Lecture 2:
Color, Filtering & Edges

Prof. Rob Fergus

Slides: S. Lazebnik, S. Seitz, W. Freeman, F. Durand, D. Forsyth, D. Lowe, B. Wandell, S.Palmer, K. Grauman
Color
What is color?

• Color is a psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights (S. Palmer, *Vision Science: Photons to Phenomenology*)

• Color is the result of interaction between physical light in the environment and our visual system
Color Camera Sensor

RGB Inside the Camera

- Incoming Visible light
- Visible Light passes through IR-Blocking Filter
- Color Filters control the color light reaching a sensor
- Color blind sensors convert light reaching each sensor into electricity

Overview of Color

- Physics of color
- Human encoding of color
- Color spaces
- White balancing
Electromagnetic Spectrum

Human Luminance Sensitivity Function

http://www.yorku.ca/eye/photopik.htm
Visible Light

Plank’s law for Blackbody radiation
Surface of the sun: ~5800K

Why do we see light of these wavelengths?

...because that’s where the Sun radiates EM energy
Any source of light can be completely described physically by its spectrum: the amount of energy emitted (per time unit) at each wavelength 400 - 700 nm.
Some examples of the spectra of light sources

A. Ruby Laser

B. Gallium Phosphide Crystal

C. Tungsten Lightbulb

D. Normal Daylight

© Stephen E. Palmer, 2002
The Physics of Light

Some examples of the reflectance spectra of surfaces

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Yellow</th>
<th>Blue</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>400</td>
<td>700</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>% Light Reflected</td>
<td>700</td>
<td>400</td>
<td>700</td>
<td>400</td>
</tr>
</tbody>
</table>

© Stephen E. Palmer, 2002
Interaction of light and surfaces

- Reflected color is the result of interaction of light source spectrum with surface reflectance
- Spectral radiometry
 - All definitions and units are now “per unit wavelength”
 - All terms are now “spectral”

From Foundation of Vision by Brian Wandell, Sinauer Associates, 1995
Interaction of light and surfaces

• What is the observed color of any surface under monochromatic light?

Olafur Eliasson, *Room for one color*
Overview of Color

• Physics of color
• Human encoding of color
• Color spaces
• White balancing
The human eye is a camera!

- **Iris** - colored annulus with radial muscles
- **Pupil** - the hole (aperture) whose size is controlled by the iris
- What’s the “film”?
 - photoreceptor cells (rods and cones) in the **retina**
The Retina

Cross-section of eye

Cross section of retina

Ganglion cell layer
Bipolar cell layer
Receptor layer
Pigmented epithelium
Ganglion axons
Bipolar cell layer
Receptor layer

Retina up-close
Two types of light-sensitive receptors

Cones
- cone-shaped
- less sensitive
- operate in high light
- color vision

Rods
- rod-shaped
- highly sensitive
- operate at night
- gray-scale vision
Rod / Cone sensitivity

The famous sock-matching problem...
Physiology of Color Vision

Three kinds of cones:

- Why are M and L cones so close?
- Are there 3?
Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number

- Q: How can we represent an entire spectrum with 3 numbers?
 - A: We can’t! Most of the information is lost.
 - As a result, two different spectra may appear indistinguishable
 » such spectra are known as metamers
Spectra of some real-world surfaces

metamers
Standardizing color experience

• We would like to understand which spectra produce the same color sensation in people under similar viewing conditions

• Color matching experiments
Color matching experiment 1

Source: W. Freeman
Color matching experiment 1
Color matching experiment 1

Source: W. Freeman
Color matching experiment 1

The primary color amounts needed for a match

Source: W. Freeman
Color matching experiment 2

Source: W. Freeman
Color matching experiment 2

Source: W. Freeman
Color matching experiment 2

Source: W. Freeman
We say a “negative” amount of p_2 was needed to make the match, because we added it to the test color’s side.

The primary color amounts needed for a match:

Source: W. Freeman
Trichromacy

• In color matching experiments, most people can match any given light with three primaries
 – Primaries must be independent
• For the same light and same primaries, most people select the same weights
 – Exception: color blindness
• Trichromatic color theory
 – Three numbers seem to be sufficient for encoding color
 – Dates back to 18th century (Thomas Young)
Grassman’s Laws

• Color matching appears to be linear

• If two test lights can be matched with the same set of weights, then they match each other:
 – Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$ and $B = u_1 P_1 + u_2 P_2 + u_3 P_3$. Then $A = B$.

• If we mix two test lights, then mixing the matches will match the result:
 – Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$ and $B = v_1 P_1 + v_2 P_2 + v_3 P_3$. Then $A + B = (u_1 + v_1) P_1 + (u_2 + v_2) P_2 + (u_3 + v_3) P_3$.

• If we scale the test light, then the matches get scaled by the same amount:
 – Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$. Then $kA = (ku_1) P_1 + (ku_2) P_2 + (ku_3) P_3$.
Overview of Color

• Physics of color
• Human encoding of color
• Color spaces
• White balancing
Linear color spaces

- Defined by a choice of three *primaries*
- The coordinates of a color are given by the weights of the primaries used to match it

- Mixing two lights produces colors that lie along a straight line in color space
- Mixing three lights produces colors that lie within the triangle they define in color space
How to compute the weights of the primaries to match any spectral signal

- **Matching functions**: the amount of each primary needed to match a monochromatic light source at each wavelength

Source: W. Freeman
RGB space

- Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors)
- *Subtractive matching* required for some wavelengths

![RGB primaries](image)

RGB matching functions

- $p_1 = 645.2$ nm
- $p_2 = 525.3$ nm
- $p_3 = 444.4$ nm
How to compute the weights of the primaries to match any spectral signal

- Let $c(\lambda)$ be one of the matching functions, and let $t(\lambda)$ be the spectrum of the signal. Then the weight of the corresponding primary needed to match t is

$$w = \int_{\lambda} c(\lambda)t(\lambda)d\lambda$$
Linear color spaces: CIE XYZ

- Primaries are imaginary, but matching functions are everywhere positive.
- The Y parameter corresponds to brightness or *luminance* of a color.
- 2D visualization: draw \((x,y)\), where \(x = X/(X+Y+Z)\), \(y = Y/(X+Y+Z)\).

Matching functions

[Matching functions graph]

http://en.wikipedia.org/wiki/CIE_1931_color_space
Nonlinear color spaces: HSV

- Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)
- RGB cube on its vertex
Useful reference

Overview of Color

• Physics of color
• Human encoding of color
• Color spaces
• White balancing
White balance

• When looking at a picture on screen or print, we adapt to the illuminant of the room, not to that of the scene in the picture
• When the white balance is not correct, the picture will have an unnatural color “cast”

http://www.cambridgeincolour.com/tutorials/white-balance.htm
White balance

• Film cameras:
 • Different types of film or different filters for different illumination conditions

• Digital cameras:
 • Automatic white balance
 • White balance settings corresponding to several common illuminants
 • Custom white balance using a reference object

http://www.cambridgeincolour.com/tutorials/white-balance.htm

Slide: F. Durand
White balance

- Von Kries adaptation
 - Multiply each channel by a gain factor
 - A more general transformation would correspond to an arbitrary 3x3 matrix
White balance

• Von Kries adaptation
 • Multiply each channel by a gain factor
 • A more general transformation would correspond to an arbitrary 3x3 matrix

• Best way: gray card
 • Take a picture of a neutral object (white or gray)
 • Deduce the weight of each channel
 – If the object is recoded as r_w, g_w, b_w
 use weights $1/r_w, 1/g_w, 1/b_w$
White balance

• Without gray cards: we need to “guess” which pixels correspond to white objects
• Gray world assumption
 • The image average r_{ave}, g_{ave}, b_{ave} is gray
 • Use weights $1/r_{ave}$, $1/g_{ave}$, $1/b_{ave}$
• Brightest pixel assumption (non-staurated)
 • Highlights usually have the color of the light source
 • Use weights inversely proportional to the values of the brightest pixels
• Gamut mapping
 • Gamut: convex hull of all pixel colors in an image
 • Find the transformation that matches the gamut of the image to the gamut of a “typical” image under white light
• Use image statistics, learning techniques
Uses of color in computer vision

Color histograms for indexing and retrieval

Uses of color in computer vision

Skin detection

Source: S. Lazebnik
Uses of color in computer vision

Nude people detection

Uses of color in computer vision

Image segmentation and retrieval

Source: S. Lazebnik
Uses of color in computer vision

Robot soccer

Source: K. Grauman
Uses of color in computer vision

Building appearance models for tracking

Source: S. Lazebnik
Interlude

- Next class at 5pm Thursday

- But next week: class at 7pm Tuesday
 - Prof. Bregler will teach it (I am away)

- Back to normal afterwards (5pm Thursday)
Image Filtering
Overview of Filtering

- Convolution
- Gaussian filtering
- Median filtering
Overview of Filtering

• Convolution
• Gaussian filtering
• Median filtering
Motivation: Noise reduction

- Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

What’s the next best thing?

Source: S. Seitz
Moving average

• Let’s replace each pixel with a \textit{weighted} average of its neighborhood
• The weights are called the \textit{filter kernel}
• What are the weights for the average of a 3x3 neighborhood?

\begin{align*}
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\end{align*}

"box filter"

Source: D. Lowe
Defining Convolution

• Let \(f \) be the image and \(g \) be the kernel. The output of convolving \(f \) with \(g \) is denoted \(f^* g \).

\[
(f * g)[m, n] = \sum_{k,l} f[m - k, n - l] g[k, l]
\]

• Convention: kernel is “flipped”
• MATLAB: conv2 (also imfilter)

Source: F. Durand
Key properties

- **Linearity**: \(\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2) \)

- **Shift invariance**: same behavior regardless of pixel location: \(\text{filter}(\text{shift}(f)) = \text{shift}(\text{filter}(f)) \)

- **Theoretical result**: any linear shift-invariant operator can be represented as a convolution
Properties in more detail

• Commutative: \(a \ast b = b \ast a \)
 – Conceptually no difference between filter and signal

• Associative: \(a \ast (b \ast c) = (a \ast b) \ast c \)
 – Often apply several filters one after another: \(((a \ast b_1) \ast b_2) \ast b_3)\)
 – This is equivalent to applying one filter: \(a \ast (b_1 \ast b_2 \ast b_3)\)

• Distributes over addition: \(a \ast (b + c) = (a \ast b) + (a \ast c)\)

• Scalars factor out: \(ka \ast b = a \ast kb = k(a \ast b)\)

• Identity: unit impulse \(e = [\ldots, 0, 0, 1, 0, 0, \ldots]\), \(a \ast e = a\)
Annoying details

- What is the size of the output?
- MATLAB: conv2(f, g, shape)
 - shape = ‘full’: output size is sum of sizes of f and g
 - shape = ‘same’: output size is same as f
 - shape = ‘valid’: output size is difference of sizes of f and g
Annoying details

• What about near the edge?
 – the filter window falls off the edge of the image
 – need to extrapolate
 – methods:
 • clip filter (black)
 • wrap around
 • copy edge
 • reflect across edge

Source: S. Marschner
Annoying details

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): \(\text{imfilter}(f, g, 0) \)
 - wrap around: \(\text{imfilter}(f, g, 'circular') \)
 - copy edge: \(\text{imfilter}(f, g, 'replicate') \)
 - reflect across edge: \(\text{imfilter}(f, g, 'symmetric') \)

Source: S. Marschner
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Filtered
(no change)

Source: D. Lowe
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Shifted left
By 1 pixel

Source: D. Lowe
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

1 1 1
1 1 1
1 1 1

Source: D. Lowe
Practice with linear filters

Original

(Note that filter sums to 1)

Source: D. Lowe
Practice with linear filters

Original

Sharpening filter
- Accentuates differences with local average

Source: D. Lowe
Sharpening

before

after

Slide credit: Bill Freeman
Spatial resolution and color

original

Slide credit: Bill Freeman
Blurring the G component

original

processed

Slide credit: Bill Freeman
Blurring the R component

original

processed

Slide credit: Bill Freeman
Blurring the B component
Figure 6.1
Contrast sensitivity threshold functions for static luminance gratings (Y) and isoluminance chromaticity gratings (R/Y,B/Y) averaged over seven observers.
Lab color components

L: A rotation of the color coordinates into directions that are more perceptually meaningful:

- L: luminance,
- a: red-green,
- b: blue-yellow

Slide credit: Bill Freeman
Blurring the L Lab component

original

processed

Slide credit: Bill Freeman
Blurring the a Lab component

original processed

Slide credit: Bill Freeman
Blurring the b Lab component

original

processed

Slide credit: Bill Freeman
Overview of Filtering

• Convolution
• Gaussian filtering
• Median filtering
Smoothing with box filter revisited

• Smoothing with an average actually doesn’t compare at all well with a defocused lens
• Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square

Source: D. Forsyth
Smoothing with box filter revisited

- Smoothing with an average actually doesn’t compare at all well with a defocused lens
- Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square
- Better idea: to eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center, like so:

“fuzzy blob”

Source: D. Forsyth
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

- Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case)

Source: C. Rasmussen
Choosing kernel width

- Gaussian filters have infinite support, but discrete filters use finite kernels.
Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ
Example: Smoothing with a Gaussian
Mean vs. Gaussian filtering
Gaussian filters

• Remove “high-frequency” components from the image (low-pass filter)

• Convolution with self is another Gaussian
 • So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 • Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$

• Separable kernel
 • Factors into product of two 1D Gaussians

Source: K. Grauman
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x\) and the other a function of \(y\).

In this case, the two functions are the (identical) 1D Gaussian.
Separability example

2D convolution (center location only)

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array} \quad \times \quad \begin{array}{ccc}
2 & 3 & 3 \\
3 & 5 & 5 \\
4 & 4 & 6 \\
\end{array}
\]

The filter factors into a product of 1D filters:

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array} \quad \times \quad \begin{array}{ccc}
1 & & \\
2 & & \\
1 & & \\
\end{array}
\]

Perform convolution along rows:

\[
\begin{array}{ccc}
1 & 2 & 1 \\
\end{array} \quad \times \quad \begin{array}{ccc}
2 & 3 & 3 \\
3 & 5 & 5 \\
4 & 4 & 6 \\
\end{array}
\quad = \quad \begin{array}{ccc}
11 \\
18 \\
18 \\
\end{array}
\]

Followed by convolution along the remaining column:

For MN image, PQ filter: 2D takes MNPQ add/times, while 1D takes MN(P + Q)

Source: K. Grauman
Overview of Filtering

• Convolution
• Gaussian filtering
• Median filtering
Alternative idea: Median filtering

- A **median filter** operates over a window by selecting the median intensity in the window.

![Median Filtering Diagram]

- Is median filtering linear?

Source: K. Grauman
Median filter

Replace each pixel by the median over N pixels (5 pixels, for these examples). Generalizes to “rank order” filters.

\[
\text{Median}
\begin{bmatrix} 1 & 7 & 1 & 5 & 1 \end{bmatrix} = 1 \\
\text{Mean}
\begin{bmatrix} 1 & 7 & 1 & 5 & 1 \end{bmatrix} = 2.8
\]

Spike noise is removed

Monotonic edges remain unchanged
Median filtering results

Best for salt and pepper noise

http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm#guidelines
Median vs. Gaussian filtering

3x3 5x5 7x7

Gaussian

Median
Edges
Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels

- **Ideal:** artist’s line drawing (but artist is also using object-level knowledge)

Source: D. Lowe
Origin of edges

Edges are caused by a variety of factors:

- surface normal discontinuity
- depth discontinuity
- surface color discontinuity
- illumination discontinuity

Source: Steve Seitz
Edges in the Visual Cortex

Extract compact, generic, representation of image that carries sufficient information for higher-level processing tasks

Essentially what area V1 does in our visual cortex.

http://www.usc.edu/programs/vpl/private/photos/research/retinal_circuits/figure_2.jpg
Image gradient

The gradient of an image: \[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

- The gradient points in the direction of most rapid increase in intensity
 - How does this direction relate to the direction of the edge?

- The gradient direction is given by \[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

- The edge strength is given by the gradient magnitude
 \[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

Source: Steve Seitz
Differentiation and convolution

Recall, for 2D function, $f(x,y)$:

\[
\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon} \right)
\]

This is linear and shift invariant, so must be the result of a convolution.

We could approximate this as

\[
\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}
\]

(\text{which is obviously a convolution})

Source: D. Forsyth, D. Lowe
Finite difference filters

Other approximations of derivative filters exist:

Prewitt: \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad ; \quad M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \]

Sobel: \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad ; \quad M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]

Roberts: \[M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad ; \quad M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]
Finite differences: example

Which one is the gradient in the x-direction (resp. y-direction)?
Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
Effects of noise

• Finite difference filters respond strongly to noise
 • Image noise results in pixels that look very different from their neighbors
 • Generally, the larger the noise the stronger the response

• What is to be done?
 • Smoothing the image should help, by forcing pixels different from their neighbors (=noise pixels?) to look more like neighbors

Source: D. Forsyth
Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx}(f \ast g)$

Source: S. Seitz
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:
 \[
 \frac{d}{dx}(f * g) = f * \frac{d}{dx}g
 \]

- This saves us one operation:

![Graph showing f, d/dx g, and f * d/dx g](image)
Derivative of Gaussian filter

Which one finds horizontal/vertical edges?
Smoothed derivative removes noise, but blurs edge. Also finds edges at different “scales”.

Source: D. Forsyth
Implementation issues

- The gradient magnitude is large along a thick “trail” or “ridge,” so how do we identify the actual edge points?
- How do we link the edge points to form curves?

Source: D. Forsyth
Designing an edge detector

• Criteria for an “optimal” edge detector:
 • **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 • **Good localization**: the edges detected must be as close as possible to the true edges
 • **Single response**: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge

Source: L. Fei-Fei
Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization
- MATLAB: edge(image, ‘canny’)

Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
 • Thin multi-pixel wide “ridges” down to single pixel width

Source: D. Lowe, L. Fei-Fei
Non-maximum suppression

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth
Example

original image (Lena)
Example

norm of the gradient
Example

thresholding
Example

Non-maximum suppression
Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
 - Thin multi-pixel wide “ridges” down to single pixel width
4. Linking of edge points

Source: D. Lowe, L. Fei-Fei
Assume the marked point is an edge point. Then we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points (here either r or s).

Source: D. Forsyth
Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
 - Thin multi-pixel wide “ridges” down to single pixel width
4. Linking of edge points
 - Hysteresis thresholding: use a higher threshold to start edge curves and a lower threshold to continue them

Source: D. Lowe, L. Fei-Fei
Hysteresis thresholding

- Use a high threshold to start edge curves and a low threshold to continue them
 - Reduces drop-outs

Source: S. Seitz
Hysteresis thresholding

Original image

High threshold (strong edges)

Low threshold (weak edges)

Hysteresis threshold

Source: L. Fei-Fei
The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz
Edge detection is just the beginning…

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/