
Computer Vision
CSCI-UA.0480-002

Assignment 3.

April 4, 2013

Introduction

This assignment looks at face and object recognition. Unfortunately, there
are not too many textbooks for this area but Szeliski’s book (link on course
webpage) may be of some use.

The assignment contains two questions:

1. Face Recognition – using the Eigenfaces approach described in class.
[50 points].

2. Scene classification – using the Bag of Words representation with a
Nearest Neighbor classifier. [50 points].

Requirements

You should perform this assignment in Matlab. If you are not familiar with
Matlab, I suggest you go through some of the tutorials posted on the course
web page.

This assignment is due on Tuesday April 23rd by the start class (11am).
The late policy is posted on the course webpage, so please start early and
don’t be afraid to ask for help.

The TA for the class is Pravish Sood (pravish.sood@nyu.edu). Please
email him for help and assistance, or come to office hours (Thursday 12.30-
1.30pm). If you think the assignment is not clear, or there is an error/bug
in it, please contact the TA or myself.

1



CSCI-UA.0480-002 2

You are allowed to collaborate with other students in terms discussing
ideas and possible solutions. However you code up the solution yourself,
i.e. you must write your own code. Copying your friends code and just
changing all the names of the variables is not allowed! You are not allowed
to use solutions from similar assignments in courses from other institutions,
or those found elsewhere on the web.

Your solutions should be emailed to me (fergus@cs.nyu.edu) and the TA
(pravish.sood@nyu.edu) as a single zip file, with the filename: lastname firstname a3.zip.
This zip file should contain: (i) a PDF file lastname firstname a3.pdf

with your report, showing output images for each part of the assignment
and explanatory text, where appropriate; (ii) the source code used to gen-
erate the images (with code comments), along with a master script (named
master a3.m) that runs the code for each part of the assignment in turn.

1 Face Recognition

In this assignment the goal is to implement a nearest-neighbor recognition
algorithm, using the Eigenface representation, presented in Lecture 15. It is
also covered on page 589 of Szeliski’s book.

Download the faces.zip file from the course webpage. This contains two
Matlab files: ORL 32x32.mat and train test orl.mat. The former contains
400 faces from the Olivetti Face database, each being 32 by 32 pixels grayscale
(in variable fea) and the label of each image (in variable gnd). The latter
contains a set of indices to be used for training and testing.

Open Matlab and load the two files into memory. You can view the files
with the following command: figure; montage(reshape(fea’/255,[32 32

1 400]));. To implement the algorithm, your code should be structured as
follows:

1. Split fea and gnd into training and test sets using the indices in
trainIdx and testIdx. Scale the images so that the intensities range
from 0 to 1.

2. Center the training data, so that the per-pixel mean of across all images
is zero.

3. Form C, the 1024 by 1024 covariance matrix.



CSCI-UA.0480-002 3

4. Compute the first K principal components v of C using the eigs func-
tion, e.g. [v,d]=eigs(C,K);.

5. Plot out these principal components. They should look like the Eigen-
faces in the slides. The reshape command may be useful.

6. Now project the centered training data into the PCA space using the
principal components, yielding descriptors p.

7. To get a sense of what the model has captured, form the reconstruction
of the face by projecting back into the image space using p and v. Do
not forget to add the mean face back on again.

8. Now center and project the test data into the PCA space, giving de-
scriptors q.

9. Perform a nearest-neighbor search for each of the descriptors in q to find
the closest Euclidean descriptor in p. Assign the test image belonging
to the query descriptor the label from this closest training image.

10. Measure the fraction of test images correctly classified.

11. Now repeat the whole scheme, varying the value of K. Plot a graph of
the classification rate as a function of K.

You should turn in: your Matlab code, plot of classification rate vs K, a
plot of the reconstructed training faces for K = 20.

For bonus points, extract some 32 by 32 patches from non-face images
and try projecting them into face space with different values of K. Compare
the reconstruction error to that of face images. Is there some threshold you
can set that enables you to reliably tell if an image is a face or not?

2 Scene Classification

This part of the assignment gets you to implement part of a Bag-of-Visual-
Words classifier, applied to 4 different scene classes (1=”coast”, 2=”high-
way”, 3=”street” and 4=”city”).

Download the file: qu2 data.zip from the course webpage. This is a
large file (∼800Mb), so may take some time. This file contains 800 images



CSCI-UA.0480-002 4

of natural scenes (200 for each of the 4 classes). It also contains the pre-
computed SIFT descriptors for each image, extracted on a dense grid (which
is why the files are large). Finally, there are two skeleton code templates
example vq sift.m and example classify nn.m.

Within the zip is the file qu2 data.mat which contains:

• The disjoint training and test image indices (TRAIN IND and TEST IND)

• Class labels (1 . . . 4) for the training and test examples (TRAIN LABELS

and TEST LABELS).

• A pre-computed dictionary for 200 visual words in the variable dictionary

The overall BoW pipeline consists of several stages: (i) extract dense
SIFT; (ii) form visual word dictionary from training images; (iii) vector-
quantize (VQ) SIFT descriptors to make BoW histograms for each image;
(iv) train classifier on training set histograms and (v) test classifier on test
set histograms.

The first two stages of this pipeline have already been done for you, and
you should implement the remaining three stages.

2.1 Vector Quantization

You should write code that takes in the pre-computed SIFT file for each
image and computes a Bag-of-Words histogram. To do this, each SIFT de-
scriptor is assigned to the closest dictionary element and the corresponding
histogram bin incremented by 1. The skeleton code example vq sift.m lays
out this process in detail. You should fill in the blank sections of this file.
The resulting output variable HISTOGRAMS should be (Number of images)
× (Dictionary size). Your report should contain an image of this matrix,
display using figure; imagesc(HISTOGRAMS).

2.2 Bag-of-Words Classifier

To keep things simple, we will use a Nearest-Neighbor classifier that doesn’t
require any training as such, thus you only need to implement stage (v) of
the pipeline above.

Working from the skeleton code in example classify nn.m, you should
take each test image histogram (computed above) and classify it by finding



CSCI-UA.0480-002 5

its (K = 5) nearest-neighbors and using their labels to vote on the predicted
label.

Your function should output the fraction of the test images that whose
label was predicted correctly.

For bonus marks, try to improve the performance of the classifier by using
some of the different distance measures that were covered in the lectures.


