

Project Admin

Someone from every team must come and see me!

If you chose:

- Depth Prediction
- Neural Style Transfer
- Image Captioning

I will outline what project involves IMMEDIATELY after this class

For other projects, come and see me during office hours.

Object Detection

Image Classification
(what?)

Object Detection
(what + where?)

Detection with ConvNets

.....

- So far, all about classification
- What about localizing objects within the scene?

Groundtruth:

tv or monitor
tv or monitor (2)
tv or monitor (3)
person
remote control
remote control (2)

Two General Approaches

.....

1. Examine every position / scale
 - E.g. Overfeat: Integrated recognition, localization and detection using convolutional networks, Sermanet et al., ICLR 2014
2. Use some kind of proposal mechanism to attend to a set of possible regions
 - E.g. Region-CNN [Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]

Sliding Window with ConvNet

Sliding Window with ConvNet

Sliding Window with ConvNet

No need to compute two separate windows --- Just one big input window

Multi-Scale Sliding Window ConvNet

Feature
Extractor

Feature
Maps

256

256

256

256

Classifier

Class
Maps

$C=1000$

$C=1000$

$C=1000$

$C=1000$

Multi-Scale Sliding Window ConvNet

Feature
Maps

Feature
Extractor

256

256

256

256

Bounding Box
Maps

4

4

4

Regression
Network

OverFeat – Output before NMS

Overfeat Detection Results

[Sermanet et al. ICLR 2014]

Top predictions:
trombone (confidence 26.8)
oboe (confidence 17.5)
oboe (confidence 11.5)

ILSVRC2012_val_00000614.jpeg

Groundtruth:
person
hat with a wide brim
hat with a wide brim (2)
hat with a wide brim (3)
oboe
oboe (2)
saxophone
trombone
person (2)
person (3)
person (4)

ILSVRC2012_val_00000623.jpeg

Top predictions:
watercraft (confidence 72.2)
watercraft (confidence 2.1)

ILSVRC2012_val_00000623.jpeg

Groundtruth:
watercraft
watercraft (2)

Top predictions:
microwave (confidence 5.6)
refrigerator (confidence 2.5)

ILSVRC2012_val_00000519.jpeg

Groundtruth:
bowl
microwave

Top predictions:
tennis ball (confidence 3.5)
banana (confidence 2.4)
banana (confidence 2.1)
hotdog (confidence 2.0)
banana (confidence 1.9)

ILSVRC2012_val_00000320.jpeg

Groundtruth:
strawberry
strawberry (2)
strawberry (3)
strawberry (4)
strawberry (5)
strawberry (6)
strawberry (7)
strawberry (8)
strawberry (9)
strawberry (10)
apple
apple (2)
apple (3)

Two General Approaches

.....

1. Examine every position / scale
 - E.g. Overfeat: Integrated recognition, localization and detection using convolutional networks, Sermanet et al., ICLR 2014
2. Use some kind of proposal mechanism to attend to a set of possible regions
 - E.g. Region-CNN [Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]

Object Detection: R-CNN

figure credit: R. Girshick et al.

input image

region proposals
~2,000

1 CNN for each region

classify regions

Region-based **CNN** pipeline

Object Detection: R-CNN

- R-CNN

Object Detection: Fast R-CNN

- Fast R-CNN

Object Detection: Faster R-CNN

- Faster R-CNN
 - Solely based on CNN
 - No external modules
 - Each step is end-to-end

Object Detection

Object Detection

- Simply “Faster R-CNN + ResNet”

Faster R-CNN baseline	mAP@.5	mAP@.5:.95
VGG-16	41.5	21.5
ResNet-101	48.4	27.2

coco detection results

**ResNet-101 has 28% relative gain
vs VGG-16**

Object Detection

- RPN **learns** proposals by extremely deep nets
 - We use **only 300 proposals** (no hand-designed proposals)
- Add components:
 - Iterative localization
 - Context modeling
 - Multi-scale testing
- All components are based on CNN features; all steps are end-to-end
- All benefit **more** from **deeper** features – cumulative gains!

ResNet's object detection result on COCO

*the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

*the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

*the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Results on real video. Models trained on MS COCO (80 categories).
(frame-by-frame; no temporal processing)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

FAIR COCO Object Detection

Sergey Zagoruyko*, Tsung-Yi Lin*, Pedro
Pinheiro*, Adam Lerer, Sam Gross,
Soumith Chintala, Piotr Dollár

(*equal contribution)

Results

	AP bbox	AP small	AP medium	AP large	AR max=100	AP segm
MSRA	0.373	0.183	0.419	0.524	0.491	0.282
FAIRCNN	0.335	0.139	0.378	0.477	0.485	0.251
ION	0.310	0.123	0.332	0.447	0.457	
FastRCNN	0.197	0.035	0.188	0.346	0.298	

66% improvement over FastRCNN baseline

Overview

- I. DeepMask segmentation proposals [Pinheiro NIPS 15]
 - + iterative localization
 - + top-down refinement

- II. Fast R-CNN object detector [Girshick ICCV 15]
 - + foveal context regions
 - + modified loss function
 - + skip connections
 - + ensembling

I. Deep MASK Object Proposals

DeepMask Framework

Model:

DeepMask Framework

Model:

x: 3x224x224

DeepMask Framework

Model:

DeepMask Framework

Model:

DeepMask Framework

Model:

DeepMask Framework

Model:

DeepMask Framework

Model:

Single Scale Inference

Single Scale Inference

New: Iterative Localization (+1.0 AP)

New: Top-Down Refinement (+0.7 AP)

Proposal Quality (boxes)

DeepMask Object Proposals

II. Classification framework

- Fast R-CNN setup [Girshick, ICCV15]

- Fast R-CNN setup [Girshick, ICCV15]
- Foveal structure [inspired by Gidaris & Komodakis, ICCV15] (+2 AP)

- Fast R-CNN setup [Girshick, ICCV15]
- Foveal structure [inspired by Gidaris & Komodakis, ICCV15] (+2 AP)
- Skip connections (+1 AP)

- Fast R-CNN setup [Girshick, ICCV15]
- Foveal structure [inspired by Gidaris & Komodakis, ICCV15] (+2 AP)
- Skip connections (+1 AP)

Multi-threshold loss (+1.5 AP)

Inference

Base Model	30.1 AP
+ horizontal flip	31.1 AP
+ ROI Pooling '2 crop'	32.1 AP
+ 7-model Ensemble	33.5 AP

overall-all-all

AP

Small 0.139

Medium 0.378

Large 0.477

Segmentation Examples

557556

Future Directions

- most room for improvement:
 - background confusion (FP/FN)
 - small objects
- more effective use of context
- fast / proposal-free detection

