
Computer Vision

CSCI-UA.0480-002

Assignment 2.

March 5, 2013

Introduction

This assignment contains a number of problems in geometric computer vi-
sion. The course slides contains all the information needed to solve the four
problems:

1. Epipolar geometry – using epipolar constraints in a two camera system.
[35 points].

2. Estimating Camera Parameters – using a set of 3D world points and
their 2D image locations, estimate the projection matrix P of a camera.
[35 points].

3. Structure from Motion – infer the 3D structure of an object, given a
set of images of the object. [35 points].

4. Camera Calibration from a Set of Images – a practical exercise that
asks you to use a standard calibration toolbox to estimate the camera
parameters. [15 points].

Requirements

You should perform this assignment in Matlab, apart from Question 1 which
requires just pen and paper.

1

CSCI-UA.0480-002 2

This assignment is due on Tuesday April 2nd by the start class (11am).
The late policy is posted on the course webpage. You are strongly encouraged
to start the assignment early and don’t be afraid to ask for help.

The TA for the class is Pravish Sood (pravish.sood@nyu.edu). Please
email him for help and assistance, or come to office hours (Thursday 12.30-
1.30pm). If you think the assignment is not clear, or there is an error/bug
in it, please contact the TA or myself.

You are allowed to collaborate with other students in terms discussing
ideas and possible solutions. However you code up the solution yourself,
i.e. you must write your own code. Copying your friends code and just
changing all the names of the variables is not allowed! You are not allowed
to use solutions from similar assignments in courses from other institutions,
or those found elsewhere on the web.

Your solutions should be emailed to me (fergus@cs.nyu.edu) and the TA
(pravish.sood@nyu.edu) as a single zip file, with the filename: lastname firstname a2.zip.
This zip file should contain: (i) a PDF file lastname firstname a2.pdf

with your report, showing output images for each part of the assignment
and explanatory text, where appropriate; (ii) the source code used to gen-
erate the images (with code comments), along with a master script (named
master a2.m) that runs the code for each part of the assignment in turn.

1 Epipolar geometry

Figure 1 shows a pair of cameras each with a focal length of unity, whose
principal axes meet at a point. The y-axes of both cameras are parallel and
point out of the page. Assume that the left camera (center CL) lies at the
origin of the world coordinate system. Please answer the following questions
about the figure in your report.

1. Write down the camera matrices for this configuration and verify that
the fundamental matrix F is:

0 −d/2 0

−d/2 0 −
√

3d/2

0
√

3d/2 0

Hint: Take care when constructing P ′, the projection matrix of the right
camera. Do it by deriving X ′ in terms of X, via a sequence of stages: (i)

CSCI-UA.0480-002 3

a translation of the coordinate frame from C to the intersection point;
(ii) a rotation of the coordinate frame about the intersection point and
(iii) another translation to C ′.

2. Compute the epipolar line in the right image corresponding to the
homogeneous point x = (1, 1, 1)T in the left from l = Fx.

3. Using figure 1 determine where potential correspondences to the left
image point (x, y) = (0, 0) can lie in the right image.

4. Describe the rotation and translatation that should be applied to the
left camera that would make the epipolar lines in the two images hori-
zontal.

2 Estimating the camera parameters

Here the goal is the compute the 3x4 camera matrix P describing a pin-
hole camera given the coordinates of 10 world points and their corresponding
image projections. Then you will decompose P into the intrinsic and extrinsic
parameters. You should write a simple Matlab script that works through the
stages below, printing out the important terms.

Download from the course webpage the two ASCII files, world.txt and
image.txt. The first file contains the (X,Y,Z) values of 10 world points. The
second file contains the (x,y) projections of those 10 points.

(a) Find the 3x4 matrix P that projects the world points X to the 10
image points x. This should be done in the following steps:

• Since P is a homogeneous matrix, the world and image points (which
are 3 and 2-D respectively), need to be converted into homogeneous
points by concatenating a 1 to each of them (thus becoming 4 and 3-D
respectively).

• We now note that x × PX = 0, irrespective of the scale ambiguity.
This allows us to setup a series of linear equations of the form:

0T −wiX
T
i yiX

T
i

wiX
T
i 0T −xiX

T
i

−yiX
T
i xiX

T
i 0T

P 1

P 2

P 3

 = 0 (1)

CSCI-UA.0480-002 4

Figure 1: Figure for question 1

CSCI-UA.0480-002 5

for each correspondence xi ↔ Xi, where xi = (xi, yi, wi)
T , wi being the

homogeneous coordinate, and P j is the jth row of P . But since the 3rd
row is a linear combination of the first two, we need only consider the
first two rows for each correspondence i. Thus, you should form a 20
by 12 matrix A, each of the 10 correspondences contributing two rows.
This yields Ap = 0, p being the vector containing the entries of matrix
P .

• To solve for p, we need to impose an extra constraint to avoid the trivial
solution p = 0. One simple one is to use ||p||2 = 1. This constraint
is implicitly imposed when we compute the SVD of A. The value of
p that minimizes Ap subject to ||p||2 = 1 is given by the eigenvector
corresponding to the smallest singular value of A. To find this, compute
the SVD of A, picking this eigenvector and reshaping it into a 3 by 4
matrix P .

• Verify your answer by re-projecting the world points X and checking
that they are close to x.

(b) Now we have P , we can compute the world coordinates of the pro-
jection center of the camera C. Note that PC = 0, thus C lies in the null
space of P , which can again be found with an SVD (the matlab command
is svd). Compute the SVD of P and pick the vector corresponding to this
null-space. Finally, convert it back to homogeneous coordinates and to yield
the (X,Y,Z) coordinates. Your report should contain the matrix P and the
value of C.

3 Structure from Motion

In this section you will code up an affine structure from motion algorithm,
as described in the slides of lecture 6. For more details, you can consult page
437 of the Hartley & Zisserman book.

First download the file sfm points.mat from the course webpage. This
contains a 2 by 600 by 10 matrix, holding the x, y coordinates of 600 world
points projected onto the image plane of the camera in 10 different locations.
The points correspond, that is image points(:,1,:) is the projection of the
same 3D world point in the 10 frames. The points have been drawn randomly
to lie on the surface of a transparent 3D cube, which does not move between

CSCI-UA.0480-002 6

frames (i.e. the object is static, only the camera moves). Try plotting out
several frames and the cube shaped structure should be apparent (the plot3
command may be useful).

To simplify matters, we will only attempt an affine reconstruction, thus
the projection matrix of each camera i will have following form:

P i =

p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1

 =

(

M i ti

0 1

)

(2)

where M i is a 2 by 3 matrix and ti is a 2 by 1 translation vector.
So given m = 10 views and n = 600 points, having image locations xi

j,
where j = 1, . . . , n, i = 1, . . . ,m, we want to determine the affine camera
matrices M i, ti and 3D points Xj so that we minimize the reconstruction
error:

∑

ij

||xi
j − (M iXj + ti)||2 (3)

We do this in the following stages:

• Compute the translations ti directly by computing the centroid of point
in each image i.

• Center the points in each image by subtracting off the centroid, so that
the points have zero mean

• Construct the 2m by n measurement matrix W from the centered data.

• Perform an SVD decomposition of W into UDV T .

• The camera locations M i can be obtained from the first three columns
of U multiplied by D(1 : 3, 1 : 3), the first three singular values.

• The 3D world point locations are the first three columns of V .

• You can verify your answer by plotting the 3D world points out using
the plot3 command. The rotate3d command will let you rotate the
plot.

You should write a script to implement the steps above. The script should
print out the M i and ti for the first camera and also the 3D coordinates of
the first 10 world points. Cut and paste these into your report.

CSCI-UA.0480-002 7

4 Camera Calibration from a Set of Images

Practical methods for camera calibration use a combination of techniques
that draw of the methods you have just used in the previous two questions.
In Question 2, the 3D locations of the world points was specified, but this
hard to do in practice. Therefore, a common solution is to capture multiple
images of a calibration target and use Structure from Motion methods to work
out the parameters of the camera, as well as the position of the calibration
target in each frame.

This question asks you to download and run a standard toolbox that
integrates these tasks, and is widely used in practice by many people who
need to calibrate cameras. It is a straightforward exercise, but shows you
how you would calibrate a camera in practice.

The methods inside the toolbox are very similar to those of Question 3,
except that they handle projective cameras1 (as opposed to the affine cameras
from Qu. 3). We will be using the Camera Calibration Toolbox written by
Jean-Yves Bouguet, which can be found at http://www.vision.caltech.

edu/bouguetj/calib_doc.

• Download the toolbox from http://www.vision.caltech.edu/bouguetj/

calib_doc/download/toolbox_calib.zip. Unzip it into some direc-
tory, for example, /home/username/matlab/toolbox calib.

• In Matlab, add this directory to the set that Matlab can see with the
command: addpath(’/home/username/matlab/toolbox calib’).

• Download the calibration images part4.zip from the course webpage
and unzip them into your assignment directory.

• Start the calibration tool with the command: calibgui. A window
should pop up. Select the Standard option. This should bring up an
array of buttons that we will be working through. Documentation for
using this tool can be found at:
http://www.vision.caltech.edu/bouguetj/calib doc/htmls/example.html.

• Click on the Image Names button and follow the instructions to load
all 20 images into memory.

1In a projective camera, typically the 3rd row of P
i will have non-zero elements for the

first three elements.

CSCI-UA.0480-002 8

• Click on the Extract grid corners button and follow the instructions
to load the images into memory. Use default settings. The grid squares
at 27.5mm on each side. Follow the directions given in the webpage
above, carefully clicking on the four corners of the checkerboard in
the order top-left; top-right; bottom-right and bottom-left (i.e. short-
side,long-side,short-side). In some of the images, the chart is rotated
to landscape format. In these case, you should still go short-side,long-
side,short-side, thus the click ordering may change.

• Click on the Calibration button to run the calibration code. If you
have clicked carefully, the pixel error should be less than 1 pixel. Cut
and paste the calibration parameters (after optimization) into your re-
port. To show that you understand the role of each of the parameters,
write down the 3x3 instrinsic parameter matrix using the values pro-
duced. Ignore the skew and distortion values.

• Click on the Show Extrinsic button to get a visualization of the
position of the chart relative to the camera for each frame.

