LEARNING REPRESENTATIONS OF SEQUENCES
WITH APPLICATIONS TO MOTION CAPTURE AND VIDEO ANALYSIS

GRAHAM TAYLOR
SCHOOL OF ENGINEERING
UNIVERSITY OF GUELPH

Papers and software available at: http://www.uoguelph.ca/~gwtaylor
OVERVIEW: THIS TALK
OVERVIEW: THIS TALK

- Learning representations of temporal data:
 - existing methods and challenges faced
 - recent methods inspired by “deep learning”
OVERVIEW: THIS TALK

• Learning representations of temporal data:
 - existing methods and challenges faced
 - recent methods inspired by “deep learning”

• Applications: in particular, modeling human pose and activity
 - highly structured data: e.g. motion capture
 - weakly structured data: e.g. video
OUTLINE

Learning representations from sequences
Existing methods, challenges

Composable, distributed-state models for sequences
Conditional Restricted Boltzmann Machines and their variants

Using learned representations to analyze video
A brief and (incomplete) survey of deep learning for activity recognition
TIME SERIES DATA

- Time is an integral part of many human behaviours (motion, reasoning).
- In building statistical models, time is sometimes ignored, often problematic.
- Models that **do** incorporate dynamics fail to account for the fact that data is often high-dimensional, nonlinear, and contains long-range dependencies.

Graphic: David McCandless, informationisbeautiful.net
TIME SERIES DATA

• Time is an integral part of many human behaviours (motion, reasoning)
• In building statistical models, time is sometimes ignored, often problematic
• Models that do incorporate dynamics fail to account for the fact that data is often high-dimensional, nonlinear, and contains long-range dependencies

Today we will discuss a number of models that have been developed to address these challenges
VECTOR AUTOREGRESSIVE MODELS

\[\mathbf{v}_t = \mathbf{b} + \sum_{m=1}^{M} A_m \mathbf{v}_{t-m} + \mathbf{e}_t \]

- Have dominated statistical time-series analysis for approx. 50 years
- Can be fit easily by least-squares regression
- Can fail even for simple nonlinearities present in the system
 - but many data sets can be modeled well by a linear system
- Well understood; many extensions exist
MARKOV ("N-GRAM") MODELS

- Fully observable
- Sequential observations may have nonlinear dependence
- Derived by assuming sequences have Markov property:

\[p(v_t|\{v_{t-1}^1\}) = p(v_t|\{v_{t-N}^{t-1}\}) \]

- This leads to joint:

\[p(\{v_1^T\}) = p(\{v_1^N\}) \prod_{t=N+1}^{T} p(v_t|\{v_{t-N}^{t-1}\}) \]

- Number of parameters exponential in \(N\)!
HIDDEN MARKOV MODELS (HMM)

\[h_{t-2} \rightarrow h_{t-1} \rightarrow h_t \]

\[v_{t-2} \rightarrow v_{t-1} \rightarrow v_t \]
HIDDEN MARKOV MODELS (HMM)

Introduces a hidden state that controls the dependence of the current observation on the past.
HIDDEN MARKOV MODELS (HMM)

Introduces a hidden state that controls the dependence of the current observation on the past

- Successful in speech & language modeling, biology
- Defined by 3 sets of parameters:
 - Initial state parameters, π
 - Transition matrix, A
 - Emission distribution, $p(v_t|h_t)$
- Factored joint distribution: $p(\{h_t\}, \{v_t\}) = p(h_1)p(v_1|h_1)\prod_{t=2}^{T} p(h_t|h_{t-1})p(v_t|h_t)$
HMM INFEREN CE AND LEARNING

- Typically three tasks we want to perform in an HMM:
 - Likelihood estimation
 - Inference
 - Learning
- All are exact and tractable due to the simple structure of the model
- Forward-backward algorithm for inference (belief propagation)
- Baum-Welch algorithm for learning (EM)
- Viterbi algorithm for state estimation (max-product)
LIMITATIONS OF HMMS
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
LIMITATIONS OF HMMS

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure.
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series.
• To model K bits of information, they need 2^K hidden states.
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain **rich componential structure**
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
• We seek models with distributed hidden state:
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model \(K \) bits of information, they need \(2^K \) hidden states
• We seek models with distributed hidden state:
 - capacity linear in the number of components
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
• We seek models with distributed hidden state:
 - capacity linear in the number of components
LINEAR DYNAMICAL SYSTEMS

\[h_{t-2} \rightarrow h_{t-1} \rightarrow h_t \]

\[v_{t-2} \rightarrow v_{t-1} \rightarrow v_t \]
LINEAR DYNAMICAL SYSTEMS

Graphical model is the same as HMM but with real-valued state vectors.
LINEAR DYNAMICAL SYSTEMS

• Characterized by linear-Gaussian dynamics and observations:
 \[p(h_t|h_{t-1}) = \mathcal{N}(h_t; Ah_{t-1}, Q) \]
 \[p(v_t|h_t) = \mathcal{N}(v_t; Ch_t, R) \]

• Inference is performed using Kalman smoothing (belief propagation)
• Learning can be done by EM
• Dynamics, observations may also depend on an observed input (control)
LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. motion capture, finance) is high-dimensional, containing complex non-linear relationships between components.

Hidden Markov Models
Pro: complex, nonlinear emission model
Con: single K-state multinomial represents entire history

Linear Dynamical Systems
Pro: state can convey much more information
Con: emission model constrained to be linear
LEARNING DISTRIBUTED REPRESENTATIONS

• Simple networks are capable of discovering useful and interesting internal representations of static data

• Perhaps the parallel nature of computation in connectionist models may be at odds with the serial nature of temporal events

• Simple idea: spatial representation of time
 - Need a buffer; not biologically plausible
 - Cannot process inputs of differing length
 - Cannot distinguish between absolute and relative position

• This motivates an *implicit* representation of time in connectionist models where time is represented by its effect on processing
RECURRENT NEURAL NETWORKS

(Figure from Martens and Sutskever)
RECURRENT NEURAL NETWORKS

- Neural network replicated in time

(Figure from Martens and Sutskever)
RECURRENT NEURAL NETWORKS

- Neural network replicated in time
- At each step, receives input vector, updates its internal representation via nonlinear activation functions, and makes a prediction:

\[
\begin{align*}
 v_t &= W^{hv} v_{t-1} + W^{hh} h_{t-1} + b_h \\
 h_{j,t} &= e(v_{j,t}) \\
 s_t &= W^{yh} h_t + b_y \\
 \hat{y}_{k,t} &= g(y_{k,t})
\end{align*}
\]
TRAINING RECURRENT NEURAL NETWORKS
TRAINING RECURRENT NEURAL NETWORKS

• Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
TRAINING RECURRENT NEURAL NETWORKS

• Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series

• Exact gradients can be computed exactly via Backpropagation Through Time
TRAINING RECURRENT NEURAL NETWORKS

• Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
• Exact gradients can be computed exactly via Backpropagation Through Time
• It is an interesting and powerful model. What's the catch?
 - Training RNNs via gradient descent fails on simple problems
 - Attributed to “vanishing” or “exploding” gradients
 - Much work in the 1990’s focused on identifying and addressing these issues: none of these methods were widely adopted
TRAINING RECURRENT NEURAL NETWORKS

• Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series

• Exact gradients can be computed exactly via Backpropagation Through Time

• It is an interesting and powerful model. What’s the catch?
 - Training RNNs via gradient descent fails on simple problems
 - Attributed to “vanishing” or “exploding” gradients
 - Much work in the 1990’s focused on identifying and addressing these issues: none of these methods were widely adopted
TRAINING RECURRENT NEURAL NETWORKS

- Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
- Exact gradients can be computed exactly via Backpropagation Through Time
- It is an interesting and powerful model. What’s the catch?
 - Training RNNs via gradient descent fails on simple problems
 - Attributed to “vanishing” or “exploding” gradients
 - Much work in the 1990’s focused on identifying and addressing these issues: none of these methods were widely adopted
- Best-known attempts to resolve the problem of RNN training:
 - Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
 - Echo-State Network (ESN) (Jaeger and Haas 2004)
FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:
FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:
• increased frequency and severity of bad local minima
FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

• increased frequency and severity of bad local minima
• pathological curvature, like the type seen in the Rosenbrock function:

\[f(x, y) = (1 - x)^2 + 100(y - x^2)^2 \]

(Figures from James Martens)
SECOND ORDER METHODS

• Model the objective function by the local approximation:

\[f(\theta + p) \approx q_\theta(p) \equiv f(\theta) + \Delta f(\theta)^T p + \frac{1}{2} p^T B p \]

where \(p \) is the search direction and \(B \) is a matrix which quantifies curvature.

• In Newton’s method, \(B \) is the Hessian matrix, \(H \)

• By taking the curvature information into account, Newton’s method “rescales” the gradient so it is a much more sensible direction to follow

• Not feasible for high-dimensional problems!

(Figure from James Martens)
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

• For an n-dimensional vector d, the Hessian-vector product Hd can easily be computed using finite differences at the cost of a single extra gradient evaluation.
 - In practice, the R-operator (Perlmutter 1994) is used instead of finite differences.
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

• For an n-dimensional vector \(d \), the Hessian-vector product \(Hd \) can easily be computed using finite differences at the cost of a single extra gradient evaluation.
 - In practice, the R-operator (Perlmutter 1994) is used instead of finite differences.

• There is a very effective algorithm for optimizing quadratic objectives which requires only Hessian-vector products: linear conjugate-gradient (CG).
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

• For an n-dimensional vector \(d \), the Hessian-vector product \(H d \) can easily be computed using finite differences at the cost of a single extra gradient evaluation.
 - In practice, the R-operator (Perlmutter 1994) is used instead of finite differences.

• There is a very effective algorithm for optimizing quadratic objectives which requires only Hessian-vector products: linear conjugate-gradient (CG).

This method was shown to effectively train RNNs in the pathological long-term dependency problems they were previously not able to solve (Martens and Sutskever 2011).
GENERATIVE MODELS WITH DISTRIBUTED STATE
GENERATIVE MODELS WITH DISTRIBUTED STATE

• Many sequences are high-dimensional and have complex structure
 - RNNs simply predict the expected value at the next time step
 - Cannot capture multi-modality of time series
GENERATIVE MODELS WITH DISTRIBUTED STATE

• Many sequences are high-dimensional and have complex structure
 - RNNs simply predict the expected value at the next time step
 - Cannot capture multi-modality of time series
• Generative models (like Restricted Boltzmann Machines) can express the negative log-likelihood of a given configuration of the output, and can capture complex distributions
GENERATIVE MODELS WITH DISTRIBUTED STATE

• Many sequences are high-dimensional and have complex structure
 - RNNs simply predict the expected value at the next time step
 - Cannot capture multi-modality of time series
• Generative models (like Restricted Boltzmann Machines) can express the negative log-likelihood of a given configuration of the output, and can capture complex distributions
• By using binary latent (hidden) state, we gain the best of both worlds:
 - the nonlinear dynamics and observation model of the HMM without the simple state
 - the representationally powerful state of the LDS without the linear-Gaussian restriction on dynamics and observations
DISTRIBUTED BINARY HIDDEN STATE

• Using distributed binary representations for hidden state in directed models of time series makes inference difficult. But we can:
- Use a Restricted Boltzmann Machine (RBM) for the interactions between hidden and visible variables. A factorial posterior makes inference and sampling easy.
- Treat the visible variables in the previous time slice as additional **fixed** inputs.

Visible variables (observations) at time t

Hidden variables (factors) at time t

One typically uses binary logistic units for both visibles and hiddens

\[
p(h_j = 1|v) = \sigma(b_j + \sum_i v_i W_{ij})
\]

\[
p(v_i = 1|h) = \sigma(b_i + \sum_j h_j W_{ij})
\]
MODELING OBSERVATIONS WITH AN RBM

- So the distributed binary latent (hidden) state of an RBM lets us:
 - Model complex, nonlinear dynamics
 - Easily and exactly infer the latent binary state given the observations
- But RBMs treat data as static (i.i.d.)

Visible variables (joint angles) at time \(t \)

Hidden variables (factors) at time \(t \)
MODELING OBSERVATIONS WITH AN RBM

So the distributed binary latent (hidden) state of an RBM lets us:
- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations

But RBMs treat data as static (i.i.d.)

![Diagram](https://via.placeholder.com/150)

Visible variables (joint angles) at time t

Hidden variables (factors) at time t
MODELING OBSERVATIONS WITH AN RBM

• So the distributed binary latent (hidden) state of an RBM lets us:
 - Model complex, nonlinear dynamics
 - Easily and exactly infer the latent binary state given the observations
• But RBMs treat data as static (i.i.d.)
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)
CONDITIONAL RESTRICTED BOLTZMANN MACHINES
(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)

• Add two types of directed connections
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)

• Add two types of directed connections
 - Autoregressive connections model short-term, linear structure
CONDITIONAL RESTRICTED BOLTZMANN MACHINES
(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

- Start with a Restricted Boltzmann Machine (RBM)

- Add two types of directed connections
 - Autoregressive connections model short-term, linear structure
 - History can also influence dynamics through hidden layer

Visible layer

Hidden layer

Recent history
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)

• Add two types of directed connections
 - Autoregressive connections model short-term, linear structure
 - History can also influence dynamics through hidden layer

• Conditioning does not change inference nor learning
CONTRASTIVE DIVERGENCE LEARNING

- When updating visible and hidden units, we implement directed connections by treating data from previous time steps as a dynamically changing bias.
- Inference and learning do not change.

\[
\langle v_i h_j \rangle_{\text{data}} \quad \text{Fixed}
\]

\[
\langle v_i h_j \rangle_{\text{recon}} \quad \text{Fixed}
\]

\[
\text{iter} = 0 \quad (data)
\]

\[
\text{iter} = 1 \quad (reconstruction)
\]
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

• Learn a CRBM
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

• Learn a CRBM

• Now, treat the sequence of hidden units as “fully observed” data and train a second CRBM
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

- Learn a CRBM
- Now, treat the sequence of hidden units as “fully observed” data and train a second CRBM
- The composition of CRBMs is a conditional deep belief net
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

- Learn a CRBM
- Now, treat the sequence of hidden units as “fully observed” data and train a second CRBM
- The composition of CRBMs is a conditional deep belief net
- It can be fine-tuned generatively or discriminatively

[Diagram of stacked RBMs]
MOTION SYNTHESIS WITH A 2-LAYER CDBN

• Model is trained on ~8000 frames of 60fps data (49 dimensions)
• 10 styles of walking: cat, chicken, dinosaur, drunk, gangly, graceful, normal, old-man, sexy and strong
• 600 binary hidden units per layer
• < 1 hour training on a modern workstation
MOTION SYNTHESIS WITH A 2-LAYER CDBN

- Model is trained on ~8000 frames of 60fps data (49 dimensions)
- 10 styles of walking: cat, chicken, dinosaur, drunk, gangly, graceful, normal, old-man, sexy and strong
- 600 binary hidden units per layer
- < 1 hour training on a modern workstation
MODELING CONTEXT

• A single model was trained on 10 “styled” walks from CMU subject 137
• The model can generate each style based on initialization
• We cannot prevent nor control transitioning
• How to blend styles?
• Style or person labels can be provided as part of the input to the top layer
MODELING CONTEXT

- A single model was trained on 10 “styled” walks from CMU subject 137
- The model can generate each style based on initialization
- We cannot prevent nor control transitioning
- How to blend styles?
- Style or person labels can be provided as part of the input to the top layer
MULTIPLICATIVE INTERACTIONS

• Let latent variables act like *gates*, that dynamically change the connections between other variables

• This amounts to letting variables multiply connections between other variables: *three-way multiplicative interactions*

• Recently used in the context of learning *correspondence* between images (Memisevic & Hinton 2007, 2010) but long history before that
GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)
INFERRING OPTICAL FLOW: IMAGE “ANALOGIES”

- Toy images (Memisevic & Hinton 2006)
- No structure in these images, only *how they change*
- Can infer optical flow from a pair of images and apply it to a random image

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Inferred Flow field</th>
<th>New input</th>
<th>Apply trans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BACK TO MOTION STYLE

• Introduce a set of latent “context” variables whose value is known at training time
• In our example, these represent “motion style” but could also represent height, weight, gender, etc.
• The contextual variables gate every existing pairwise connection in our model
LEARNING AND INFERENCE

• Learning and inference remain almost the same as in the standard CRBM
• We can think of the context or style variables as “blending in” a whole “sub-network”
• This allows us to share parameters across styles but selectively adapt dynamics
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
OVERPARAMETERIZATION

• Note: weight Matrix $W^{v,h}$ has been replaced by a tensor $W^{v,h,z}$! (Likewise for other weights)
• The number of parameters is $O(N^3)$ - per group of weights
• More, if we want sparse, overcomplete hiddens
• However, there is a simple yet powerful solution!
FACTORIZING

\[W_{ijl}^{vh} = \sum_f W_{if}^v W_{jf}^h W_{lf}^z \]

(Figure adapted from Roland Memisevic)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
PARAMETER SHARING
MOTION SYNTHESIS:
FACTORED 3RD-ORDER CRBM

• Same 10-styles dataset
• 600 binary hidden units
• 3×200 deterministic factors
• 100 real-valued style features
• < 1 hour training on a modern workstation
• Synthesis is real-time
MOTION SYNTHESIS: FACTORED 3RD-ORDER CRBM

- Same 10-styles dataset
- 600 binary hidden units
- 3×200 deterministic factors
- 100 real-valued style features
- < 1 hour training on a modern workstation
- Synthesis is real-time
ACTIVITY RECOGNITION

3D convolutional neural networks
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (2010)

Convolutional gated restricted Boltzmann machines
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (2010)

Space-time deep belief networks
Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (2010)

Stacked convolutional independent subspace analysis
Quoc Le, Will Zou, Serena Yeung, and Andrew Ng (2011)
3D CONVNETS FOR ACTIVITY RECOGNITION
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (ICML 2010)

• One approach: treat video frames as still images (LeCun et al. 2005)
• Alternatively, perform 3D convolution so that discriminative features across space and time are captured
By the multiple layers of convolution and subsampling, layer, leading to 289,536 trainable parameters. them is connected to all the 78 feature maps in the S5 consists of 128 feature maps of size 1 output feature maps are reduced to 1

Figures 3.

Figure 3.

We then apply 3D convolutions with a kernel size of 7 × 7 × 3 one for each feature map in the C4 layer, resulting in 6 distinct sets of feature maps, we apply 3 convolutions with different 3D filters for each of the feature maps in the C2 layer, which leads to the same number of feature maps with reduced spatial resolution. The number of trainable parameters in this layer is 156. At this stage, the size of each of the feature maps in the C2 layer each containing 13 different kernels at each location, leading to 39 sets of feature maps separately. To increase the number of feature maps, two blocks independently are added other 3D CNN architectures that combine multiple channels of information at different stages, and hardwired to extract: 1) grayscale 2) grad-x 3) grad-y 4) flow-x 5) flow-y

Two fully-connected layers

Action units

3 different 3D filters applied to each of 5 blocks independently

Subsample spatially
3D CONVNET: DISCUSSION

• Good performance on TRECVID surveillance data (CellToEar, ObjectPut, Pointing)
• Good performance on KTH actions (box, handwave, handclap, jog, run, walk)
• Still a fair amount of engineering: person detection (TRECVID), foreground extraction (KTH), hard-coded first layer

Image from Ji et al. 2010
LEARNING FEATURES FOR VIDEO UNDERSTANDING

• Most work on unsupervised feature extraction has concentrated on static images
• We propose a model that extracts motion-sensitive features from pairs of images
• Existing attempts (e.g. Memisevic & Hinton 2007, Cadieu & Olshausen 2009) ignore the pictorial structure of the input
• Thus limited to modeling small image patches
GATED RESTRICTED BOLTZMANN MACHINES (GRBM)

Two views: Memisevic & Hinton (2007)
CONVOLUTIONAL GRBM
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (ECCV 2010)

- Like the GRBM, captures third-order interactions
- Shares weights at all locations in an image
- As in a standard RBM, exact inference is efficient
- Inference and reconstruction are performed through convolution operations
MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)
MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)
MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)
MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)
MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)

Feature maps

Input

Output

Novel input

Transformation (model)

Ground truth

18 May 2012 / 44
Learning Representations of Sequences / G Taylor

Saturday, June 16, 2012
HUMAN ACTIVITY: KTH ACTIONS DATASET

- We learn 32 feature maps
- 6 are shown here
- KTH contains 25 subjects performing 6 actions under 4 conditions
- Only preprocessing is local contrast normalization
- Motion sensitive features (1,3)
- Edge features (4)
- Segmentation operator (6)
ACTIVITY RECOGNITION: KTH

<table>
<thead>
<tr>
<th>Prior Art</th>
<th>Acc (%)</th>
<th>Convolutional architectures</th>
<th>Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG3D+KM+SVM</td>
<td>85.3</td>
<td>convGRBM+3D-convnet+logistic reg.</td>
<td>88.9</td>
</tr>
<tr>
<td>HOG/HOF+KM+SVM</td>
<td>86.1</td>
<td>convGRBM+3D convnet+MLP</td>
<td>90.0</td>
</tr>
<tr>
<td>HOG+KM+SVM</td>
<td>79.0</td>
<td>3D convnet+3D convnet+logistic reg.</td>
<td>79.4</td>
</tr>
<tr>
<td>HOF+KM+SVM</td>
<td>88.0</td>
<td>3D convnet+3D convnet+MLP</td>
<td>79.5</td>
</tr>
</tbody>
</table>

- Compared to methods that do not use explicit interest point detection
- State of the art: 92.1% (Laptev et al. 2008) 93.9% (Le et al. 2011)
- Other reported result on 3D convnets uses a different evaluation scheme
ACTIVITY RECOGNITION: HOLLYWOOD 2

- 12 classes of human action extracted from 69 movies (20 hours)
- Much more realistic and challenging than KTH (changing scenes, zoom, etc.)
- Performance is evaluated by mean average precision over classes

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Prec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Art (Wang et al. survey 2009):</td>
<td></td>
</tr>
<tr>
<td>HOG3D+KM+SVM</td>
<td>45.3</td>
</tr>
<tr>
<td>HOG/HOF+KM+SVM</td>
<td>47.4</td>
</tr>
<tr>
<td>HOG+KM+SVM</td>
<td>39.4</td>
</tr>
<tr>
<td>HOF+KM+SVM</td>
<td>45.5</td>
</tr>
<tr>
<td>Our method:</td>
<td></td>
</tr>
<tr>
<td>GRBM+SC+SVM</td>
<td>46.8</td>
</tr>
</tbody>
</table>
• Two previous approaches we saw used discriminative learning
• We now look at a generative method, opening up more applications - e.g. in-painting, denoising
• Another key aspect of this work is demonstrated learned invariance
• Basic module: Convolutional Restricted Boltzmann Machine (Lee et al. 2009)
ST-DBN

- Key idea: alternate layers of spatial and temporal Convolutional RBMs
- Weight sharing across all CRBMs in a layer
- Highly overcomplete: use sparsity on activations of max-pooling units

Spatial pooling layer
ST-DBN

- Key idea: alternate layers of spatial and temporal Convolutional RBMs
- Weight sharing across all CRBMs in a layer
- Highly overcomplete: use sparsity on activations of max-pooling units

Images from Chen et al. 2010
MEASURING INVARIANCE

- Measure invariance at each layer for various transformations of the input
- Use measure proposed by Goodfellow et al. (2009)

Invariance scores computed for Spatial Pooling Layer 1 (S1), Spatial Pooling Layer 2 (S2) and Temporal Pooling Layer 1 (T1).
Higher is better.
DENOISING AND RECONSTRUCTION

- Operations not possible with a discriminative approach

Test frame Corrupted test frame Reconstruction: 1 layer ST-DBN Reconstruction: 2 layer ST-DBN

Observed gazes

Reconstructions

Images from Chen al. 2010
STACKED CONVOLUTIONAL INDEPENDENT SUBSPACE ANALYSIS (ISA)
Quoc Le Will Zou, Serena Yeung, and Andrew Ng (CVPR 2011)

- Use of ISA (right) as a basic module
- Learns features robust to local translation; selective to frequency, rotation and velocity
- Key idea: scale up ISA by applying convolution and stacking

Typical filters learned by ISA when trained on static images (organized in pools - red units above)

Images from Le et al. 2010
SCALING UP: CONVOLUTION AND STACKING

• The network is built by “copying” the learned network and “pasting” it to different parts of the input data
• Outputs are then treated as the inputs to a new ISA network
• PCA is used to reduce dimensionality

Simple example: 1D data

Image from Le et al. 2010
LEARNING SPATIO-TEMPORAL FEATURES

• Inputs to the network are blocks of video
• Each block is vectorized and processed by ISA
• Features from Layer 1 and Layer 2 are combined prior to classification
VELOCITY AND ORIENTATION SELECTIVITY

Velocity tuning curves for five neurons in an ISA network trained on Hollywood2 data

Edge velocities (radius) and orientations (angle) to which filters give maximum response
Outermost velocity: 4 pixels per frame

18 May 2012 / 55
Learning Representations of Sequences / G Taylor
SUMMARY
SUMMARY

• Learning distributed representations of sequences
SUMMARY

• Learning distributed representations of sequences

• For high-dimensional, multi-modal data: CRBM, FCRBM
SUMMARY

• Learning distributed representations of sequences

• For high-dimensional, multi-modal data: CRBM, FCRBM

• Activity recognition: 4 methods
ACKNOWLEDGEMENTS

• Faculty at U Toronto: Geoff Hinton, Sam Roweis
• Faculty at NYU: Chris Bregler, Rob Fergus, Yann LeCun
• Students and researchers at U Toronto, NYU
• Funding: CIFAR, DARPA, ONR, Google