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Admin

• Assignment 3 due

• Assignment 4 out

– Deadline: Thursday 11th Dec

– THIS IS A HARD DEADLINE 
(I have to hand in grades on 12th)

• Course assessment forms



Overview

• Segmentation in Video

• Optical flow

• Motion Magnification



Video

• A video is a sequence of frames captured 

over time

• Now our image data is a function of space 

(x, y) and time (t)



Applications of segmentation to video

• Background subtraction
• A static camera is observing a scene

• Goal: separate the static background from the moving 

foreground



Applications of segmentation to video

• Background subtraction
• Form an initial background estimate

• For each frame:

– Update estimate using a moving average

– Subtract the background estimate from the frame 

– Label as foreground each pixel where the magnitude of the 

difference is greater than some threshold

– Use median filtering to ―clean up‖ the results



Applications of segmentation to video

• Background subtraction

• Shot boundary detection
• Commercial video is usually composed of shots or 

sequences showing the same objects or scene

• Goal: segment video into shots for summarization and 

browsing (each shot can be represented by a single 

keyframe in a user interface)

• Difference from background subtraction: the camera is not 

necessarily stationary



Applications of segmentation to video

• Background subtraction

• Shot boundary detection
• For each frame

– Compute the distance between the current frame and the 

previous one

» Pixel-by-pixel differences

» Differences of color histograms

» Block comparison

– If the distance is greater than some threshold, classify the 

frame as a shot boundary



Applications of segmentation to video

• Background subtraction

• Shot boundary detection

• Motion segmentation
• Segment the video into multiple coherently moving objects



Motion and perceptual organization

• Even ―impoverished‖ motion data can evoke 

a strong percept



Motion and perceptual organization

• Even ―impoverished‖ motion data can evoke 

a strong percept



Uses of motion

• Estimating 3D structure

• Segmenting objects based on motion cues

• Learning dynamical models

• Recognizing events and activities

• Improving video quality (motion stabilization)



Motion estimation techniques

• Direct methods
• Directly recover image motion at each pixel from spatio-temporal 

image brightness variations

• Dense motion fields, but sensitive to appearance variations

• Suitable for video and when image motion is small 

• Feature-based methods
• Extract visual features (corners, textured areas) and track them 

over multiple frames

• Sparse motion fields, but more robust tracking

• Suitable when image motion is large (10s of pixels)



Motion field

• The motion field is the projection of the 3D 

scene motion into the image



Motion field and parallax

• P(t) is a moving 3D point

• Velocity of scene point: 
V = dP/dt

• p(t) = (x(t),y(t)) is the 
projection of P in the 
image

• Apparent velocity v in 
the image: given by 
components vx = dx/dt
and vy = dy/dt

• These components are 
known as the motion 
field of the image
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Motion field and parallax
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To find image velocity v, differentiate 

p with respect to t (using quotient rule):
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Image motion is a function of both the 3D motion (V) and the

depth of the 3D point (Z)



Motion field and parallax

• Pure translation: V is constant everywhere
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Motion field and parallax

• Pure translation: V is constant everywhere

• Vz is nonzero: 
• Every motion vector points toward (or away from) v0, 

the vanishing point of the translation direction
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Motion field and parallax

• Pure translation: V is constant everywhere

• Vz is nonzero: 
• Every motion vector points toward (or away from) v0, 

the vanishing point of the translation direction

• Vz is zero: 
• Motion is parallel to the image plane, all the motion vectors 

are parallel

• The length of the motion vectors is inversely 

proportional to the depth Z
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Overview

• Segmentation in Video

• Optical flow

• Motion Magnification



Optical flow

Combination of slides from Rick Szeliski, Steve Seitz, 

Alyosha Efros and Bill Freeman and Fredo Durand



Motion estimation: Optical flow

Will start by estimating motion of each pixel separately

Then will consider motion of entire image 



Why estimate motion?

Lots of uses

• Track object behavior

• Correct for camera jitter (stabilization)

• Align images (mosaics)

• 3D shape reconstruction

• Special effects



Problem definition:  optical flow

How to estimate pixel motion from image H to image I?

• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy

• small motion:  points do not move very far

This is called the optical flow problem



Optical flow constraints (grayscale images)

Let‘s look at these constraints more closely

• brightness constancy:   Q:  what‘s the equation?

• small motion:  (u and v are less than 1 pixel)

– suppose we take the Taylor series expansion of I:

H(x,y)=I(x+u, y+v)



Optical flow equation

Combining these two equations

In the limit as u and v go to zero, this becomes exact



Optical flow equation

Q:  how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined

• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

2 unknowns, one equation

http://en.wikipedia.org/wiki/Barber's_pole

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html


Aperture problem



Aperture problem



Solving the aperture problem

How to get more equations for a pixel?

• Basic idea:  impose additional constraints

– most common is to assume that the flow field is smooth locally

– one method:  pretend the pixel‘s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!



RGB version

How to get more equations for a pixel?

• Basic idea:  impose additional constraints

– most common is to assume that the flow field is smooth locally

– one method:  pretend the pixel‘s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!

Note that RGB is not enough to disambiguate 

because R, G & B are correlated

Just provides better gradient



Lukas-Kanade flow

Prob:  we have more equations than unknowns

• The summations are over all pixels in the K x K window

• This technique was first proposed by Lukas & Kanade (1981)

Solution:  solve least squares problem

• minimum least squares solution given by solution (in d) of:



Aperture Problem and Normal Flow
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Combining Local Constraints
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Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues 1 and 2 of ATA should not be too small

• ATA should be well-conditioned

– 1/ 2 should not be too large ( 1 = larger eigenvalue)

ATA is solvable when there is no aperture problem



Eigenvectors of ATA

• Recall the Harris corner detector: M = ATA is 

the second moment matrix

• The eigenvectors and eigenvalues of M relate 

to edge direction and magnitude 
• The eigenvector associated with the larger eigenvalue points 

in the direction of fastest intensity change

• The other eigenvector is orthogonal to it



Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2

1 and 2 are small “Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues 

of the second moment matrix:



Local Patch Analysis



Edge

– large gradients, all the same

– large 1, small 2



Low texture region

– gradients have small magnitude

– small 1, small 2



High textured region

– gradients are different, large magnitudes

– large 1, large 2



Observation

This is a two image problem BUT
• Can measure sensitivity by just looking at one of the images!

• This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...



Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns



• Substituting into the brightness constancy 

equation:
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• Substituting into the brightness constancy 

equation:
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• Each pixel provides 1 linear constraint in 

6 unknowns
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• Least squares minimization:

Affine motion



Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

When our assumptions are violated

• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

– window size is too large

– what is the ideal window size?



Iterative Refinement

Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence



Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

estimate 

update

(using d for displacement here instead of u)



Optical Flow: Iterative Estimation

xx0

estimate 

update
Initial guess: 

Estimate:



Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

Initial guess: 

Estimate:

estimate 

update



Optical Flow: Iterative Estimation

xx0



Optical Flow: Iterative Estimation

Some Implementation Issues:

• Warping is not easy (ensure that errors in warping are 

smaller than the estimate refinement)

• Warp one image, take derivatives of the other so you don‘t 

need to re-compute the gradient after each iteration.

• Often useful to low-pass filter the images before motion 

estimation (for better derivative estimation, and linear 

approximations to image intensity)



Revisiting the small motion assumption

Is this motion small enough?

• Probably not—it‘s much larger than one pixel (2nd order terms dominate)

• How might we solve this problem?



Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 

images can have many pixels with the same intensity.

I.e., how do we know which ‗correspondence‘ is correct? 

nearest match is correct 

(no aliasing)

nearest match is incorrect 

(aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift



Reduce the resolution!



image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.



Beyond Translation

So far, our patch can only translate in (u,v)

What about other motion models?

• rotation, affine, perspective

Same thing but need to add an appropriate Jacobian 

See Szeliski‘s survey of Panorama stitching
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Feature-based methods (e.g. SIFT+Ransac+regression)

• Extract visual features (corners, textured areas) and track them over 
multiple frames

• Sparse motion fields, but possibly robust tracking

• Suitable especially when image motion is large (10-s of pixels)

Direct-methods (e.g. optical flow)

• Directly recover image motion from spatio-temporal image brightness 
variations

• Global motion parameters directly recovered without an intermediate 
feature motion calculation

• Dense motion fields, but more sensitive to appearance variations

• Suitable for video and when image motion is small (< 10 pixels)

Recap: Classes of Techniques



Block-based motion prediction

Break image up into square blocks

Estimate translation for each block

Use this to predict next frame, code difference  (MPEG-

2)



Retiming

http://www.realviz.com/retiming.htm

http://www.realviz.com/retiming.htm


Layered motion

• Break image sequence into ―layers‖ each of which 

has a coherent motion

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf


What are layers?

• Each layer is defined by an alpha mask and an affine 

motion model

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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Local flow 

estimates

Motion segmentation with an affine model

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf


Motion segmentation with an affine model
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(parameters a1, a2, a3 can be 

found by least squares)

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf


Motion segmentation with an affine model
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1D example

u(x,y)

Local flow estimate

Segmented estimate Line fitting

Equation of a plane

(parameters a1, a2, a3 can be 

found by least squares)

True flow

―Foreground‖

―Background‖

Occlusion

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf


How do we estimate the layers?

• Compute local flow in a coarse-to-fine fashion

• Obtain a set of initial affine motion hypotheses

• Divide the image into blocks and estimate affine motion 

parameters in each block by least squares

– Eliminate hypotheses with high residual error

• Perform k-means clustering on affine motion parameters

– Merge clusters that are close and retain the largest clusters to 

obtain a smaller set of hypotheses to describe all the motions in 

the scene

• Iterate until convergence:

• Assign each pixel to best hypothesis

– Pixels with high residual error remain unassigned

• Perform region filtering to enforce spatial constraints

• Re-estimate affine motions in each region

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf


Example result

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf


Overview

• Segmentation in Video

• Optical flow

• Motion Magnification



Motion Magnification

Ce Liu     Antonio Torralba     William T. Freeman

Frédo Durand     Edward H. Adelson

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology



Motion Microscopy

How can we see all the subtle motions in a video sequence?

Original sequence Magnified sequence



Naïve Approach

• Magnify the estimated optical flow field

• Rendering by warping

Original sequence Magnified by naïve approach



Layer-based Motion Magnification 

Processing Pipeline

Input raw video 

sequence

Video 

Registration

Feature point

tracking

Trajectory 

clustering

Dense optical 

flow interpolation

Layer 

segmentation

Magnification,

texture fill-in,

rendering

Output magnified 

video sequence

Layer-based motion analysis

Stationary camera, stationary background 

User 

interaction



Layer-based Motion Magnification 

Video Registration

Input raw video 

sequence

Video 

Registration

Feature point

tracking

Trajectory 

clustering

Dense optical 

flow interpolation

Layer 

segmentation

Magnification,

texture fill-in,

rendering

Output magnified 

video sequence

Layer-based motion analysisUser 

interaction

Stationary camera, stationary background 



Robust Video Registration

• Find feature points with Harris corner detector on the 

reference frame

• Brute force tracking feature points

• Select a set of robust feature points with inlier and outlier 

estimation (most from the rigid background)

• Warp each frame to the reference frame with a global 

affine transform



Motion Magnification Pipeline 

Feature Point Tracking

Input raw video 

sequence

Video 

Registration

Trajectory 

clustering

Dense optical 

flow interpolation

Layer 

segmentation

Magnification,

texture fill-in,

rendering

Output magnified 

video sequence

Layer-based motion analysisUser 

interaction

Feature point

tracking



Challenges (1)



Adaptive Region of Support

• Brute force search

• Learn adaptive region of support using expectation-

maximization (EM) algorithm

region of 
support

Confused by 

occlusion !

time

time



Challenges (2)



Trajectory Pruning

• Tracking with adaptive region of support

• Outlier detection and removal by interpolation

Nonsense at full occlusion!

time

inlier 

probabilit

y

Outliers



Without adaptive region of support and trajectory pruningWith adaptive region of support and trajectory pruning

Comparison 



Motion Magnification Pipeline 

Trajectory Clustering

Input raw video 

sequence

Video 

Registration

Feature point

tracking

Trajectory 

clustering

Dense optical 

flow interpolation

Layer 

segmentation

Magnification,

texture fill-in,

rendering

Output magnified 

video sequence

Layer-based motion analysisUser 

interaction



Normalized Complex 

Correlation

• The similarity metric should 

be independent of phase and 

magnitude

• Normalized complex 

correlation
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Spectral Clustering

Affinity matrix Clustering Reordering of affinity matrix

Two clustersTrajectory

T
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je
c
to

ry



Clustering Results



Motion Magnification Pipeline 

Dense Optical Flow Field

Input raw video 

sequence

Video 

Registration

Feature point

tracking

Trajectory 

clustering

Dense optical 

flow interpolation

Layer 

segmentation

Magnification,

texture fill-in,

rendering

Output magnified 

video sequence

Layer-based motion analysisUser 

interaction



Flow vectors of 

clustered sparse 

feature points

Dense optical flow 

field of cluster 1 

(leaves)

Dense optical flow 

field of cluster 2 

(swing)

From Sparse Feature Points 

to Dense Optical Flow Field

Cluster 1: leaves

Cluster 2: swing

• Interpolate dense 

optical flow field 

using locally 

weighted linear 

regression 



Motion Magnification Pipeline 

Layer Segmentation

Input raw video 

sequence

Video 

Registration

Feature point

tracking

Trajectory 

clustering

Dense optical 

flow interpolation

Magnification,

texture fill-in,

rendering

Output magnified 

video sequence

Layer-based motion analysisUser 

interaction

Layer 

segmentation



Motion Layer Assignment

• Assign each pixel to a motion cluster layer, using four cues:

– Motion likelihood—consistency of pixel‘s intensity if it moves with 

the motion of a given layer (dense optical flow field)

– Color likelihood—consistency of the color in a layer

– Spatial connectivity—adjacent pixels favored to belong the same 

group

– Temporal coherence—label assignment stays constant over time

• Energy minimization using graph cuts



Segmentation Results

• Two additional layers: static background and outlier



Motion Magnification Pipeline 

Editing and Rendering

Input raw video 

sequence

Video 

Registration

Feature point

tracking

Trajectory 

clustering

Dense optical 

flow interpolation

Layer 

segmentation

Magnification,

texture fill-in,

rendering

Output magnified 

video sequence

Layer-based motion analysisUser 

interaction



Layered Motion Representation 

for Motion Processing

Background Layer 1 Layer 2

Layer mask

Occluding layers

Appearance for each 

layer before texture 

filling-in

Appearance for each 

layer after texture 

filling-in

Appearance for each 

layer after user 

editing



Video

Motion Magnification

VIDEO_siggraph_2005.mp4


Is the Baby Breathing?



Are the Motions Real?
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Original Magnified



Are the Motions Real?

time

Original

time

Magnified

Original

Magnified



Applications

• Education

• Entertainment

• Mechanical engineering

• Medical diagnosis



Conclusion

• Motion magnification

– A motion microscopy technique

• Layer-based motion processing system

– Robust feature point tracking

– Reliable trajectory clustering

– Dense optical flow field interpolation

– Layer segmentation combining multiple cues



Thank you!

Motion Magnification

Ce Liu   Antonio Torralba   William T. Freeman   Frédo Durand   Edward H. Adelson

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology


