Part-based models

Lecture 10
Overview

• Representation
 – Location
 – Appearance
 – Generative interpretation

• Learning

• Distance transforms

• Other approaches using parts

• Felzenszwalb, Girshick, McAllester, Ramanan
 CVPR 2008
Overview

• Representation
 – Location
 – Appearance
 – Generative interpretation

• Learning

• Distance transforms

• Other approaches using parts

• Felzenszwalb, Girshick, McAllester, Ramanan
 CVPR 2008
Problem with bag-of-words

- All have equal probability for bag-of-words methods
- Location information is important
Model: Parts and Structure
Representation

- Object as set of parts
 - Generative representation

- Model:
 - Relative locations between parts
 - Appearance of part

- Issues:
 - How to model location
 - How to represent appearance
 - Sparse or dense (pixels or regions)
 - How to handle occlusion/clutter
History of Parts and Structure approaches

- Fischler & Elschlager 1973
- Yuille ‘91
- Brunelli & Poggio ‘93
- Lades, v.d. Malsburg et al. ‘93
- Cootes, Lanitis, Taylor et al. ‘95
- Amit & Geman ‘95, ‘99
- Felzenszwalb & Huttenlocher ’00, ’04
- Crandall & Huttenlocher ’05, ’06
- Leibe & Schiele ’03, ’04
- Many papers since 2000
The correspondence problem

- Model with P parts
- Image with N possible locations for each part
- N^P combinations!!
Sparse representation

+ Computationally tractable (10^5 pixels \rightarrow 10^1 -- 10^2 parts)
+ Generative representation of class
+ Avoid modeling global variability
+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes
Connectivity of parts

- Complexity is given by size of maximal clique in graph
- Consider a 3 part model
 - Each part has set of N possible locations in image
 - Location of parts 2 & 3 is independent, given location of L
 - Each part has an appearance term, independent between parts.
Different connectivity structures

O(N^6)
\[a) \text{ Constellation [13]}\]

O(N^2)
\[b) \text{ Star shape [9, 14]}\]

O(N^3)
\[c) \text{ k-fan (k = 2) [9]}\]

O(N^2)
\[d) \text{ Tree [12]}\]

O(N^2)
\[e) \text{ Bag of features [10, 21]}\]

Csurka '04
Vasconcelos '00

f) Hierarchy [4]
Bouchard & Triggs '05

g) Sparse flexible model
Carneiro & Lowe '06

from Sparse Flexible Models of Local Features
Gustavo Carneiro and David Lowe, ECCV 2006
How much does shape help?

- Crandall, Felzenszwalb, Huttenlocher CVPR’05
- Shape variance increases with increasing model complexity
- Do get some benefit from shape
Appearance representation

- SIFT

- Decision trees

- PCA

Figure from Winn & Shotton, CVPR '06

[Figure from Lepetit and Fua, CVPR 2005]
Overview

• Representation
 – Location
 – Appearance
 – Generative interpretation

• Learning

• Distance transforms

• Other approaches using parts

• Felzenszwalb, Girshick, McAllester, Ramanan CVPR 2008
Generative part-based models

Probabilistic model

\[P(\text{image} \mid \text{object}) = P(\text{appearance}, \text{shape} \mid \text{object}) \]

Part descriptors

Part locations

Candidate parts
Probabilistic model

\[P(\text{image} \mid \text{object}) = P(\text{appearance}, \text{shape} \mid \text{object}) \]
Probabilistic model

\[P(\text{image} | \text{object}) = P(\text{appearance, shape} | \text{object}) = \max_h P(\text{appearance} | h, \text{object}) \cdot p(\text{shape} | h, \text{object}) \cdot p(h | \text{object}) \]

\(h \): assignment of features to parts
Probabilistic model

\[P(\text{image} \mid \text{object}) = P(\text{appearance}, \text{shape} \mid \text{object}) \]

\[= \max_h P(\text{appearance} \mid h, \text{object}) p(\text{shape} \mid h, \text{object}) p(h \mid \text{object}) \]
Probabilistic model

\[P(\text{image} \mid \text{object}) = P(\text{appearance}, \text{shape} \mid \text{object}) = \max_h P(\text{appearance} \mid h, \text{object}) p(\text{shape} \mid h, \text{object}) p(h \mid \text{object}) \]
Overview

Representation

• Location
• Appearance
• Generative interpretation

Learning

Distance transforms

Other approaches using parts
Felzenszwalb, Girshick, McAllester, Ramanan
CVPR 2008
Learning procedure

- Find regions & their location & appearance
- Initialize model parameters
- Use EM and iterate to convergence:
 - E-step: Compute assignments for which regions belong to which part
 - M-step: Update model parameters
- Trying to maximize likelihood – consistency in shape & appearance
Example scheme, using EM for maximum likelihood learning

1. Current estimate of θ

2. Assign probabilities to constellations

3. Use probabilities as weights to re-estimate parameters. Example: μ

$$\text{Large P} \times \text{pdf} + \text{Small P} \times \text{pdf} + \ldots = \text{new estimate of } \mu$$
Learning Shape & Appearance simultaneously

Fergus et al. ‘03
Efficient search methods

- Interpretation tree (Grimson ’87)
 - Condition on assigned parts to give search regions for remaining ones
 - Branch & bound, A*
Results: Faces

Face shape model

Patch appearance model

Recognition results
Results: Motorbikes and airplanes
Parts and Structure demo

• Gaussian location model – star configuration
• Translation invariant only
 – Use 1st part as landmark
• Appearance model is template matching
• Manual training
 – User identifies correspondence on training images
• Recognition
 – Run template for each part over image
 – Get local maxima → set of possible locations for each part
 – Impose shape model - O(N^2P) cost
 – Score of each match is combination of shape model and template responses.
Demo images

- Sub-set of Caltech face dataset
- Caltech background images
A simple parts and structure object detector

ICCV 2005 short course on Recognizing and Learning Object Categories

An intuitive way to represent objects is as a collection of distinctive parts. Such schemes model both the relative positions of the parts as well as their appearance, giving a sparse representation that captures the essence of the object.

This simple demo illustrates the concepts behind many such ‘parts and structure’ approaches. For simplicity, training is manually guided with the user hand-chaining on the distinctive parts of a few training images. A simple model is then built for use in recognition. Two different recognition approaches are provided: one relying on feature points [1]; the other using the efficient methods of Pelecanos and Huttenlocher [2].

The code consists of Matlab scripts (which should run under both Windows and Linux). The Image Processing toolbox is required. The code is for teaching/research purposes only. If you find a bug, please email me at fergus@eecs.berkeley.edu.

Download

Download the code and datasets (24 Mb/byte)

Operation of code

To run the demos:
1. Unload the .m file into a new directory (e.g. from demonstrated/)

![Start menu with icons]
Demo (2)
Demo (3)
Demo (4)
Overview

• Representation
 – Location
 – Appearance
 – Generative interpretation

• Learning

• Distance transforms

• Other approaches using parts

• Felzenszwalb, Girshick, McAllester, Ramanan CVPR 2008
Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)

\[
Pr(P_{\text{tor}}, P_{\text{arm}}, \ldots | \text{Im}) \propto \prod_{i,j} Pr(P_i | P_j) \prod_i Pr(\text{Im}(P_i))
\]

part geometry

part appearance
Distance transforms

- Felzenszwalb and Huttenlocher ’00 & ’05
- Distance transforms
 - $O(N^2P) \rightarrow O(NP)$ for tree structured models
- How it works
 - Assume location model is Gaussian (i.e. e^{-d^2})
 - Consider a two part model with $\mu=0$, $\sigma=1$ on a 1-D image

Model

\[f(d) = -d^2 \]

Appearance log probability at x_i for part 2 = $A_2(x_i)$
Distance transforms 2

• For each position of landmark part, find best position for part 2
 – Finding most probable x_i is equivalent finding maximum over set of offset parabolas
 – Upper envelope computed in $O(N)$ rather than obvious $O(N^2)$ via distance transform (see Felzenszwalb and Huttenlocher ’05).
• Add $A_L(x)$ to upper envelope (offset by μ) to get overall probability map
Admin

- Need to move next week’s class to Tuesday 7pm.
Overview

• Representation
 – Location
 – Appearance
 – Generative interpretation

• Learning

• Distance transforms

• Other approaches using parts

• Felzenszwalb, Girshick, McAllester, Ramanan
 CVPR 2008
Deformable Template Matching

Berg et al. CVPR 2005

• Formulate problem as Integer Quadratic Programming
• $O(N^P)$ in general
• Use approximations that allow $P=50$ and $N=2550$ in <2 secs
Multiple views

- Full 3-D location model
- Mixture of 2-D models
 - Weber CVPR ‘00

Component 1

Component 2

Orientation Tuning

% Correct

0 20 40 60 80 100

angle in degrees

Frontal

Profile
Multiple view points

Hoiem, Rother, Winn, 3D LayoutCRF for Multi-View Object Class Recognition and Segmentation, CVPR ‘07

Thomas, Ferrari, Leibe, Tuytelaars, Schiele, and L. Van Gool. Towards Multi-View Object Class Detection, CVPR 06
Hierarchical Representations

- Pixels \rightarrow Pixel groupings \rightarrow Parts \rightarrow Object

- Multi-scale approach increases number of low-level features

- Amit and Geman ’98
- Ullman et al.
- Bouchard & Triggs ’05
- Zhu and Mumford
- Jin & Geman ‘06
- Zhu & Yuille ’07
- Fidler & Leonardis ‘07

Images from [Amit98]
Stochastic Grammar of Images

S.C. Zhu et al. and D. Mumford
animal head instantiated by tiger head

animal head instantiated by bear head

e.g. discontinuities, gradient

e.g. linelets, curvelets, T-junctions

e.g. animals, trees, rocks

e.g. contours, intermediate objects

e.g. discontinuities, gradient

Context and Hierarchy in a Probabilistic Image Model
Jin & Geman (2006)
A Hierarchical Compositional System for Rapid Object Detection

Able to learn parts at each level
Learning a Compositional Hierarchy of Object Structure

Fidler & Leonardis, CVPR’07; Fidler, Boben & Leonardis, CVPR 2008

The architecture

Parts model

Figure 7. The first row depicts the final parts comprising Layer II obtained for (a) Cliparts and (b) Airplanes. The variances of position distributions of parts, relative to the central part, are depicted in the middle. The feature probabilities are listed in the last row.

Figure 8. (a) Examples of Layer 3 parts, (b) variances of positions of the surrounding subparts
Implicit shape models

- Visual codebook is used to index votes for object position

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Implicit shape models

• Visual codebook is used to index votes for object position

B. Leibe, A. Leonardis, and B. Schiele, *Combined Object Categorization and Segmentation with an Implicit Shape Model*, ECCV Workshop on Statistical Learning in Computer Vision 2004
Implicit shape models: Details

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Overview

- Representation
 - Location
 - Appearance
 - Generative interpretation
- Learning
- Distance transforms
- Other approaches using parts
 - Felzenszwalb, Girshick, McAllester, Ramanan
 CVPR 2008
Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan
Histogram of Gradient (HOG) features

- Image is partitioned into 8x8 pixel blocks
- In each block we compute a histogram of gradient orientations
 - Invariant to changes in lighting, small deformations, etc.
- Compute features at different resolutions (pyramid)
HOG Filters

- Array of weights for features in subwindow of HOG pyramid
- Score is dot product of filter and feature vector

Score of F at position p is $F \cdot \phi(p, H)$

$\phi(p, H) =$ concatenation of HOG features from subwindow specified by p
There is much more background than objects
Start with random negatives and repeat:
1) Train a model
2) Harvest false positives to define “hard negatives”
Overview of our models

- Mixture of deformable part models
- Each component has global template + deformable parts
- Fully trained from bounding boxes alone
2 component bicycle model

root filters
coarse resolution

part filters
finer resolution

deformation models

Each component has a root filter F_0
and n part models (F_i, v_i, d_i)
Object hypothesis

$z = (p_0, \ldots, p_n)$

p_0 : location of root
p_1, \ldots, p_n : location of parts

Score is sum of filter scores minus deformation costs

Image pyramid

HOG feature pyramid

Multiscale model captures features at two-resolutions
Score of a hypothesis

\[
\text{score}(p_0, \ldots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)
\]

\[
\text{score}(z) = \beta \cdot \Psi(H, z)
\]

- concatenation filters and deformation parameters
- concatenation of HOG features and part displacement features
Matching

• Define an overall score for each root location

 - Based on best placement of parts

 \[\text{score}(p_0) = \max_{p_1, \ldots, p_n} \text{score}(p_0, \ldots, p_n). \]

• High scoring root locations define detections

 - “sliding window approach”

• Efficient computation: dynamic programming + generalized distance transforms (max-convolution)
Response of filter in l-th pyramid level

$$R_l(x, y) = F \cdot \phi(H, (x, y, l))$$

cross-correlation

Transformed response

$$D_l(x, y) = \max_{dx, dy} (R_l(x + dx, y + dy) - d_i \cdot (dx^2, dy^2))$$

max-convolution, computed in linear time (spreading, local max, etc)
Training

- Training data consists of images with labeled bounding boxes.
- Need to learn the model structure, filters and deformation costs.
Latent SVM (MI-SVM)

Classifiers that score an example x using

$$f_\beta(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$$

β are model parameters
z are latent values

Training data $D = (\langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle)$ $y_i \in \{-1, 1\}$

We would like to find β such that: $y_i f_\beta(x_i) > 0$

Minimize

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i f_\beta(x_i))$$
Latent SVM training

\[L_D(\beta) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i f_\beta(x_i)) \]

- Convex if we fix \(z \) for positive examples
- Optimization:
 - Initialize \(\beta \) and iterate:
 - Pick best \(z \) for each positive example
 - Optimize \(\beta \) via gradient descent with data-mining
Training algorithm, nested iterations

Fix “best” positive latent values for positives

- Harvest high scoring \((x,z)\) pairs from background images
- Update model using gradient descent
- Trow away \((x,z)\) pairs with low score

- Sequence of training rounds
 - Train root filters
 - Initialize parts from root
 - Train final model
Car model

- Root filters (coarse resolution)
- Part filters (finer resolution)
- Deformation models
Bottle model

root filters
coarse resolution

part filters
finer resolution

deformation models
Person detections

high scoring true positives

high scoring false positives
(not enough overlap)
Horse detections

high scoring true positives

high scoring false positives
Cat detections

high scoring true positives

high scoring false positives (not enough overlap)
Quantitative results

- 7 systems competed in the 2008 challenge
- Out of 20 classes we got:
 - First place in 7 classes
 - Second place in 8 classes
- Some statistics:
 - It takes \(\sim 2\) seconds to evaluate a model in one image
 - It takes \(\sim 4\) hours to train a model
 - MUCH faster than most systems.
Precision/Recall results on Bicycles 2008
Precision/Recall results on Person 2008

- UoCTTIUCI (42.0)
- LEAR_PlusClass (19.7)
- CASIA_Det (11.2)
- XRCE_Det (9.0)
- MPI_struct (2.5)
- Jena (2.0)
Summary

- Deformable models for object detection
 - Fast matching algorithms
 - Learning from weakly-labeled data
 - Leads to state-of-the-art results in PASCAL challenge

- Future work:
 - Hierarchical models
 - Visual grammars
 - AO* search (coarse-to-fine)
Discriminatively Trained Deformable Part Models

Over the past few years we have developed a complete learning-based system for detecting and localizing objects in images. Our system represents objects using features of deformable part models. These models are trained using a discriminative method that only requires bounding boxes for the objects in an image. The approach leads to efficient object detectors that achieve state of the art results on the PASCAL and INRIA person datasets.

At a high level our system can be characterized by the combination of:

- Strong low-level features based on histograms of oriented gradients (HOG).
- Efficient matching algorithms for deformable part-based models (pictorial structures).
- Discriminative learning with latent variables (latent SVM).

PASCAL VOC "Lifetime Achievement" Prize