
GRAHAM TAYLOR

Papers and software available at: http://www.uoguelph.ca/~gwtaylor

LEARNING REPRESENTATIONS OF SEQUENCES
WITH APPLICATIONS TO MOTION CAPTURE AND VIDEO ANALYSIS

SCHOOL OF ENGINEERING
UNIVERSITY OF GUELPH

Saturday, June 16, 2012

http://www.cs.nyu.edu/~gwtaylor
http://www.cs.nyu.edu/~gwtaylor

18 May 2012 /
Learning Representations of Sequences / G Taylor

OVERVIEW: THIS TALK

2

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

OVERVIEW: THIS TALK

•Learning representations of temporal data:

- existing methods and challenges faced
- recent methods inspired by “deep learning”

2

X (Input)

Y (Output)

 Z
k

Feature
layer

 P
k

Pooling
layer

Nx

Nx

Ny

Ny

Nz

Nz
Np

Np

pk

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

OVERVIEW: THIS TALK

•Learning representations of temporal data:

- existing methods and challenges faced
- recent methods inspired by “deep learning”

•Applications: in particular, modeling human pose and activity

- highly structured data: e.g. motion capture
- weakly structured data: e.g. video

2

X (Input)

Y (Output)

 Z
k

Feature
layer

 P
k

Pooling
layer

Nx

Nx

Ny

Ny

Nz

Nz
Np

Np

pk

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w

w

j

C
o

m
p

o
n

e
n

t

100 200 300 400 500 600 700

1
2
3
4
5
6
7
8
9

10

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

OUTLINE

3

Learning representations from sequences
Existing methods, challenges

Composable, distributed-state models for sequences
Conditional Restricted Boltzmann Machines and their variants

Using learned representations to analyze video
A brief and (incomplete survey of deep learning for activity recognition

X (Input)

Y (Output)

 Z
k

Feature
layer

 P
k

Pooling
layer

Nx

Nx

Ny

Ny

Nz

Nz
Np

Np

pk

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w

yt−2 yt−1 yt

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

IN
TE

N
SI

TY
 (N

o
of

 st
or

ie
s)

20032001 20022000 2004 2005 2008 20092006 2007

TIME SERIES DATA

•Time is an integral part of many human behaviours (motion, reasoning)

• In building statistical models, time is sometimes ignored, often problematic

•Models that do incorporate dynamics fail to account for the fact that data is
often high-dimensional, nonlinear, and contains long-range dependencies

4

Graphic: David McCandless, informationisbeautiful.net

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

IN
TE

N
SI

TY
 (N

o
of

 st
or

ie
s)

20032001 20022000 2004 2005 2008 20092006 2007

TIME SERIES DATA

•Time is an integral part of many human behaviours (motion, reasoning)

• In building statistical models, time is sometimes ignored, often problematic

•Models that do incorporate dynamics fail to account for the fact that data is
often high-dimensional, nonlinear, and contains long-range dependencies

4

Today we will discuss a number of models that have been developed to
address these challenges

Graphic: David McCandless, informationisbeautiful.net

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

VECTOR AUTOREGRESSIVE MODELS

•Have dominated statistical time-series analysis for approx. 50 years

•Can be fit easily by least-squares regression

•Can fail even for simple nonlinearities present in the system

- but many data sets can be modeled well by a linear system
•Well understood; many extensions exist

5

vt = b+
M�

m=1

Amvt−m + et

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MARKOV (“N-GRAM”) MODELS

6

•Fully observable

•Sequential observations may have nonlinear dependence

•Derived by assuming sequences have Markov property:

•This leads to joint:

•Number of parameters exponential in !

vt−2 vt−1 vt

p(vt|{vt−1
1 }) = p(vt|{vt−1

t−N})

p({vT
1 }) = p({vN

1 })
T�

t=N+1

p(vt|{vt−1
t−N})

N

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HIDDEN MARKOV MODELS (HMM)

7

vt−2 vt−1 vt

ht−1 htht−2

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HIDDEN MARKOV MODELS (HMM)

7

vt−2 vt−1 vt

ht−1 htht−2
Introduces a hidden
state that controls the
dependence of the
current observation
on the past

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HIDDEN MARKOV MODELS (HMM)

7

vt−2 vt−1 vt

ht−1 htht−2
Introduces a hidden
state that controls the
dependence of the
current observation
on the past

•Successful in speech & language modeling, biology

•Defined by 3 sets of parameters:

- Initial state parameters,
- Transition matrix,
- Emission distribution,

•Factored joint distribution:

π
A

p(vt|ht)

p({ht}, {vt}) = p(h1)p(v1|h1)
T�

t=2

p(ht|ht−1)p(vt|ht)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HMM INFERENCE AND LEARNING

•Typically three tasks we want to perform in an HMM:

- Likelihood estimation
- Inference
- Learning

•All are exact and tractable due to the simple structure of the model

•Forward-backward algorithm for inference (belief propagation)

•Baum-Welch algorithm for learning (EM)

•Viterbi algorithm for state estimation (max-product)

8

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

9

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

9

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

9

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

•To model bits of information, they need hidden states

9

K 2K

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

•To model bits of information, they need hidden states

9

K 2K

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

•To model bits of information, they need hidden states

9

K 2K

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

•To model bits of information, they need hidden states

•We seek models with distributed hidden state:

9

K 2K

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

•To model bits of information, they need hidden states

•We seek models with distributed hidden state:

- capacity linear in the number of components

9

K 2K

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LIMITATIONS OF HMMS

•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

•To model bits of information, they need hidden states

•We seek models with distributed hidden state:

- capacity linear in the number of components

9

K 2K

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LINEAR DYNAMICAL SYSTEMS

10

vt−2 vt−1 vt

ht−2 ht−1 ht

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LINEAR DYNAMICAL SYSTEMS

10

vt−2 vt−1 vt

Graphical model is the
same as HMM but
with real-valued state
vectors

ht−2 ht−1 ht

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LINEAR DYNAMICAL SYSTEMS

10

vt−2 vt−1 vt

Graphical model is the
same as HMM but
with real-valued state
vectors

ht−2 ht−1 ht

•Characterized by linear-Gaussian dynamics and observations:

• Inference is performed using Kalman smoothing (belief propagation)

•Learning can be done by EM

•Dynamics, observations may also depend on an observed input (control)

p(ht|ht − 1) = N (ht;Aht−1, Q) p(vt|ht) = N (vt;Cht, R)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. motion capture, finance) is high-
dimensional, containing complex non-linear relationships between components

Hidden Markov Models
Pro: complex, nonlinear emission model
Con: single -state multinomial represents entire history

Linear Dynamical Systems
Pro: state can convey much more information
Con: emission model constrained to be linear

11

K

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LEARNING DISTRIBUTED REPRESENTATIONS

•Simple networks are capable of discovering useful and interesting internal
representations of static data

•Perhaps the parallel nature of computation in connectionist models may be at
odds with the serial nature of temporal events

•Simple idea: spatial representation of time

- Need a buffer; not biologically plausible
- Cannot process inputs of differing length
- Cannot distinguish between absolute and relative position

•This motivates an implicit representation of time in connectionist models
where time is represented by its effect on processing

12

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

RECURRENT NEURAL NETWORKS

13

(Figure from Martens and Sutskever)

ht+1ht−1 ht

ŷtŷt−1 ŷt+1

vtvt−1 vt+1

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

RECURRENT NEURAL NETWORKS

13

•Neural network replicated in time

(Figure from Martens and Sutskever)

ht+1ht−1 ht

ŷtŷt−1 ŷt+1

vtvt−1 vt+1

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

RECURRENT NEURAL NETWORKS

13

•Neural network replicated in time

•At each step, receives input vector, updates its internal representation via
nonlinear activation functions, and makes a prediction:

(Figure from Martens and Sutskever)

vt = Whvvt−1 +Whhht−1 + bh

hj,t = e(vj,t)
st = W yhht + by

ŷk,t = g(yk,t)

ht+1ht−1 ht

ŷtŷt−1 ŷt+1

vtvt−1 vt+1

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

TRAINING RECURRENT NEURAL NETWORKS

14

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

TRAINING RECURRENT NEURAL NETWORKS

•Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series

14

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

TRAINING RECURRENT NEURAL NETWORKS

•Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series

•Exact gradients can be computed exactly via Backpropagation Through Time

14

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

TRAINING RECURRENT NEURAL NETWORKS

•Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series

•Exact gradients can be computed exactly via Backpropagation Through Time

• It is an interesting and powerful model. What’s the catch?

- Training RNNs via gradient descent fails on simple problems
- Attributed to “vanishing” or “exploding” gradients
- Much work in the 1990’s focused on identifying and addressing these

issues: none of these methods were widely adopted

14

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

TRAINING RECURRENT NEURAL NETWORKS

•Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series

•Exact gradients can be computed exactly via Backpropagation Through Time

• It is an interesting and powerful model. What’s the catch?

- Training RNNs via gradient descent fails on simple problems
- Attributed to “vanishing” or “exploding” gradients
- Much work in the 1990’s focused on identifying and addressing these

issues: none of these methods were widely adopted

14

(Figure adapted from James Martens)
Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

TRAINING RECURRENT NEURAL NETWORKS

•Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series

•Exact gradients can be computed exactly via Backpropagation Through Time

• It is an interesting and powerful model. What’s the catch?

- Training RNNs via gradient descent fails on simple problems
- Attributed to “vanishing” or “exploding” gradients
- Much work in the 1990’s focused on identifying and addressing these

issues: none of these methods were widely adopted
•Best-known attempts to resolve the problem of RNN training:

- Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
- Echo-State Network (ESN) (Jaeger and Haas 2004)

14

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

FAILURE OF GRADIENT DESCENT

15

Two hypotheses for why gradient descent fails for NN:

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

FAILURE OF GRADIENT DESCENT

• increased frequency and severity of bad local minima

15

Two hypotheses for why gradient descent fails for NN:

(Figures from James Martens)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

FAILURE OF GRADIENT DESCENT

• increased frequency and severity of bad local minima

•pathological curvature, like the type seen in the
Rosenbrock function:

15

Two hypotheses for why gradient descent fails for NN:

f(x, y) = (1− x)2 + 100(y − x2)2

(Figures from James Martens)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SECOND ORDER METHODS

•Model the objective function by the local approximation:

where is the search direction and is a matrix which quantifies curvature

• In Newton’s method, is the Hessian matrix,

•By taking the curvature information into account, Newton’s method “rescales”
the gradient so it is a much more sensible direction to follow

•Not feasible for high-dimensional problems!

16

f(θ + p) ≈ qθ(p) ≡ f(θ) +∆f(θ)T p+
1

2
pTBp

p B

B H

(Figure from James Martens)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HESSIAN-FREE OPTIMIZATION

17

Based on exploiting two simple ideas (and some additional “tricks”):

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HESSIAN-FREE OPTIMIZATION

17

Based on exploiting two simple ideas (and some additional “tricks”):

•For an n-dimensional vector , the Hessian-vector product can easily be
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences

Hdd

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HESSIAN-FREE OPTIMIZATION

17

Based on exploiting two simple ideas (and some additional “tricks”):

•For an n-dimensional vector , the Hessian-vector product can easily be
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences

•There is a very effective algorithm for optimizing quadratic objectives which
requires only Hessian-vector products: linear conjugate-gradient (CG)

Hdd

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HESSIAN-FREE OPTIMIZATION

17

Based on exploiting two simple ideas (and some additional “tricks”):

•For an n-dimensional vector , the Hessian-vector product can easily be
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences

•There is a very effective algorithm for optimizing quadratic objectives which
requires only Hessian-vector products: linear conjugate-gradient (CG)

Hdd

This method was shown to effectively train RNNs in the pathological
long-term dependency problems they were previously not able to solve
(Martens and Sutskever 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

GENERATIVE MODELS WITH DISTRIBUTED STATE

18

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

GENERATIVE MODELS WITH DISTRIBUTED STATE

•Many sequences are high-dimensional and have complex structure

- RNNs simply predict the expected value at the next time step
- Cannot capture multi-modality of time series

18

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

GENERATIVE MODELS WITH DISTRIBUTED STATE

•Many sequences are high-dimensional and have complex structure

- RNNs simply predict the expected value at the next time step
- Cannot capture multi-modality of time series

•Generative models (like Restricted Boltzmann Machines) can express the
negative log-likelihood of a given configuration of the output, and can capture
complex distributions

18

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

GENERATIVE MODELS WITH DISTRIBUTED STATE

•Many sequences are high-dimensional and have complex structure

- RNNs simply predict the expected value at the next time step
- Cannot capture multi-modality of time series

•Generative models (like Restricted Boltzmann Machines) can express the
negative log-likelihood of a given configuration of the output, and can capture
complex distributions

•By using binary latent (hidden) state, we gain the best of both worlds:

- the nonlinear dynamics and observation model of the HMM without the
simple state

- the representationally powerful state of the LDS without the linear-Gaussian
restriction on dynamics and observations

18

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

DISTRIBUTED BINARY HIDDEN STATE

•Using distributed binary representations
for hidden state in directed models of time
series makes inference difficult. But we
can:

- Use a Restricted Boltzmann Machine
(RBM) for the interactions between
hidden and visible variables. A factorial
posterior makes inference and sampling
easy.

- Treat the visible variables in the previous
time slice as additional fixed inputs

19

Visible variables (observations) at time t

Hidden variables (factors) at time t

One typically uses binary logistic
units for both visibles and hiddens

p(hj = 1|v) = σ(bj +
�

i

viWij)

p(vi = 1|h) = σ(bi +
�

j

hjWij)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MODELING OBSERVATIONS WITH AN RBM

20

•So the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations

•But RBMs treat data as static (i.i.d.)

Visible variables (joint angles) at time t

Hidden variables (factors) at time t

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MODELING OBSERVATIONS WITH AN RBM

20

•So the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations

•But RBMs treat data as static (i.i.d.)

Visible variables (joint angles) at time t

Hidden variables (factors) at time t

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MODELING OBSERVATIONS WITH AN RBM

20

•So the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations

•But RBMs treat data as static (i.i.d.)

Visible variables (joint angles) at time t

Hidden variables (factors) at time t

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONDITIONAL RESTRICTED BOLTZMANN MACHINES

21

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

21

Visible layer

Hidden layer

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

•Add two types of directed connections

21

Visible layer

Hidden layer

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

•Add two types of directed connections

- Autoregressive connections model short-term, linear structure

21

Visible layer

Hidden layer

Recent history

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

•Add two types of directed connections

- Autoregressive connections model short-term, linear structure
- History can also influence dynamics through hidden layer

21

Visible layer

Hidden layer

Recent history

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

•Add two types of directed connections

- Autoregressive connections model short-term, linear structure
- History can also influence dynamics through hidden layer

•Conditioning does not change inference nor learning

21

Visible layer

Hidden layer

Recent history

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONTRASTIVE DIVERGENCE LEARNING

•When updating visible and hidden units, we implement directed connections
by treating data from previous time steps as a dynamically changing bias

• Inference and learning do not change

22

j

i

j

i

Fixed

Fixed Fixed

Fixed

< vihj >
data < vihj >

recon

iter = 0
(data)

iter =1
(reconstruction)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

23

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM

23

Visible layer

Hidden layer

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM

•Now, treat the sequence of hidden units as “fully
observed” data and train a second CRBM

23

Visible layer

Hidden layer

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM

•Now, treat the sequence of hidden units as “fully
observed” data and train a second CRBM

•The composition of CRBMs is a conditional deep
belief net

23

h0
t−1h0

t−2

Hidden layer
h1

t

l

0

Visible layer

Hidden layer

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM

•Now, treat the sequence of hidden units as “fully
observed” data and train a second CRBM

•The composition of CRBMs is a conditional deep
belief net

• It can be fine-tuned generatively or discriminatively

23

h0
t−1h0

t−2

Hidden layer
h1

t

l

0

Visible layer

Hidden layer

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MOTION SYNTHESIS WITH A 2-LAYER CDBN

•Model is trained on ~8000 frames
of 60fps data (49 dimensions)

•10 styles of walking: cat, chicken,
dinosaur, drunk, gangly, graceful,
normal, old-man, sexy and strong

•600 binary hidden units per layer

•< 1 hour training on a modern
workstation

24

h0
t−1h0

t−2

h1
t

l

0

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MOTION SYNTHESIS WITH A 2-LAYER CDBN

•Model is trained on ~8000 frames
of 60fps data (49 dimensions)

•10 styles of walking: cat, chicken,
dinosaur, drunk, gangly, graceful,
normal, old-man, sexy and strong

•600 binary hidden units per layer

•< 1 hour training on a modern
workstation

24

h0
t−1h0

t−2

h1
t

l

0

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

•A single model was trained on 10 “styled”
walks from CMU subject 137

•The model can generate each style based
on initialization

•We cannot prevent nor control
transitioning

•How to blend styles?

•Style or person labels can be provided as
part of the input to the top layer

25

Labels

m

MODELING CONTEXT

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

•A single model was trained on 10 “styled”
walks from CMU subject 137

•The model can generate each style based
on initialization

•We cannot prevent nor control
transitioning

•How to blend styles?

•Style or person labels can be provided as
part of the input to the top layer

25

h0
t−1h0

t−2

Hidden layer
h1

t

l

0

Visible layer

Hidden layer

Labels

m

MODELING CONTEXT

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MULTIPLICATIVE INTERACTIONS

•Let latent variables act like gates, that
dynamically change the connections between
other variables

•This amounts to letting variables multiply
connections between other variables: three-way
multiplicative interactions

•Recently used in the context of learning
correspondence between images (Memisevic &
Hinton 2007, 2010) but long history before that

26

zk

vi

hj

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)

27

Input Output Input

Output

Latent variables

vi

hj hj

vi

zk zk

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

INFERRING OPTICAL FLOW: IMAGE “ANALOGIES”

28
Figure 2: Columns (left to right): Input images; output images; inferred flowfields;
random target images; inferred transformation applied to target images. For the trans-
formations (last column) gray values represent the probability that a pixel is ’on’ ac-
cording to the model, ranging from black for 0 to white for 1.

8

•Toy images (Memisevic & Hinton 2006)

•No structure in these images, only how
they change

•Can infer optical flow from a pair of
images and apply it to a random image

Inp
ut

Outp
ut

Inf
err

ed

Flo
w fie

ld

New
 in

pu
t

App
ly

tra
ns

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

BACK TO MOTION STYLE

• Introduce a set of latent “context” variables
whose value is known at training time

• In our example, these represent “motion style”
but could also represent height, weight, gender,
etc.

•The contextual variables gate every existing
pairwise connection in our model

29

zk

vi

hj

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LEARNING AND INFERENCE

•Learning and inference remain almost the same
as in the standard CRBM

•We can think of the context or style variables as
“blending in” a whole “sub-network”

•This allows us to share parameters across
styles but selectively adapt dynamics

30

zk

vi

hj

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

31

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

31

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

31

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

31

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

31

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

31

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

31

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

OVERPARAMETERIZATION

•Note: weight Matrix has been replaced by
a tensor ! (Likewise for other weights)

•The number of parameters is - per
group of weights

•More, if we want sparse, overcomplete hiddens

•However, there is a simple yet powerful solution!

32

Wv,h

Wv,h,z

O(N3)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

FACTORING

33 (Figure adapted from Roland Memisevic)

Wvh
ijl =

�

f

Wv
ifW

h
jfW

z
lf

Hidden layer

Style features

l

Output layer
(e.g. data at time t)

€

j

Wvh
ijl

Wv
if

Wh
jf

W z
lf

Wvh
ijl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUPERVISED MODELING OF STYLE

34

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Factors

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

€

j

Style

Featuresl

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

PARAMETER SHARING

35

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MOTION SYNTHESIS:
FACTORED 3RD-ORDER CRBM

•Same 10-styles dataset

•600 binary hidden units

•3×200 deterministic factors

•100 real-valued style features

•< 1 hour training on a modern
workstation

•Synthesis is real-time

36

€

j
l

Summary

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MOTION SYNTHESIS:
FACTORED 3RD-ORDER CRBM

•Same 10-styles dataset

•600 binary hidden units

•3×200 deterministic factors

•100 real-valued style features

•< 1 hour training on a modern
workstation

•Synthesis is real-time

36

€

j
l

Summary

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

3D Convolutional Neural Networks for Human Action Recognition

H1:
33@60x40 C2:

23*2@54x34

7x7x3 3D
convolution

2x2
subsampling

S3:
23*2@27x17

7x6x3 3D
convolution

C4:
13*6@21x12

3x3
subsampling

S5:
13*6@7x4

7x4
convolution

C6:
128@1x1

full
connnection

hardwired

input:
7@60x40

Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

We then apply 3D convolutions with a kernel size of
7 × 7 × 3 (7 × 7 in the spatial dimension and 3 in the
temporal dimension) on each of the 5 channels sepa-
rately. To increase the number of feature maps, two
sets of different convolutions are applied at each loca-
tion, resulting in 2 sets of feature maps in the C2 layer
each consisting of 23 feature maps. This layer con-
tains 1,480 trainable parameters. In the subsequent
subsampling layer S3, we apply 2 × 2 subsampling on
each of the feature maps in the C2 layer, which leads
to the same number of feature maps with reduced spa-
tial resolution. The number of trainable parameters in
this layer is 92. The next convolution layer C4 is ob-
tained by applying 3D convolution with a kernel size
of 7 × 6 × 3 on each of the 5 channels in the two sets
of feature maps separately. To increase the number
of feature maps, we apply 3 convolutions with differ-
ent kernels at each location, leading to 6 distinct sets
of feature maps in the C4 layer each containing 13
feature maps. This layer contains 3,810 trainable pa-
rameters. The next layer S5 is obtained by applying
3×3 subsampling on each feature maps in the C4 layer,
which leads to the same number of feature maps with
reduced spatial resolution. The number of trainable
parameters in this layer is 156. At this stage, the size
of the temporal dimension is already relatively small
(3 for gray, gradient-x, gradient-y and 2 for optflow-x
and optflow-y), so we perform convolution only in the
spatial dimension at this layer. The size of the con-
volution kernel used is 7 × 4 so that the sizes of the
output feature maps are reduced to 1×1. The C6 layer
consists of 128 feature maps of size 1 × 1, and each of
them is connected to all the 78 feature maps in the S5
layer, leading to 289,536 trainable parameters.

By the multiple layers of convolution and subsampling,

the 7 input frames have been converted into a 128D
feature vector capturing the motion information in the
input frames. The output layer consists of the same
number of units as the number of actions, and each
unit is fully connected to each of the 128 units in
the C6 layer. In this design we essentially apply a
linear classifier on the 128D feature vector for action
classification. For an action recognition problem with
3 classes, the number of trainable parameters at the
output layer is 384. The total number of trainable
parameters in this 3D CNN model is 295,458, and all
of them are initialized randomly and trained by on-
line error back-propagation algorithm as described in
(LeCun et al., 1998). We have designed and evalu-
ated other 3D CNN architectures that combine mul-
tiple channels of information at different stages, and
our results show that this architecture gives the best
performance.

3. Related Work

CNNs belong to the class of biologically inspired mod-
els for visual recognition, and some other variants have
also been developed within this family. Motivated
by the organization of visual cortex, a similar model,
called HMAX (Serre et al., 2005), has been developed
for visual object recognition. In the HMAX model,
a hierarchy of increasingly complex features are con-
structed by the alternating applications of template
matching and max pooling. In particular, at the S1
layer a still input image is first analyzed by an array of
Gabor filters at multiple orientations and scales. The
C1 layer is then obtained by pooling local neighbor-
hoods on the S1 maps, leading to increased invariance
to distortions on the input. The S2 maps are obtained

37

Convolutional gated restricted Boltzmann machines
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (2010)

3D convolutional neural networks
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (2010)

Space-time deep belief networks
Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (2010)

Stacked convolutional independent subspace analysis
Quoc Le, Will Zou, Serena Yeung, and Andrew Ng (2011)

X (Input)

Y (Output)

 Z
k

Feature
layer

 P
k

Pooling
layer

Nx

Nx

Ny

Ny

Nz

Nz
Np

Np

pk

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w

(a) (b)

Figure 2: (a) Spatial pooling layer for an input video with nV t frames. Each input frame is fed into
a CRBM. (b) Temporal pooling layer. Each pixel sequence is fed into a CRBM.

Training CRBMs using Monte Carlo methods requires sampling from both the conditional distribu-
tion of the hidden units given the visible units and the conditional distribution of the visible units
given the hidden units. If we define the visible unit activations as Av

c = dc +
�|W |

g=1 W g
c ∗ hg and

the hidden unit activations for group g by Ag = bg +
�ch

c=1 W g
c ∗ vc (again using convolution) we

can express the conditional probabilities as seen in Eqs. (2) and (3).

P (hg
i,j = 1|v) =

exp(Ag
i,j)

1 +
�

r,s∈Bα
exp(Ag

r,s)
, P (pg

α = 0|v) =
1

1 +
�

r,s∈Bα
exp(Ag

r,s)
(2)

P (vc,i,j = 1|h) =
1

1 + exp(−Av
c,i,j)

(3)

CRBMs are highly overcomplete by construction [12, 7], so additional regularization is required
during training. As in [22], we place a penalty term on the activations of the max-pooling
units to encourage them to be close to a small constant value r. Given a dataset of K images
{v(1),v(2), ...,v(K)}, the problem is to find the set of parameters θ that minimizes the objective:

−
K�

k=1

log
�

h

P (v(k),h(k)) + λ

|W |�

g=1

�
r −

�
1

K|B|

K�

k=1

nH�

α=1

P (pg
α = 1|v(k))

��2

(4)

where |B| is the number of max-pooled units in pg , λ is a regularization constant, and r is a constant
that controls the sparseness of activated max-pooled units. We use 1-step contrastive divergence [6]
to get an approximate gradient of the log-likelihood term, coupled with stochastic gradient descent
on the regularization term [7] to optimize Eq. (4).

A practical issue that arises during training is the effect of boundaries [12] on convolution. If the
image has no zero-padded edges, then boundary visible units will have fewer connections to hidden
units than interior visible units. The connectivity imbalance will cause filters to collapse into the
corner regions in order to reconstruct the boundary pixels well. To alleviate this problem, we pad
each input image with a border of zeros having the same width and height as the weight matrices.

4 Space-Time Deep Belief Network

The Space-Time Deep Belief Network takes a video as input and processes it such that subsequent
layers in the hierarchy aggregate over progressively longer-range input patterns in space and time.
Fig. 2(a) shows the first layer of the ST-DBN—a spatial pooling layer—which takes an input video
of nV t frames {v(0),v(1), ...,v(nV t)}. At every time step t, each spatial CRBM takes an input
frame v(t) of size (ch × nV x × nV y) and outputs a stack p(t) of size (|W | × nPx × nPy), where
W is the set of weights (defined in Sec. 3) shared across all spatial CRBMs. All CRBMs in the
same spatial pooling layer share the same parameter vector θ. The second layer of the network is a
temporal pooling layer, which takes the low-resolution image sequence {p(0),p(1), ..,p(nV t)} from

4

(a) (b)

Figure 2: (a) Spatial pooling layer for an input video with nV t frames. Each input frame is fed into
a CRBM. (b) Temporal pooling layer. Each pixel sequence is fed into a CRBM.

Training CRBMs using Monte Carlo methods requires sampling from both the conditional distribu-
tion of the hidden units given the visible units and the conditional distribution of the visible units
given the hidden units. If we define the visible unit activations as Av

c = dc +
�|W |

g=1 W g
c ∗ hg and

the hidden unit activations for group g by Ag = bg +
�ch

c=1 W g
c ∗ vc (again using convolution) we

can express the conditional probabilities as seen in Eqs. (2) and (3).

P (hg
i,j = 1|v) =

exp(Ag
i,j)

1 +
�

r,s∈Bα
exp(Ag

r,s)
, P (pg

α = 0|v) =
1

1 +
�

r,s∈Bα
exp(Ag

r,s)
(2)

P (vc,i,j = 1|h) =
1

1 + exp(−Av
c,i,j)

(3)

CRBMs are highly overcomplete by construction [12, 7], so additional regularization is required
during training. As in [22], we place a penalty term on the activations of the max-pooling
units to encourage them to be close to a small constant value r. Given a dataset of K images
{v(1),v(2), ...,v(K)}, the problem is to find the set of parameters θ that minimizes the objective:

−
K�

k=1

log
�

h

P (v(k),h(k)) + λ

|W |�

g=1

�
r −

�
1

K|B|

K�

k=1

nH�

α=1

P (pg
α = 1|v(k))

��2

(4)

where |B| is the number of max-pooled units in pg , λ is a regularization constant, and r is a constant
that controls the sparseness of activated max-pooled units. We use 1-step contrastive divergence [6]
to get an approximate gradient of the log-likelihood term, coupled with stochastic gradient descent
on the regularization term [7] to optimize Eq. (4).

A practical issue that arises during training is the effect of boundaries [12] on convolution. If the
image has no zero-padded edges, then boundary visible units will have fewer connections to hidden
units than interior visible units. The connectivity imbalance will cause filters to collapse into the
corner regions in order to reconstruct the boundary pixels well. To alleviate this problem, we pad
each input image with a border of zeros having the same width and height as the weight matrices.

4 Space-Time Deep Belief Network

The Space-Time Deep Belief Network takes a video as input and processes it such that subsequent
layers in the hierarchy aggregate over progressively longer-range input patterns in space and time.
Fig. 2(a) shows the first layer of the ST-DBN—a spatial pooling layer—which takes an input video
of nV t frames {v(0),v(1), ...,v(nV t)}. At every time step t, each spatial CRBM takes an input
frame v(t) of size (ch × nV x × nV y) and outputs a stack p(t) of size (|W | × nPx × nPy), where
W is the set of weights (defined in Sec. 3) shared across all spatial CRBMs. All CRBMs in the
same spatial pooling layer share the same parameter vector θ. The second layer of the network is a
temporal pooling layer, which takes the low-resolution image sequence {p(0),p(1), ..,p(nV t)} from

4

Figure 4. Stacked Convolutional ISA network. The network is
built by “copying” the learned network and “pasting” it to different
places of the input data and then treating the outputs as inputs to a
new ISA network. For clarity, the convolution step is shown here
non-overlapping, but in the experiments the convolution is done
with overlapping.

a sequence of image patches and flatten them into a vector.
This vector becomes input features to the network above.
To learn high-level concepts, we can use the convolution

and stacking techniques (see Section 3.2) which result in an
architecture as shown in Figure 5.

Figure 5. Stacked convolutional ISA for video data. In this figure,
convolution is done with overlapping; the ISA network in the sec-
ond layer is trained on the combined activations of the first layer.

Finally, in our experiments, we combine features from
both layers and use them as local features for classification
(previously suggested in [22]). In the experiment section,
we will show that this combination works better than using
one set of features alone.

3.4. Learningwith batch projected gradient descent

Our method is trained by batch projected gradient de-
scent. Compared to other feature learning methods (e.g.,
RBMs [7]), the gradient of the objective function in Eq. 1 is
tractable.
The orthonormal constraint is ensured by projection with

symmetric orthogonalization [10]. In detail, during opti-
mization, projected gradient descent requires us to project

W to the constraint set by computing (WWT)−
1

2 W . Note
that the inverse square root of the matrix usually involves
solving an eigenvector problem, which requires cubic time.
Therefore, this algorithm is expensive when the input di-
mension is large. The convolution and stacking ideas ad-
dress this problem by slowly expanding the receptive fields
via convolution. And although we have to resort to PCA for
whitening and dimension reduction, this step is called only
once and hence much less expensive.
Training neural networks is difficult and requires much

tuning. Our method, however, is very easy to train because
batch gradient descent does not need any tweaking with the
learning rate and the convergence criterion. This is in stark
contrast with other methods such as Deep Belief Nets [7]
and Stacked Autoencoders [2] where tuning the learning
rate, weight decay, convergence parameters, etc. is essential
for learning good features.

3.5. Norm-thresholding interest point detector

In many datasets, an interest point detector is neces-
sary for improving recognition and lowering computational
costs. This can be achieved in our framework by discarding
features at locations where the norm of the activations is
below a certain threshold. This is based on the observation
that the first layer’s activations tend to have significantly
higher norms at edge and motion locations than at static
and feature-less locations (c.f. [13]). Hence, by threshold-
ing the norm, the first layer of our network can be used as
a robust feature detector that filters out features from the
non-informative background:

If ‖p1(xt;W,V)‖1 ≤ δ then the features at xt are ignored.

here p1 is the activations of the first layer of the net-
work. For instance, setting δ at 30 percentile of the training
set’s activation norms means that 70% of features from the
dataset are discarded. In our experiments, we only use this
detector the KTH dataset where an interest point detector
has been shown to be useful [42]. The value of δ is chosen
via cross validation.

4. Feature visualization and analysis

In Section 3.1, we discussed spatial invariant properties
of ISA when applied to image patches. In this section, we
extend the analysis for video bases.

4.1. First layer

The first layer of our model learns features that detect
a moving edge in time as shown in Figure 6. In addition
to previously mentioned spatial invariances, these spatio-
temporal bases give rise to another property: velocity selec-
tivity.
We analyze this property by computing the response of

ISA features while varying the velocity of the moving edge.

3364

ACTIVITY RECOGNITION

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

3D CONVNETS FOR ACTIVITY RECOGNITION
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (ICML 2010)

•One approach: treat video frames as still images (LeCun et al. 2005)

•Alternatively, perform 3D convolution so that discriminative features across
space and time are captured

38

Images from Ji et al. 2010

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution

t e
 m

 p
o r

 a l

(b) 3D convolution

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p
o r

 a l

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution

t e
 m

 p
o r

 a l

(b) 3D convolution

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p
o r

 a l

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution

t e
 m

 p
o r

 a l

(b) 3D convolution

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p
o r

 a l

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

Multiple convolutions applied to contiguous frames
to extract multiple features

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

3D CNN ARCHITECTURE

39

3D Convolutional Neural Networks for Human Action Recognition

H1:
33@60x40 C2:

23*2@54x34

7x7x3 3D
convolution

2x2
subsampling

S3:
23*2@27x17

7x6x3 3D
convolution

C4:
13*6@21x12

3x3
subsampling

S5:
13*6@7x4

7x4
convolution

C6:
128@1x1

full
connnection

hardwired

input:
7@60x40

Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

We then apply 3D convolutions with a kernel size of
7 × 7 × 3 (7 × 7 in the spatial dimension and 3 in the
temporal dimension) on each of the 5 channels sepa-
rately. To increase the number of feature maps, two
sets of different convolutions are applied at each loca-
tion, resulting in 2 sets of feature maps in the C2 layer
each consisting of 23 feature maps. This layer con-
tains 1,480 trainable parameters. In the subsequent
subsampling layer S3, we apply 2 × 2 subsampling on
each of the feature maps in the C2 layer, which leads
to the same number of feature maps with reduced spa-
tial resolution. The number of trainable parameters in
this layer is 92. The next convolution layer C4 is ob-
tained by applying 3D convolution with a kernel size
of 7 × 6 × 3 on each of the 5 channels in the two sets
of feature maps separately. To increase the number
of feature maps, we apply 3 convolutions with differ-
ent kernels at each location, leading to 6 distinct sets
of feature maps in the C4 layer each containing 13
feature maps. This layer contains 3,810 trainable pa-
rameters. The next layer S5 is obtained by applying
3×3 subsampling on each feature maps in the C4 layer,
which leads to the same number of feature maps with
reduced spatial resolution. The number of trainable
parameters in this layer is 156. At this stage, the size
of the temporal dimension is already relatively small
(3 for gray, gradient-x, gradient-y and 2 for optflow-x
and optflow-y), so we perform convolution only in the
spatial dimension at this layer. The size of the con-
volution kernel used is 7 × 4 so that the sizes of the
output feature maps are reduced to 1×1. The C6 layer
consists of 128 feature maps of size 1 × 1, and each of
them is connected to all the 78 feature maps in the S5
layer, leading to 289,536 trainable parameters.

By the multiple layers of convolution and subsampling,

the 7 input frames have been converted into a 128D
feature vector capturing the motion information in the
input frames. The output layer consists of the same
number of units as the number of actions, and each
unit is fully connected to each of the 128 units in
the C6 layer. In this design we essentially apply a
linear classifier on the 128D feature vector for action
classification. For an action recognition problem with
3 classes, the number of trainable parameters at the
output layer is 384. The total number of trainable
parameters in this 3D CNN model is 295,458, and all
of them are initialized randomly and trained by on-
line error back-propagation algorithm as described in
(LeCun et al., 1998). We have designed and evalu-
ated other 3D CNN architectures that combine mul-
tiple channels of information at different stages, and
our results show that this architecture gives the best
performance.

3. Related Work

CNNs belong to the class of biologically inspired mod-
els for visual recognition, and some other variants have
also been developed within this family. Motivated
by the organization of visual cortex, a similar model,
called HMAX (Serre et al., 2005), has been developed
for visual object recognition. In the HMAX model,
a hierarchy of increasingly complex features are con-
structed by the alternating applications of template
matching and max pooling. In particular, at the S1
layer a still input image is first analyzed by an array of
Gabor filters at multiple orientations and scales. The
C1 layer is then obtained by pooling local neighbor-
hoods on the S1 maps, leading to increased invariance
to distortions on the input. The S2 maps are obtained

Image from Ji et al. 2010

Hardwired to extract:
1)grayscale
2)grad-x
3)grad-y
4)flow-x
5)flow-y

2 different 3D filters
applied to each of 5
blocks independently

3 different 3D filters
applied to each of 5
channels in 2 blocks

Subsample
spatially

Two fully-
connected
layers

Action units

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

3D CONVNET: DISCUSSION

•Good performance on TRECVID surveillance data (CellToEar, ObjectPut,
Pointing)

•Good performance on KTH actions (box, handwave, handclap, jog, run,
walk)

•Still a fair amount of engineering: person detection (TRECVID), foreground
extraction (KTH), hard-coded first layer

40

3D Convolutional Neural Networks for Human Action Recognition

Figure 4. Sample human detection and tracking results from camera numbers 1, 2, 3, and 5, respectively from left to right.

against-all linear SVM is learned for each action class.
Specifically, we extract dense SIFT descriptors (Lowe,
2004) from raw gray images or motion edge history
images (MEHI) (Yang et al., 2009). Local features on
raw gray images preserve the appearance information,
while MEHI concerns with the shape and motion pat-
terns. These SIFT descriptors are calculated every 6
pixels from 7×7 and 16×16 local image patches in the
same cubes as in the 3D CNN model. Then they are
softly quantized using a 512-word codebook to build
the BoW features. To exploit the spatial layout in-
formation, we employ similar approach as the spatial
pyramid matching (SPM) (Lazebnik et al., 2006) to
partition the candidate region into 2×2 and 3×4 cells
and concatenate their BoW features. The dimension-
ality of the entire feature vector is 512×(2×2+3×4) =
8192. We denote the method based on gray images as
SPMcube

gray and the one based on MEHI as SPMcube
MEHI.

We report the 5-fold cross-validation results in which
the data for a single day are used as a fold. The per-
formance measures we used are precision, recall, and
area under the ROC curve (ACU) at multiple values of
false positive rates (FPR). The performance of the four
methods is summarized in Table 2. We can observe
from Table 2 that the 3D CNN model outperforms the
frame-based 2D CNN model, SPMcube

gray , and SPMcube
MEHI

significantly on the action classes CellToEar and Ob-
jectPut in all cases. For the action class Pointing, 3D
CNN model achieves slightly worse performance than
the other three methods. From Table 1 we can see that
the number of positive samples in the Pointing class is
significantly larger than those of the other two classes.
Hence, we can conclude that the 3D CNN model is
more effective when the number of positive samples is
small. Overall, the 3D CNN model outperforms other
three methods consistently as can be seen from the
average performance in Table 2.

4.2. Action Recognition on KTH Data

We evaluate the 3D CNN model on the KTH data
(Schüldt et al., 2004), which consist of 6 action classes

performed by 25 subjects. To follow the setup in the
HMAX model, we use a 9-frame cube as input and ex-
tract foreground as in (Jhuang et al., 2007). To reduce
the memory requirement, the resolutions of the input
frames are reduced to 80 × 60 in our experiments as
compared to 160 × 120 used in (Jhuang et al., 2007).
We use a similar 3D CNN architecture as in Figure
3 with the sizes of kernels and the number of feature
maps in each layer modified to consider the 80×60×9
inputs. In particular, the three convolutional layers
use kernels of sizes 9 × 7, 7 × 7, and 6 × 4, respec-
tively, and the two subsampling layers use kernels of
size 3 × 3. By using this setting, the 80 × 60 × 9 in-
puts are converted into 128D feature vectors. The final
layer consists of 6 units corresponding to the 6 classes.

As in (Jhuang et al., 2007), we use the data for 16 ran-
domly selected subjects for training, and the data for
the other 9 subjects for testing. The recognition per-
formance averaged across 5 random trials is reported
in Table 3 along with published results in the litera-
ture. The 3D CNN model achieves an overall accu-
racy of 90.2% as compared with 91.7% achieved by
the HMAX model. Note that the HMAX model use
handcrafted features computed from raw images with
4-fold higher resolution.

5. Conclusions and Discussions

We developed a 3D CNN model for action recognition
in this paper. This model construct features from both
spatial and temporal dimensions by performing 3D
convolutions. The developed deep architecture gener-
ates multiple channels of information from adjacent in-
put frames and perform convolution and subsampling
separately in each channel. The final feature represen-
tation is computed by combining information from all
channels. We evaluated the 3D CNN model using the
TRECVID and the KTH data sets. Results show that
the 3D CNN model outperforms compared methods
on the TRECVID data, while it achieves competitive
performance on the KTH data, demonstrating its su-
perior performance in real-world environments.

Image from Ji et al. 2010

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LEARNING FEATURES FOR VIDEO UNDERSTANDING

•Most work on unsupervised feature extraction
has concentrated on static images

•We propose a model that extracts motion-
sensitive features from pairs of images

•Existing attempts (e.g. Memisevic & Hinton
2007, Cadieu & Olshausen 2009) ignore the
pictorial structure of the input

•Thus limited to modeling small image patches

41

Image pair

Transformation
feature maps

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)

42

Input Output Input

Output

Latent variables

vi

hj hj

vi

zk zk

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

CONVOLUTIONAL GRBM
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (ECCV 2010)

43

•Like the GRBM, captures third-order interactions

•Shares weights at all locations in an image

•As in a standard RBM, exact inference is efficient

• Inference and reconstruction are performed
through convolution operations

X (Input) Y (Output)

 Z
k

Feature
layer

 P
k

Pooling
layer

Nx

Nx Ny

Ny

Nz

Nz

Np

Np

pk

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MORE COMPLEX EXAMPLE OF “ANALOGIES”

44

Input Output

(Taylor et al. ECCV 2010)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MORE COMPLEX EXAMPLE OF “ANALOGIES”

44

Input Output

Feature maps

(Taylor et al. ECCV 2010)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MORE COMPLEX EXAMPLE OF “ANALOGIES”

44

Input Output

Feature maps

(Taylor et al. ECCV 2010)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MORE COMPLEX EXAMPLE OF “ANALOGIES”

44

Input Output

Feature maps

Input

?

Output

?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

(Taylor et al. ECCV 2010)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MORE COMPLEX EXAMPLE OF “ANALOGIES”

44

Input Output

Feature maps

Input

?

Output

?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?
? ?

? ?

? ?

? ?

? ?

? ?

? ?

Novel input Transformation
(model)

Ground
truth

(Taylor et al. ECCV 2010)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

HUMAN ACTIVITY: KTH ACTIONS DATASET

•We learn 32 feature maps

•6 are shown here

•KTH contains 25 subjects
performing 6 actions under 4
conditions

•Only preprocessing is local
contrast normalization

45

Fe
at

ur
e

(

)
z k

•Motion sensitive features (1,3)
•Edge features (4)
•Segmentation operator (6)

Time

Hand clapping (above); Walking (below)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

ACTIVITY RECOGNITION: KTH

•Compared to methods that do not use explicit interest point detection

•State of the art: 92.1% (Laptev et al. 2008) 93.9% (Le et al. 2011)

•Other reported result on 3D convnets uses a different evaluation scheme

46

Prior Art
Acc
(%)

Convolutional
architectures

Acc.
(%)

HOG3D+KM+SVM 85.3 convGRBM+3D-convnet+logistic reg. 88.9

HOG/HOF+KM+SVM 86.1 convGRBM+3D convnet+MLP 90.0

HOG+KM+SVM 79.0 3D convnet+3D convnet+logistic reg. 79.4

HOF+KM+SVM 88.0 3D convnet+3D convnet+MLP 79.5

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

ACTIVITY RECOGNITION: HOLLYWOOD 2

•12 classes of human action extracted from 69 movies (20 hours)

•Much more realistic and challenging than KTH (changing scenes, zoom, etc.)

•Performance is evaluated by mean average precision over classes

47

Method Average Prec.

Prior Art (Wang et al. survey 2009):Prior Art (Wang et al. survey 2009):

HOG3D+KM+SVM 45.3

HOG/HOF+KM+SVM 47.4

HOG+KM+SVM 39.4

HOF+KM+SVM 45.5

Our method:Our method:

GRBM+SC+SVM 46.8

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SPACE-TIME DEEP BELIEF NETWORKS
Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (NIPS Deep Learning Workshop 2010)

•Two previous approaches we saw used
discriminative learning

•We now look at a generative method,
opening up more applications
- e.g. in-painting, denoising

•Another key aspect of this work is
demonstrated learned invariance

•Basic module: Convolutional Restricted
Boltzmann Machine (Lee et al. 2009)

48

Background: Convolutional RBMs

6

Desjardins & Bengio (2008), Lee, Grosse, Ranganath & Ng (2009),
Norouzi, Ranjbar & Mori (2009)

......

......

Max-pool

Convolve

image v

W |W |

h|W |

p|W |pg

hgh1

p1

W g
Bα

W 1

∗∗∗

Thursday, September 9, 2010

Image from Chen al. 2010

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

ST-DBN

•Key idea: alternate layers of spatial and temporal Convolutional RBMs

•Weight sharing across all CRBMs in a layer

•Highly overcomplete: use sparsity on activations of max-pooling units

49

(a) (b)

Figure 2: (a) Spatial pooling layer for an input video with nV t frames. Each input frame is fed into
a CRBM. (b) Temporal pooling layer. Each pixel sequence is fed into a CRBM.

Training CRBMs using Monte Carlo methods requires sampling from both the conditional distribu-
tion of the hidden units given the visible units and the conditional distribution of the visible units
given the hidden units. If we define the visible unit activations as Av

c = dc +
�|W |

g=1 W g
c ∗ hg and

the hidden unit activations for group g by Ag = bg +
�ch

c=1 W g
c ∗ vc (again using convolution) we

can express the conditional probabilities as seen in Eqs. (2) and (3).

P (hg
i,j = 1|v) =

exp(Ag
i,j)

1 +
�

r,s∈Bα
exp(Ag

r,s)
, P (pg

α = 0|v) =
1

1 +
�

r,s∈Bα
exp(Ag

r,s)
(2)

P (vc,i,j = 1|h) =
1

1 + exp(−Av
c,i,j)

(3)

CRBMs are highly overcomplete by construction [12, 7], so additional regularization is required
during training. As in [22], we place a penalty term on the activations of the max-pooling
units to encourage them to be close to a small constant value r. Given a dataset of K images
{v(1),v(2), ...,v(K)}, the problem is to find the set of parameters θ that minimizes the objective:

−
K�

k=1

log
�

h

P (v(k),h(k)) + λ

|W |�

g=1

�
r −

�
1

K|B|

K�

k=1

nH�

α=1

P (pg
α = 1|v(k))

��2

(4)

where |B| is the number of max-pooled units in pg , λ is a regularization constant, and r is a constant
that controls the sparseness of activated max-pooled units. We use 1-step contrastive divergence [6]
to get an approximate gradient of the log-likelihood term, coupled with stochastic gradient descent
on the regularization term [7] to optimize Eq. (4).

A practical issue that arises during training is the effect of boundaries [12] on convolution. If the
image has no zero-padded edges, then boundary visible units will have fewer connections to hidden
units than interior visible units. The connectivity imbalance will cause filters to collapse into the
corner regions in order to reconstruct the boundary pixels well. To alleviate this problem, we pad
each input image with a border of zeros having the same width and height as the weight matrices.

4 Space-Time Deep Belief Network

The Space-Time Deep Belief Network takes a video as input and processes it such that subsequent
layers in the hierarchy aggregate over progressively longer-range input patterns in space and time.
Fig. 2(a) shows the first layer of the ST-DBN—a spatial pooling layer—which takes an input video
of nV t frames {v(0),v(1), ...,v(nV t)}. At every time step t, each spatial CRBM takes an input
frame v(t) of size (ch × nV x × nV y) and outputs a stack p(t) of size (|W | × nPx × nPy), where
W is the set of weights (defined in Sec. 3) shared across all spatial CRBMs. All CRBMs in the
same spatial pooling layer share the same parameter vector θ. The second layer of the network is a
temporal pooling layer, which takes the low-resolution image sequence {p(0),p(1), ..,p(nV t)} from

4

Images from Chen al. 2010

Spatial pooling layer

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

ST-DBN

•Key idea: alternate layers of spatial and temporal Convolutional RBMs

•Weight sharing across all CRBMs in a layer

•Highly overcomplete: use sparsity on activations of max-pooling units

49

(a) (b)

Figure 2: (a) Spatial pooling layer for an input video with nV t frames. Each input frame is fed into
a CRBM. (b) Temporal pooling layer. Each pixel sequence is fed into a CRBM.

Training CRBMs using Monte Carlo methods requires sampling from both the conditional distribu-
tion of the hidden units given the visible units and the conditional distribution of the visible units
given the hidden units. If we define the visible unit activations as Av

c = dc +
�|W |

g=1 W g
c ∗ hg and

the hidden unit activations for group g by Ag = bg +
�ch

c=1 W g
c ∗ vc (again using convolution) we

can express the conditional probabilities as seen in Eqs. (2) and (3).

P (hg
i,j = 1|v) =

exp(Ag
i,j)

1 +
�

r,s∈Bα
exp(Ag

r,s)
, P (pg

α = 0|v) =
1

1 +
�

r,s∈Bα
exp(Ag

r,s)
(2)

P (vc,i,j = 1|h) =
1

1 + exp(−Av
c,i,j)

(3)

CRBMs are highly overcomplete by construction [12, 7], so additional regularization is required
during training. As in [22], we place a penalty term on the activations of the max-pooling
units to encourage them to be close to a small constant value r. Given a dataset of K images
{v(1),v(2), ...,v(K)}, the problem is to find the set of parameters θ that minimizes the objective:

−
K�

k=1

log
�

h

P (v(k),h(k)) + λ

|W |�

g=1

�
r −

�
1

K|B|

K�

k=1

nH�

α=1

P (pg
α = 1|v(k))

��2

(4)

where |B| is the number of max-pooled units in pg , λ is a regularization constant, and r is a constant
that controls the sparseness of activated max-pooled units. We use 1-step contrastive divergence [6]
to get an approximate gradient of the log-likelihood term, coupled with stochastic gradient descent
on the regularization term [7] to optimize Eq. (4).

A practical issue that arises during training is the effect of boundaries [12] on convolution. If the
image has no zero-padded edges, then boundary visible units will have fewer connections to hidden
units than interior visible units. The connectivity imbalance will cause filters to collapse into the
corner regions in order to reconstruct the boundary pixels well. To alleviate this problem, we pad
each input image with a border of zeros having the same width and height as the weight matrices.

4 Space-Time Deep Belief Network

The Space-Time Deep Belief Network takes a video as input and processes it such that subsequent
layers in the hierarchy aggregate over progressively longer-range input patterns in space and time.
Fig. 2(a) shows the first layer of the ST-DBN—a spatial pooling layer—which takes an input video
of nV t frames {v(0),v(1), ...,v(nV t)}. At every time step t, each spatial CRBM takes an input
frame v(t) of size (ch × nV x × nV y) and outputs a stack p(t) of size (|W | × nPx × nPy), where
W is the set of weights (defined in Sec. 3) shared across all spatial CRBMs. All CRBMs in the
same spatial pooling layer share the same parameter vector θ. The second layer of the network is a
temporal pooling layer, which takes the low-resolution image sequence {p(0),p(1), ..,p(nV t)} from

4

Images from Chen al. 2010

Spatial pooling layer
(a) (b)

Figure 2: (a) Spatial pooling layer for an input video with nV t frames. Each input frame is fed into
a CRBM. (b) Temporal pooling layer. Each pixel sequence is fed into a CRBM.

Training CRBMs using Monte Carlo methods requires sampling from both the conditional distribu-
tion of the hidden units given the visible units and the conditional distribution of the visible units
given the hidden units. If we define the visible unit activations as Av

c = dc +
�|W |

g=1 W g
c ∗ hg and

the hidden unit activations for group g by Ag = bg +
�ch

c=1 W g
c ∗ vc (again using convolution) we

can express the conditional probabilities as seen in Eqs. (2) and (3).

P (hg
i,j = 1|v) =

exp(Ag
i,j)

1 +
�

r,s∈Bα
exp(Ag

r,s)
, P (pg

α = 0|v) =
1

1 +
�

r,s∈Bα
exp(Ag

r,s)
(2)

P (vc,i,j = 1|h) =
1

1 + exp(−Av
c,i,j)

(3)

CRBMs are highly overcomplete by construction [12, 7], so additional regularization is required
during training. As in [22], we place a penalty term on the activations of the max-pooling
units to encourage them to be close to a small constant value r. Given a dataset of K images
{v(1),v(2), ...,v(K)}, the problem is to find the set of parameters θ that minimizes the objective:

−
K�

k=1

log
�

h

P (v(k),h(k)) + λ

|W |�

g=1

�
r −

�
1

K|B|

K�

k=1

nH�

α=1

P (pg
α = 1|v(k))

��2

(4)

where |B| is the number of max-pooled units in pg , λ is a regularization constant, and r is a constant
that controls the sparseness of activated max-pooled units. We use 1-step contrastive divergence [6]
to get an approximate gradient of the log-likelihood term, coupled with stochastic gradient descent
on the regularization term [7] to optimize Eq. (4).

A practical issue that arises during training is the effect of boundaries [12] on convolution. If the
image has no zero-padded edges, then boundary visible units will have fewer connections to hidden
units than interior visible units. The connectivity imbalance will cause filters to collapse into the
corner regions in order to reconstruct the boundary pixels well. To alleviate this problem, we pad
each input image with a border of zeros having the same width and height as the weight matrices.

4 Space-Time Deep Belief Network

The Space-Time Deep Belief Network takes a video as input and processes it such that subsequent
layers in the hierarchy aggregate over progressively longer-range input patterns in space and time.
Fig. 2(a) shows the first layer of the ST-DBN—a spatial pooling layer—which takes an input video
of nV t frames {v(0),v(1), ...,v(nV t)}. At every time step t, each spatial CRBM takes an input
frame v(t) of size (ch × nV x × nV y) and outputs a stack p(t) of size (|W | × nPx × nPy), where
W is the set of weights (defined in Sec. 3) shared across all spatial CRBMs. All CRBMs in the
same spatial pooling layer share the same parameter vector θ. The second layer of the network is a
temporal pooling layer, which takes the low-resolution image sequence {p(0),p(1), ..,p(nV t)} from

4

Temporal pooling layer

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

MEASURING INVARIANCE

•Measure invariance at each layer for various transformations of the input

•Use measure proposed by Goodfellow et al. (2009)

50 Images from Chen al. 2010

Invariant

Overly Selective

Not Selective

Degree of Transformation

Firing rate of unit i

10

15

20

25

30

35

40

S1 S2 T1

Translation

10

15

20

25

30

35

40

S1 S2 T1

Zooming

10

15

20

25

30

35

40

S1 S2 T1

2D Rotation

10

15

20

25

30

35

40

S1 S2 T1

3D Rotation

(a) (b)

Figure 3: (a) Invariance scores for common transformations in natural videos, computed for layer 1
(S1) and layer 2 (S2) of a CDBN and layer 2 (T1) of ST-DBN (higher is better). (b) Learned layer
2 ST-DBN filters on KTH. Time goes from left to right for each row.

Invariance Measure: To evaluate invariance, we use the measure proposed by [2] for a single
hidden unit i, which balances its global firing rate G(i) with its local firing rate L(i). The invariance
measure for a hidden unit i is S(i) = L(i)/G(i), with:

L(i) =
1

|Z|
�

z∈Z

1
|T (z)|

�

x∈T (z)

fi(x) G(i) = E[fi(x)]

where fi(x) is an indicator function that is 1 if the neuron fires in response to input x and is 0
otherwise; Z is the set of inputs that activate the neuron i; and T (z) is the set of stimuli that consists
of the reference stimulus x with transformations applied to it. L(i) measures the proportion of
transformed inputs that the neuron fires in response to. G(i) measures the neuron’s selectivity to
a specific type of stimuli. For each video and hidden unit i, we select a threshold such that i fires
G(i) = 1% of the time. We then select 40 stimuli that activate i the most (these are single frames
for the spatial pooling layers and short sequences in the temporal pooling layers) and extend the
temporal length of each stimulus both forward and backward in time for 8 frames each. The local
firing rate L(i) is then i’s average firing rate over 16 frames of stimuli, and the invariance score is
L(i)/0.01. The invariance score of a network layer is the mean score over all the max-pooled units.

Fig. 3(a) shows invariance scores for translations, zooming, and 2D and 3D rotations using layer 1
of the CDBN (S1), layer 2 of the CDBN (S2), and layer 2 of ST-DBN (T1). S1 serves as a baseline
measure since it is the first layer for both CDBN and ST-DBN. We see that ST-DBN yields signifi-
cantly more invariant representations than CDBN (S2 vs. T1 scores). ST-DBN shows the greatest
invariance for 3D rotations—the most complicated transformation. While a 2-layer architecture ap-
pears to achieve greater invariance for zooming and 2D rotations, ST-DBN has more pronounced
improvement. For translation, all architectures have built-in invariance, leading to similar scores.
Since ST-DBN is trained on video sequences, whereas the CDBN is trained on images only, a com-
parison to CDBN is unfair. Nonetheless, this experiment highlights the importance of training on
temporal data in order to achieve invariance.

5.2 Unsupervised Feature Learning for Classification

Dataset & Training: We used the standard KTH dataset [24] to evaluate the effectiveness of the
learned feature descriptors for human activity recognition. The dataset has 2391 videos, consist-
ing of 6 types of actions (walking, jogging, running, boxing, hand waving and hand clapping),
performed by 25 people in 4 different backgrounds. The dataset includes variations in subject, ap-
pearance, scale, illumination and action execution. First, we downsampled the videos by a factor
of 2 to a spatial resolution of 80 × 60 pixels each, while preserving the video length (∼ 4 sec long
each, at 25 fps). Subsequently, we pre-processed the videos using 3D local contrast normalization.

We divided the dataset into training and test sets following the procedure in [25]. For a particu-
lar trial, videos of 9 random subjects were used for training a 4-layer ST-DBN, with videos of the
remaining 16 subjects used for test. We used leave-one-out (LOO) cross-validation to calculate clas-
sification results for the 16 test subjects. For each of the 16 rounds of LOO, we used the remaining

6

Invariance scores computed for Spatial Pooling Layer 1 (S1), Spatial Pooling Layer
2 (S2) and Temporal Pooling Layer 1 (T1).
Higher is better.

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

DENOISING AND RECONSTRUCTION

•Operations not possible with a discriminative approach

51

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

Images from Chen al. 2010

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

(a) (b) (c) (d)

Figure 4: De-noising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction
using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

Figure 5: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-5). Bottom
video shows reconstructions within the gaze windows and predictions outside them.

The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better background
de-noising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and 0.155,
respectively. For reference, the normalized MSE between the clean and noisy video has value 1.
Note that the de-noising effects are more visible over time (compared to single frame results shown
below) and can be easily observed in video format.

Fig. 5 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temporal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-5, where the focus of
attention is on portions of the frame. The bottom row of Fig. 5 shows the reconstructed data within
the gaze window and predictions outside this window. The blurry effect in predicted parts of the
frame is due to the loss of information incurred with max-pooling. Though max-pooling comes at a
cost when inferring missing parts of frames, it is crucial for good discriminative performance. Future
research must address this fundamental trade-off. The results in the figure represent an important
step toward the design of attentional mechanisms for gaze planning. While gazing at the subject’s
head, the model is able to infer where the legs are. This coarse resolution gist may be used to guide
the placement of high resolution detectors.

6 Conclusions

In this paper, we introduced the ST-DBN model, a hierarchical distributed probabilistic model for
learning invariant features from spatio-temporal data. The ST-DBN model aggregates over space
and time using alternating layers of spatial and temporal CRBMs and has the ability to capture
long range statistical dependencies in both space and time. The choice of an alternating space-time
architecture was influenced by George’s work [13], but the addition of joint space-time layers to this
architecture is a straightforward extension. A very interesting question for future work is to consider
the optimal selection of joint and alternating layers both from a computational and representation
perspective.

An interesting direction for future work is to consider alternatives to probabilistic max-pooling.
While the max-pooling operation allows feature invariance to be captured hierarchically from spatio-
temporal data, it has an adverse affect on the ability to synthesize full resolution output from the
model. We plan to examine how the information loss associated with max-pooling can be minimized
when performing inference. We conjecture that combinations of models with and without pooling
will be required. Additionally, precautions should be taken to ensure representations are not made
too compact with too many layers in the architecture. Model selection is an open challenge in this
line of research.

8

Test frame Corrupted test frame
Reconstruction:
1 layer ST-DBN

Reconstruction:
2 layer ST-DBN

Observed gazes

Reconstructions

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

STACKED CONVOLUTIONAL INDEPENDENT SUBSPACE
ANALYSIS (ISA)
Quoc Le Will Zou, Serena Yeung, and Andrew Ng (CVPR 2011)

•Use of ISA (right) as a basic module

•Learns features robust to local
translation; selective to frequency,
rotation and velocity

•Key idea: scale up ISA by applying
convolution and stacking

52

Input

Layer 1 units

Layer 2 units

()2

√()

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Images from Le et al. 2010

Typical filters learned by ISA when trained on
static images
(organized in pools - red units above)

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SCALING UP: CONVOLUTION AND STACKING

•The network is built by “copying” the
learned network and “pasting” it to
different parts of the input data

•Outputs are then treated as the inputs
to a new ISA network

•PCA is used to reduce dimensionality

53

Figure 4. Stacked Convolutional ISA network. The network is
built by “copying” the learned network and “pasting” it to different
places of the input data and then treating the outputs as inputs to a
new ISA network. For clarity, the convolution step is shown here
non-overlapping, but in the experiments the convolution is done
with overlapping.

a sequence of image patches and flatten them into a vector.
This vector becomes input features to the network above.
To learn high-level concepts, we can use the convolution

and stacking techniques (see Section 3.2) which result in an
architecture as shown in Figure 5.

Figure 5. Stacked convolutional ISA for video data. In this figure,
convolution is done with overlapping; the ISA network in the sec-
ond layer is trained on the combined activations of the first layer.

Finally, in our experiments, we combine features from
both layers and use them as local features for classification
(previously suggested in [22]). In the experiment section,
we will show that this combination works better than using
one set of features alone.

3.4. Learningwith batch projected gradient descent

Our method is trained by batch projected gradient de-
scent. Compared to other feature learning methods (e.g.,
RBMs [7]), the gradient of the objective function in Eq. 1 is
tractable.
The orthonormal constraint is ensured by projection with

symmetric orthogonalization [10]. In detail, during opti-
mization, projected gradient descent requires us to project

W to the constraint set by computing (WWT)−
1

2 W . Note
that the inverse square root of the matrix usually involves
solving an eigenvector problem, which requires cubic time.
Therefore, this algorithm is expensive when the input di-
mension is large. The convolution and stacking ideas ad-
dress this problem by slowly expanding the receptive fields
via convolution. And although we have to resort to PCA for
whitening and dimension reduction, this step is called only
once and hence much less expensive.
Training neural networks is difficult and requires much

tuning. Our method, however, is very easy to train because
batch gradient descent does not need any tweaking with the
learning rate and the convergence criterion. This is in stark
contrast with other methods such as Deep Belief Nets [7]
and Stacked Autoencoders [2] where tuning the learning
rate, weight decay, convergence parameters, etc. is essential
for learning good features.

3.5. Norm-thresholding interest point detector

In many datasets, an interest point detector is neces-
sary for improving recognition and lowering computational
costs. This can be achieved in our framework by discarding
features at locations where the norm of the activations is
below a certain threshold. This is based on the observation
that the first layer’s activations tend to have significantly
higher norms at edge and motion locations than at static
and feature-less locations (c.f. [13]). Hence, by threshold-
ing the norm, the first layer of our network can be used as
a robust feature detector that filters out features from the
non-informative background:

If ‖p1(xt;W,V)‖1 ≤ δ then the features at xt are ignored.

here p1 is the activations of the first layer of the net-
work. For instance, setting δ at 30 percentile of the training
set’s activation norms means that 70% of features from the
dataset are discarded. In our experiments, we only use this
detector the KTH dataset where an interest point detector
has been shown to be useful [42]. The value of δ is chosen
via cross validation.

4. Feature visualization and analysis

In Section 3.1, we discussed spatial invariant properties
of ISA when applied to image patches. In this section, we
extend the analysis for video bases.

4.1. First layer

The first layer of our model learns features that detect
a moving edge in time as shown in Figure 6. In addition
to previously mentioned spatial invariances, these spatio-
temporal bases give rise to another property: velocity selec-
tivity.
We analyze this property by computing the response of

ISA features while varying the velocity of the moving edge.

3364

Image from Le et al. 2010

Simple example: 1D data

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

LEARNING SPATIO-TEMPORAL FEATURES

• Inputs to the network are blocks
of video

•Each block is vectorized and
processed by ISA

•Features from Layer 1 and Layer
2 are combined prior to
classification

54

Figure 4. Stacked Convolutional ISA network. The network is
built by “copying” the learned network and “pasting” it to different
places of the input data and then treating the outputs as inputs to a
new ISA network. For clarity, the convolution step is shown here
non-overlapping, but in the experiments the convolution is done
with overlapping.

a sequence of image patches and flatten them into a vector.
This vector becomes input features to the network above.
To learn high-level concepts, we can use the convolution

and stacking techniques (see Section 3.2) which result in an
architecture as shown in Figure 5.

Figure 5. Stacked convolutional ISA for video data. In this figure,
convolution is done with overlapping; the ISA network in the sec-
ond layer is trained on the combined activations of the first layer.

Finally, in our experiments, we combine features from
both layers and use them as local features for classification
(previously suggested in [22]). In the experiment section,
we will show that this combination works better than using
one set of features alone.

3.4. Learningwith batch projected gradient descent

Our method is trained by batch projected gradient de-
scent. Compared to other feature learning methods (e.g.,
RBMs [7]), the gradient of the objective function in Eq. 1 is
tractable.
The orthonormal constraint is ensured by projection with

symmetric orthogonalization [10]. In detail, during opti-
mization, projected gradient descent requires us to project

W to the constraint set by computing (WWT)−
1

2 W . Note
that the inverse square root of the matrix usually involves
solving an eigenvector problem, which requires cubic time.
Therefore, this algorithm is expensive when the input di-
mension is large. The convolution and stacking ideas ad-
dress this problem by slowly expanding the receptive fields
via convolution. And although we have to resort to PCA for
whitening and dimension reduction, this step is called only
once and hence much less expensive.
Training neural networks is difficult and requires much

tuning. Our method, however, is very easy to train because
batch gradient descent does not need any tweaking with the
learning rate and the convergence criterion. This is in stark
contrast with other methods such as Deep Belief Nets [7]
and Stacked Autoencoders [2] where tuning the learning
rate, weight decay, convergence parameters, etc. is essential
for learning good features.

3.5. Norm-thresholding interest point detector

In many datasets, an interest point detector is neces-
sary for improving recognition and lowering computational
costs. This can be achieved in our framework by discarding
features at locations where the norm of the activations is
below a certain threshold. This is based on the observation
that the first layer’s activations tend to have significantly
higher norms at edge and motion locations than at static
and feature-less locations (c.f. [13]). Hence, by threshold-
ing the norm, the first layer of our network can be used as
a robust feature detector that filters out features from the
non-informative background:

If ‖p1(xt;W,V)‖1 ≤ δ then the features at xt are ignored.

here p1 is the activations of the first layer of the net-
work. For instance, setting δ at 30 percentile of the training
set’s activation norms means that 70% of features from the
dataset are discarded. In our experiments, we only use this
detector the KTH dataset where an interest point detector
has been shown to be useful [42]. The value of δ is chosen
via cross validation.

4. Feature visualization and analysis

In Section 3.1, we discussed spatial invariant properties
of ISA when applied to image patches. In this section, we
extend the analysis for video bases.

4.1. First layer

The first layer of our model learns features that detect
a moving edge in time as shown in Figure 6. In addition
to previously mentioned spatial invariances, these spatio-
temporal bases give rise to another property: velocity selec-
tivity.
We analyze this property by computing the response of

ISA features while varying the velocity of the moving edge.

3364

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

VELOCITY AND ORIENTATION SELECTIVITY

55

Figure 6. Examples of three ISA features learned from Holly-
wood2 data (16x16 spatial size). In this picture, each row consists
of two sets of filters. Each set of filters is a filter in 3D (i.e., a
row in matrixW), and two sets grouped together to form an ISA
feature.

In detail, we fit Gabor functions to all temporal bases to
estimate the velocity of the bases. We then vary this veloc-
ity and plot the response of the features with respect to the
changes. In Figure 7, we visualize this property by plotting
the velocity tuning curves of five randomly-selected units in
the first layer of the network.

Figure 7. Velocity tuning curves of five neurons in a ISA network
trained on Hollywood2. Most of the tuning curves are unimodal
and this means that ISA temporal bases can be used as velocity
detectors.

As can be seen from the figure, the neurons are highly
sensitive to changes in the velocity of the stimuli. This
suggests that the features can be used as velocity detec-
tors which are valuable for detecting actions in movies. For
example, the “Running” category in Hollywood2 has fast
motions whereas the “Eating” category in Hollywood2 has
slow motions.

Informally, we can interpret filters learned with our ISA
model as features detecting a moving edge through time. In
particular, the pooling units are sensitive to motion – how
fast the edge moves – and also sensitive to orientation but
less sensitive to (translational) locations of the edge.

We found that the ability to detect accurate velocities is
very important for good recognition. In a control exper-
iment, we limit this ability by using a temporal size of 2
frames instead of 10 frames and the recognition rate drops
by 10% for the Hollywood2 dataset.

Not only can the bases detect velocity, they also adapt
to the statistics of the dataset. This ability is shown in Fig-
ure 8. As can be seen from the figure, for Hollywood2, the
algorithm learns that there should be more edge detectors in
vertical and horizontal orientations than other orientations.
Informally, we can interpret that the bases spend more ef-
fort to detect velocity changes in the horizontal and vertical

directions than other directions.

30

210

60

240

90

270

120

300

150

330

180 0

Figure 8. A polar plot of edge velocities (radius) and orientations
(angle) to which filters give maximum response. Each red dot in
the figure represents a pair of (velocity, orientation) for a spatio-
temporal filter learned from Hollywood2. The outermost circle
has velocity of 4 pixels per frame.

4.2. Higher layers

Figure 9. Visualization of five typical optimal stimuli in the second
layer learned from Hollywood2 data (for the purpose of better vi-
sualization, we use the size of 24x24x18 built on top of 16x16x10
first layer filters). Compare this figure with Figure 6

Figure 10. Comparison of layer 1 filters (left) and layer 2 filters
(right) learned from Hollywood2. For ease of visualization, we
ignore the temporal dimension and only visualize the middle filter.

Visualizing and analyzing higher layer units are usually
difficult. Here, we follow [3] and visualize the optimal
stimuli of the higher layer neurons.4 Some typical optimal
stimuli for second layer neurons are shown in Figure 9 and

4In detail, the method was presented for visualizing optimal stimuli of
neurons in a quadratic network for which the corresponding optimization
problem has an analytical solution. As our network is not quadratic, we
have to solve an optimization problem subject to a norm bound constraint
of the input. We implement this with minConf [36].

3365

Figure 6. Examples of three ISA features learned from Holly-
wood2 data (16x16 spatial size). In this picture, each row consists
of two sets of filters. Each set of filters is a filter in 3D (i.e., a
row in matrixW), and two sets grouped together to form an ISA
feature.

In detail, we fit Gabor functions to all temporal bases to
estimate the velocity of the bases. We then vary this veloc-
ity and plot the response of the features with respect to the
changes. In Figure 7, we visualize this property by plotting
the velocity tuning curves of five randomly-selected units in
the first layer of the network.

Figure 7. Velocity tuning curves of five neurons in a ISA network
trained on Hollywood2. Most of the tuning curves are unimodal
and this means that ISA temporal bases can be used as velocity
detectors.

As can be seen from the figure, the neurons are highly
sensitive to changes in the velocity of the stimuli. This
suggests that the features can be used as velocity detec-
tors which are valuable for detecting actions in movies. For
example, the “Running” category in Hollywood2 has fast
motions whereas the “Eating” category in Hollywood2 has
slow motions.

Informally, we can interpret filters learned with our ISA
model as features detecting a moving edge through time. In
particular, the pooling units are sensitive to motion – how
fast the edge moves – and also sensitive to orientation but
less sensitive to (translational) locations of the edge.

We found that the ability to detect accurate velocities is
very important for good recognition. In a control exper-
iment, we limit this ability by using a temporal size of 2
frames instead of 10 frames and the recognition rate drops
by 10% for the Hollywood2 dataset.

Not only can the bases detect velocity, they also adapt
to the statistics of the dataset. This ability is shown in Fig-
ure 8. As can be seen from the figure, for Hollywood2, the
algorithm learns that there should be more edge detectors in
vertical and horizontal orientations than other orientations.
Informally, we can interpret that the bases spend more ef-
fort to detect velocity changes in the horizontal and vertical

directions than other directions.

30

210

60

240

90

270

120

300

150

330

180 0

Figure 8. A polar plot of edge velocities (radius) and orientations
(angle) to which filters give maximum response. Each red dot in
the figure represents a pair of (velocity, orientation) for a spatio-
temporal filter learned from Hollywood2. The outermost circle
has velocity of 4 pixels per frame.

4.2. Higher layers

Figure 9. Visualization of five typical optimal stimuli in the second
layer learned from Hollywood2 data (for the purpose of better vi-
sualization, we use the size of 24x24x18 built on top of 16x16x10
first layer filters). Compare this figure with Figure 6

Figure 10. Comparison of layer 1 filters (left) and layer 2 filters
(right) learned from Hollywood2. For ease of visualization, we
ignore the temporal dimension and only visualize the middle filter.

Visualizing and analyzing higher layer units are usually
difficult. Here, we follow [3] and visualize the optimal
stimuli of the higher layer neurons.4 Some typical optimal
stimuli for second layer neurons are shown in Figure 9 and

4In detail, the method was presented for visualizing optimal stimuli of
neurons in a quadratic network for which the corresponding optimization
problem has an analytical solution. As our network is not quadratic, we
have to solve an optimization problem subject to a norm bound constraint
of the input. We implement this with minConf [36].

3365

Edge velocities (radius) and orientations (angle) to which
filters give maximum response
Outermost velocity: 4 pixels per frame

Velocity tuning curves for five neurons in an ISA network
trained on Hollywood2 data

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUMMARY

56

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUMMARY

•Learning distributed representations of
sequences

56

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUMMARY

•Learning distributed representations of
sequences

•For high-dimensional, multi-modal data:
CRBM, FCRBM

56

€

j
l

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

SUMMARY

•Learning distributed representations of
sequences

•For high-dimensional, multi-modal data:
CRBM, FCRBM

•Activity recognition: 4 methods

56

€

j
l

X (Input)

Y (Output)

 Z
k

Feature
layer

 P
k

Pooling
layer

Nx

Nx

Ny

Ny

Nz

Nz
Np

Np

pk

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w

Saturday, June 16, 2012

18 May 2012 /
Learning Representations of Sequences / G Taylor

ACKNOWLEDGEMENTS

57

•Faculty at U Toronto: Geoff Hinton, Sam Roweis
•Faculty at NYU: Chris Bregler, Rob Fergus, Yann LeCun
•Students and researchers at U Toronto, NYU
•Funding: CIFAR, DARPA, ONR, Google

Saturday, June 16, 2012

