Lecture 10
Discriminative models

Overview of section

- Object detection with classifiers
- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection
- Nearest-Neighbor methods
- Multiclass object detection
- Context

Discriminative methods

Object detection and recognition is formulated as a classification problem. The image is partitioned into a set of overlapping windows ... and a decision is taken at each window about if it contains a target object or not.

Where are the screens?

The image is partitioned into a set of overlapping windows

Bag of image patches

In some feature space

Discriminative vs. generative

- Generative model
 - (The artist)

- Discriminative model
 - (The lousy painter)

- Classification function

Discriminative methods

Nearest neighbor
Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005

Neural networks
LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines and Kernels
Guyon, Vapnik
Heisele, Sers, Poggio, 2001

Conditional Random Fields
McCallum, Freitag, Pereira 2000
Kumar, Hertbert 2003

Formulation

- Formulation: binary classification

 Features $x = X_1, X_2, \ldots, X_N$

 Labels $y = -1, +1, -1$

 Training data: each image patch is labeled as containing the object or background

- Classification function

 $\hat{y} = F(x)$

 Where $F(x)$ belongs to some family of functions

- Minimize misclassification error

 (Not that simple: we need some guarantees that there will be generalization)
Overview of section

- Object detection with classifiers
- **Boosting**
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection
- Nearest-Neighbor methods
- Multiclass object detection
- Context

A simple object detector with Boosting

- Toolbox for manipulating dataset
- Code and dataset
- Matlab code
- Gentle boosting
- Object detector using a part based model
- Dataset with cars and computer monitors

http://people.csail.mit.edu/torralba/iccv2005

Why boosting?

- A simple algorithm for learning robust classifiers
 - Freund & Shapire, 1995
 - Friedman, Hastie, Tibshirani, 1998
- Provides efficient algorithm for sparse visual feature selection
 - Tieu & Viola, 2000
 - Viola & Jones, 2003
- Easy to implement, not requires external optimization tools.

Boosting

- Defines a classifier using an additive model:
 \[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \ldots \]
- It is a sequential procedure:
- We need to define a family of weak classifiers
 \[f_k(x) \] from a family of weak classifiers

Each data point has a class label:
\[y_i \in \{+1, -1\} \]
and a weight:
\[w_i \neq 1 \]
Toy example

Weak learners from the family of lines

Each data point has a class label:
\[y_i = \begin{cases} +1 & \text{if } \text{positive} \\ -1 & \text{if } \text{negative} \end{cases} \]
and a weight:
\[w_i \]

\[h \approx \text{error} = 0.5 \] it is at chance

This one seems to be the best

This is a **weak classifier**: it performs slightly better than chance.

We set a new problem for which the previous weak classifier performs at chance again

We update the weights:
\[w_i \leftarrow w_i \exp(y_i H_i) \]
The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

Different cost functions and minimization algorithms result in various flavors of Boosting.

In this demo, I will use gentleBoosting: it is simple to implement and numerically stable.

Overview of section

- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection

Boosting fits the additive model

\[F(x) = f_1(x) + f_2(x) + f_3(x) + \ldots \]

by minimizing the exponential loss

\[J(F) = \sum_{t=1}^{N} e^{-y_t F(x_t)} \]

The exponential loss is a differentiable upper bound to the misclassification error.

Exponential loss

\[J = \sum_{t=1}^{N} \left[y_t - F(x_t) \right]^2 \]

\[J = \sum_{t=1}^{N} e^{-y_t F(x_t)} \]

We chose $f_m(x)$ that minimizes the cost:

$$J(F + f_m) = \sum_{t=1}^{N} e^{-y(F(x_t)+f_m(x_t))}$$

Instead of doing exact optimization, gentle Boosting minimizes a Taylor approximation of the error:

$$J(F) \approx \sum_{t=1}^{N} e^{-yF(x_t)}(y_t - f_m(x_t))^2$$

At each iteration we need to solve a weighted least squares problem.

1. **Weak classifiers**
 - The input is a set of weighted training samples (x,y,w)
 - Regression stumps: simple but commonly used in object detection.
 $$f_m(x) = \alpha[x_k < \theta] + b[x_k \geq \theta]$$
 Four parameters: $[\alpha, b, \theta, k]$.

2. **GentleBoosting.m**

3. **Demo GentleBoosting**
 - Demo using Gentle boost and stumps with hand selected 2D data:
     ```matlab
     > demoGentleBoost.m
     ```

4. **Flavors of boosting**
 - AdaBoost (Freund and Shapire, 1995)
 - Real AdaBoost (Friedman et al, 1998)
 - LogitBoost (Friedman et al, 1998)
 - Gentle AdaBoost (Friedman et al, 1998)
 - BrownBoosting (Freund, 2000)
 - FloatBoost (Li et al, 2002)
 - ...
From images to features: Weak detectors

We will now define a family of visual features that can be used as weak classifiers ("weak detectors")

\[h_i(I, x, y) \]

Takes image as input and the output is binary response. The output is a weak detector.

Weak detectors

Textures of textures

Tieu and Viola, CVPR 2000

Every combination of three filters generates a different feature

This gives thousands of features. Boosting selects a sparse subset, so computations on test time are very efficient. Boosting also avoids overfitting to some extend.

Weak detectors

Haar filters and integral image

Viola and Jones, ICCV 2001

The average intensity in the block is computed with four sums independently of the block size.

Weak detectors

Part based: similar to part-based generative models. We create weak detectors by using parts and voting for the object center location

Car model
Screen model

These features are used for the detector on the course web site.

Other weak detectors:
- Carmichael, Hebert 2004
- Yuille, Snow, Nitzbert, 1998
- Amit, Geman 1998
- Papageorgiou, Poggio, 2000
- Heisele, Serre, Poggio, 2001
- Agarwal, Awan, Roth, 2004
- Schneiderman, Kanade 2004
- …
Weak detectors

First we collect a set of part templates from a set of training objects.
Vidal-Naquet, Ullman (2003)

We now define a family of "weak detectors" as:

\[h_i(f, x, y) = f \cdot g_i \]

Better than chance

Training

First we evaluate all the N features on all the training images.

Then, we sample the feature outputs on the object center and at random locations in the background:

Representation and object model

Selected features for the screen detector

Lousy painter

Representation and object model

Selected features for the car detector
Overview of section

- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection
Example: screen detection

Adding features

Final classification

Strong classifier at iteration 10

Strong classifier at iteration 200

Demo

Demo of screen and car detectors using parts, Gentle boost, and stumps:
> runDetector.m

Probabilistic interpretation

• Generative model
\[p(\text{features}, \text{object class}) \]

• Discriminative (Boosting) model.
Boosting is fitting an additive logistic regression model:
\[p(\text{object class} | \text{features}) = \frac{1}{1 + e^{-\sum h_i(t,x,o)}} \]

It can be a set of arbitrary functions of the image

This provides a great flexibility, difficult to beat by current generative models. But also there is the danger of not understanding what are they really doing.

Weak detectors

• Generative model
\[p(\text{features}, \text{object class}) \]

• Discriminative (Boosting) model.
Boosting is fitting an additive logistic regression model:
\[p(\text{object class} | \text{features}) = \frac{1}{1 + e^{-\sum h_i(t,x,o)}} \]

Object models

• Invariance: search strategy

• Part based

Here, invariance in translation and scale is achieved by the search strategy: the classifier is evaluated at all locations (by translating the image) and at all scales (by scaling the image in small steps).

The search cost can be reduced using a cascade.
Cascade of classifiers
Fleuret and Geman 2001, Viola and Jones 2001

We want the complexity of the 3 features classifier with the performance of the 100 features classifier.

Overview of section
- Object detection with classifiers
- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection
- Nearest-Neighbor methods
- Multiclass object detection
- Context

Parametric models

Non-parametric Approach

Non-parametric Approach

Nearest Neighbors in 80 million images
Differing density of images

Neighbors with Different Metrics

Examples

Normalized correlation scores

How Many Images Are There?

Note: $D_i = D_{SSD}$

Person Recognition

- 23% of all images in dataset contain people
- Wide range of poses: not just frontal faces

Locality Sensitive Hashing

- Take random projections of data
- Quantize each projection with few bits

No learning involved
Learn Hash Codes using Boosting

- Modified form of BoostSSC
 [Shaknarovich, Viola & Darrell, 2003]
- **Positive** examples are pairs of similar images
- **Negative** examples are pairs of unrelated images

Learn threshold & dimension for each bit (weak classifier)

Overview of section
- Object detection with classifiers
- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection
- Nearest-Neighbor methods
- **Multiclass object detection**
- Context

Fast Example-Based Pose Estimation
Shaknarovich, Viola & Darrell, 2003

Input: Desired output:

- **Positive**
- **Negative**

Single category object detection
and the
“Head in the coffee beans problem”

“Head in the coffee beans problem”

Can you find the head in this image?

Multiclass object detection

- Studying the multiclass problem, we can build detectors that are:
 - more efficient,
 - that generalize better, and
 - more robust
- Multiclass object detection benefits from:
 - Contextual relationships between objects
 - Transfer between classes by sharing features
Shared features

• Is learning the object class 1000 easier than learning the first?

• Can we transfer knowledge from one object to another?

• Are the shared properties interesting by themselves?

Sharing invariances

"Knowledge is transferred between tasks via a learned model of the invariances of the domain: object recognition is invariant to rotation, translation, scaling, lighting, ... These invariances are common to all object recognition tasks".

Models of object recognition

Sharing in constellation models

Pictorial Structures

Fischler & Elschlager, IEEE Trans. Comp. 1973

Constellation Model

Burl, Liung, Perona, 1996; Weber, Welling, Perona, 2000

SVM Detectors

Heisele, Poggio, et. al., NIPS 2001

Model-Guided Segmentation

Aub. Ren, Efros, & Malik. CVPR 2004
Variational EM
Fei-Fei, Fergus, & Perona. ICCV 2003

Random initialization

E-Step

M-Step

new θ’s

new estimate of p(θ|train)

prior knowledge of p(θ)

(Attias, Hinton, Beal, etc.)

Slide from Fei-Fei Li

E-Step

Reversible initialization

Variational EM
new θ’s

Fei-Fei, Fergus, & Perona, ICCV 2003

M-Step

(Attias, Hinton, Beal, etc.)

Slide from Fei-Fei Li

Reusable Parts
Krempp, Geman, & Amit “Sequential Learning of Reusable Parts for Object Detection”. TR 2002

Goal: Look for a vocabulary of edges that reduces the number of features.

Examples of reused parts

Number of edges

Number of classes

Sharing patches

• Bart and Ullman, 2004

For a new class, use only features similar to features that were good for other classes:

Proposed Dog features

Multiclass boosting

• Adaboost.MH (Shapire & Singer, 2000)

• Error correcting output codes (Dieterich & Bakiri, 1995; …)

• Lk-TreeBoost (Friedman, 2001)

• …

Shared features

• Independent binary classifiers:

 Screen detector
 Car detector
 Face detector

• Binary classifiers that share features:

 Screen detector
 Car detector
 Face detector

50 training samples/class
29 object classes
2000 entries in the dictionary

Results averaged on 20 runs
Error bars = 80% interval

Krempp, Geman, & Amit, 2002
Torralba, Murphy, Freeman. CVPR 2004, PAMI 2007

Krempp, Geman, & Amit, 2002
Torralba, Murphy, Freeman. CVPR 2004

Examples of reused parts

Figure 1. Feature adaptation. (a) Top row: Features extracted from multiple views of cars (left) and horses (right) (b) Middle row: features adapted to cars by averaging features extracted from views of cars and horses. (c) Bottom row: features adapted to cars by enforcing that the proposed multigression model neuron is 0, even when a horse is detected.
Generalization as a function of object similarities

- 12 unrelated object classes
- 12 viewpoints

Area under ROC
K = 2.1
K = 4.8

Number of training samples per class

Torralba, Murphy, Freeman. CVPR 2004. PAMI 2007

Some references on multiclass

- Caruana 1997
- Schapire, Singer, 2000
- Thrun, Pratt 1997
- Krempp, Geman, Amit, 2002
- E.L. Miller, Matsakis, Viola, 2000
- Mahamud, Hebert, Lafferty, 2001
- Fink 2004
- LeCun, Huang, Bottou, 2004
- Holub, Welling, Perona, 2005
- ...

Overview of section

- Object detection with classifiers
- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection
- Nearest-Neighbor methods
- Multiclass object detection
- Context

Context
What do you think are the hidden objects?
1
2

Even without local object models, we can make reasonable detections!
Global scene representations

Sivic, Russell, Freeman, Zisserman, ICCV 2005
Fei-Fei and Perona, CVPR 2005
M. Gorkani, R. Picard, ICPR 1994
A. Oliva, A. Torralba, IJCV 2001

Spatial structure is important in order to provide context for object localization

Non localized textures

Bosch, Zisserman, Munoz, ECCV 2006
S. Lazebnik, et al, CVPR 2006
Walker, Malik. Vision Research 2004

Context: relationships between objects

Detect first simple objects (reliable detectors) that provide strong contextual constraints to the target (screen -> keyboard -> mouse)

Context

- Murphy, Torralba & Freeman (NIPS 03)
 Use global context to predict presence and location of objects

- Fink & Perona (NIPS 03)
 Use output of boosting from other objects at previous iterations as input into boosting for this iteration

Context

- Hoiem, Efros, Hebert (ICCV 05)
 Boosting used for combining local and contextual features:

- 3d Scene Context

[Hoiem, Efros, Hebert ICCV 2005]
Context (generative model)

- Sudderth, Torralba, Freeman, Willsky (ICCV 2005).

Some references on context

With a mixture of generative and discriminative approaches

- Strat & Fischler (PAMI 91)
- Torralba & Sinha (ICCV 01),
- Torralba (IJCV 03)
- Fink & Perona (NIPS 03)
- Murphy, Torralba & Freeman (NIPS 03)
- Kumar and M. Hebert (NIPS 04)
- Carbonetto, Freitas & Barnard (ECCV 04)
- He, Zemel & Carreira-Perpinan (CVPR 04)
- Sudderth, Torralba, Freeman, Wilsky (ICCV 05)
- Hoiem, Efros, Hebert (ICCV 05)
- ...