
1

Recall from last week…
• Process states

– scheduler transitions
• (red)

• Challenges:
– Which process should run?
– When should processes be preempted?
– When are scheduling decisions made?

ready

running

blocked

block

unblock

pr
ee

m
pt

sc
he

du
le

terminate

Today:
Process Scheduling Algorithms
• Objective: a high performance system

– Efficiency:
• Maximize CPU time spent executing user

programs.
• Recall that context switch is expensive.

– on the order of 104 instructions
• But not at the expense of….

– Responsiveness
• What do I mean by responsiveness?

– Average user happiest?
– Long computations complete in reasonable time?

• Several approaches will be described.

Process Scheduling
by Objective

Eric Freudenthal

(almost)
Universal scheduler algorithm
• Run process with highest “priority”

– Computed priority represents some scheduling objective
– Priority can only be computed from available information

• Assigned process importance (if available)
• How long in ready queue, how long running
• Characteristics of process

– i/o bound, resources held, how long since submission

• When does scheduler algorithm execute?
– Whenever running process blocks
– Maybe at other times too:

• Maybe: Whenever a process becomes ready.
• Maybe: Whenever quantum expires.

– Is quantum fixed? If not, how is it computed?

• Challenge: mapping objectives to priorities

Name Game Warning
Play at your own risk.
• The algorithms described today are known

by multiple names.
• I use names that appear in Tannenbaum.

– Allan assures me that his exams will use the
names (not acronyms) as they appear in
Tannnenbaum.

• Allan’s class notes include a table titled
“the name game” listing the algorithms’
names in multiple text books.

Objective: Fairness (first attempt):
First-Come First-Served
• Process that has been “ready” the longest

has highest priority.
– Head item if “ready queue” is a FIFO

• No preemption
– Processes execute until they terminate or

block.
• A process can “hog” the processor,

starving others.

2

Objective: Fairness
Round Robin
First-Come First-Served with Preemption
• Preempt processes that ‘hog’ the

processor
– How to pick quantum

• Extreme fairness: q = 1 instruction
– Cost of context switching consumes >99.9% of CPU

• Reasonable q = 1ms = 0.001s
– Modern processors execute Approx 1G i/s
– 1M instructions = (approx) 1ms
– Approx 1/1,000,000 of cpu time lost due to preemption

Variants on Round Robin

• Prioritization by adjusting the quantum
– Is it “fairer” to provide more execution time to some

processes:
• Those holding resources that effectively delay others
• Those pay more?
• Maybe: increase q for these “higher priority” processes.

• All processes have quantum = ∞
– No preemption, therefore “First come first served”

Theoretical digression:
Processor Sharing
• This is a theoretical model

– Each of n ready processes proceeds at rate
1/n.

– For example, if 3 processes are ready, each
executes 1/3 of an instruction in 1 cycle.

– Useful for mathematical analysis since it
models a process’ effective rate of execution
as a fraction.

• As if RR could have tiny quantum
– (say 0.0001i)

Objective: important processes
proceed most quickly
Priority Scheduling
• Processes assigned rank at entry.

– Perhaps users pay more for higher rank?
• Process with highest “rank” always runs.

– Round-robin if multiple at highest rank
• Preemption:

– Run scheduler every time a process becomes ready.
• preempt if higher rank process is ready

• Two challenges: starvation and priority
inversion. (next two slides)

Priority challenge 1:
Starvation
• Problem:

– Low priority process may never run
• Solution: Priority aging

– Temporarily raise rank of ready processes at
some rate.

– Effect: processes with lower rank wait longer
to run if higher priority processes are ready.

– When is aging computation performed?
• When processes become ready.
• When quantum expires

Priority Challenge 2:
“Priority inversion” possible
• Low rank process holds resource needed by high rank

process.
– Example

• A: rank = 3, needs tape drive (blocked)
• B. rank = 2, ready
• C: rank = 1, has tape drive, ready

• Problem:
– B has higher rank than C
– So B will execute, and A will be delayed.

• Effectively inverts priority!!!!

• Solution: temporary “promote” C to A’s priority:
– Promotion rule: All low rank processes {C} holding resource

req’d by some higher rank process A, are temporarily promoted
to A’s rank.

3

Objective: giving older jobs
advantage: Selfish Round-Robin
• Round-robin among the ‘in’ group of accepted

processes.
• Really just a computed-rank algorithm.
• Every process π has increasing rank Rπ

– Rπ initially zero
• Define acceptance threshold T = max(Rπ)
• If Rπ = T, π’s state is accepted

– Accepted processes scheduled using RR
– Rπ increases after arrival:

• If Rπ < T, increase Vπ at rate “A”
• If Rπ = T, increase Vπ at rate “B”

– If B ≥ A, then monoprogrammed
– If B = 0, then RR (since T = 0)
– If A > B > 0, then new processes excluded for a while

Rate A

• Rank = -(remaining execution time)
• Minimizes waiting time

– Consider two jobs A > B that never block
• If A run before B, total waiting time = A + (A+B)
• If B run before A, total waiting time = B + (A+B)
• True for more than two processes too.

• Challenge: prior knowledge of execution time.
– Reasonable variant: prioritize by burst length, and use past

behavior to predict the future.
• Challenge: Starvation of long jobs.

– “Solution”: Priority aging
• Also: Preemptive version

– PSJF – preemptive shortest job first
– Shortest job remains shortest if no shorter job becomes ready

Objective: Minimize waiting
Shortest Job First

Fairness revisited: Prioritize
disadvantaged processes.
• Highest Penalty Ratio Next
• Define “Penalty Ratio”

– T = wall clock time since arrival
– t = execution time
– Penalty ratio r = T/t, highest r has priority

• Represents how much process’s progress has been
penalized due to i/o and multiprogramming.

– Nuisance: ratio undefined until run (fudge this)
• Preemptive variant:

– Re-evaluate penalty ratios when processes unblock
– Set timer to expire when current process no longer

highest priority
– Be careful not to allow timer period to approach zero!

Objective: Favor Interactive
Processes
Multi-Level Queues
• Multiple classes of processes

– Class 3: Interactive
– Class 2: Batch
– Class 1: Cycle-soaker (low priority background).

• Can be implemented using 3 queues
– Policy among queues

• For example: Run process with highest priority in highest
non-empty queue.

– Differing queues can implement different policies
• For example, queue 1 could be FCFS

Favoring Interactive Processes
with automatic detection.
Multi-level Feedback Queues
• An interactive process that doesn’t block

for a long time is demoted to ‘background’
and therefore treated differently (given
lower priority…).

• A background process that blocks
frequently can be promoted to interactive.

• Implemented using multilevel queues.
– processes migrate between queues based on

their recent behavior.

Questions?
• First Come First Served (no quantum)
• Round Robin (quantum)

– Selfish Round Robin (snobish RR, latecomers wait)
– Processor Sharing (theoretical RR)

• Priority Scheduling (highest priority runs)
– Remember priority inversion!

• (preemptive) Shortest Job First
• Highest “Penalty Ratio” Next (greatest T/t)
• Multi-level Queues (distinct classes of job)

– Multi-level Feedback Queues (auto classify)

