
horses so that we always want Py,
so that

N+1-k
'Pr {kth horse wins} = 2 Pn.

n=ny
Now,
n!_.-l
Pn,k = Px 2 e
ry=0
ny_—1—1
k—1 n—1
Py
_ r1.l9, v oo s Pg—1N—1
r—1=0 \ T1T2 k—1:"k

o Ptk Pyix—l

where

( . )
Tl o v s rg—1, Bg—1

is to be interpreted as zero whenever
ri 4+ ro 4+ ...4rk—1 5 n—nNg.

For the problem described,

Py =Py =...Px=1/k

and Pyfi. .. Pg—qTc—1 Pk —1 = {/kn—1
and thus
n+1—k ni—1
Pr {kth horse wins} = 2 1/kn 2
n=ny ri1=0
nk_l-l

2 < o )
rg—1=0 r{r9, oo o Tp—1s nk—l

In particular, for ny = 5, neg = 4, ng = 2,
k=3 N=11
Pr {favorite wins} =

o : 3 n—1
112=21/3n ,go 52‘1 (r,s,l >

= 15001/19683.

The other problem vyields

ng =10, ng = 8,n3 = 6, ng = 5,
n5=3,n5=2,N=34,K=6

29
P {favorite wins} = < 2 1/6n ) X

n=2

9
2 n—1
m= i=0 \ Lik,1,m,1

which involves fewer than (29) (2) (4)
(5) (7) (9) terms, certainly well within
the reach of a reasonable computer.

7

i=0

David Dewan wrote a program to solve
this. The job ran 912 minutes and
concluded that the probabilities are
.643, .282, .050, .020, .003, and .0004.
Off to the races, Mr. Turner.

28 and 29 As usual, anything influenced
by Andrew Egendorf (an M.I.T. student
colleague) turns out as a disaster. No one
responded. Poor George Starkshall
should only be criticized for penning his

name to an Egendorf creation. Through-
out my stay in M.I.T.’s Baker House,
Andy would either criticize my pin ball
technique (which was both more color-
ful and productive than his) or berate my
Technology Review problems as being
too boring. It is interesting to note that

| was the “star” of the Baker House pin
ball column and his problems are the
flop of Puzzle Corner.

30 A mathematician moonlighting as a
census-taker stops at his friend’s house.
In this census he is required to obtain
the names and ages of all the occupants
of the house. After writing down several
names and ages the census-taker asks,
“Are there any more people who live
here?” His friend replies, “Yes, there
are three more people that live here.”
When asked for their ages, the friend
reports that the product of the ages is
1296 and the sum is the street number
of his house. The census-taker makes

a few calculations and then says, “Just
tell me one more thing: How many of
the three are older than you are?” As
soon as his friend replies, the census-
taker smiles, writes down the ages, and
leaves. What is the house number?

Major Frederick H. Cleveland submitted
the following:

‘“The house number is 91. It is the only
sum of the factors of 1296 that occurs
more than once (2, 8, 81 and 1, 18, 72);
hence the need for more information.
Note also that his friend’s age must be
from 8 to 17 or 72 to 80, inclusive; 1 is
a mathematical possibility but not very
probable.”

Also solved by William Dunbar, Captain
Walter C. Moore, Russell A. Nahigian,
Smith D. Turner, Captain John Woolson,
and Messrs. Martin and Mays.

31 The diagram below shows the final
position in a chess game in which White
has checkmated Black. What was White's
last move? His next-to-the-last move?

Black

WK

WP | BK

WP| BP

WP

Also solved by: John L. Joseph, T. D.
Landale, Alan Matthews, and Donald F.
Morrison.

Better Late Than Never

9 Given the quadratic polynomial with
matrix coefficients

—3 1

14 —11

10
P(2) = +2
0

1

—4 4

—58 28

Factor it. One solution is:

1 0 2 —1 10
+Z

0 1 20 —7)10 1
—5 0

Z+
—6 —4

There are five other solutions.

+2

Finally someone solved this. Eric E.
Hovemeyer notes that: another
factorization of
—3 -1
14 —11

10
P(Z)[ J—|—Z
0 1

.
o-([ 727 2)
(SEChe)}

15 Leslie R. Axelrod claims that 1729

is interesting since it is the first number
which is the sum of two cubes in two
different ways (1729 = 13 4 123 = 93
+ 103),

Allan J. Gottlieb, who studied mathe-
matics at M.I.T. with the Class of 1967, is
a Teaching Assistant at Brandeis Univer-
sity. Send answers and problems to him
at the Department of Mathematics,
Brandeis University, Waltham, Mass.,
02154.

+z

Tech-Crostic

WP

WB

White

Captain Martin submits the following:
White’s next-to-the-last move was P to
K5, to which Black responded with P
to B4. White then claimed the pawn,
giving the published position.

The correct solution to the Tech-Crostic
on pages 94 and 95 of this issue of
Technology Review is as follows:

“Unlike European metalwork which
usually utilizes only the fluidity and work-
ability of metals, Japanese metal work
often reveals a deep feeling for the
structure of metals and their chemical
properties.”—Smith, A History of Metal-
lography.
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