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Deep Neural Networks Rival the Representation of 
Primate IT Cortex for Core Visual Object Recognition



Object Recognition in the Macaque Visual System^
Rapid



The Task: Vision in a Glance

Behavior: can be performed    

    by both human and

    macaque,


Neurons: visual cortex 

    “solves” this task,


Algorithms: relatively 

    difficult for machine 

    algorithms


Practical: object recognition
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The Task: Category-level Object Recognition

Cars

...
Planes
Chairs
Tables
Faces

...

Fruits

...

Animals

...

Variation due to: 
• object exemplar (pear, raspberry) 
• pose of object (facing left) 
• position (on the right) 
• scale (close, far) 
• background



What is a “Representation”?

How should we represent  
Numbers? 

Arabic Numerals  (1, 2, 3, 4, …) 
Roman Numerals (I, II, III, IV, …) 
Binary Numbers   (001, 010, 011, 100, …)



What is a “Representation”?

In our Machines? 
Pixels 
JPEG 

Fourier Transform 
Bag-of-Words 

Neural Network Features

In the Brain? 
Retinae 

Primary Visual Cortex (V1) 
V2 
V4 

Inferotemporal Cortex (IT)

How should we represent  
Images?



Measuring the Neural Representation

• Rapid serial visual presentation of the stimuli 


• Grid electrodes placed in V4 and IT


• Neural feature: Multi-unit spike count, averaged over 
time window locked to presentation

IT

V4

= Array

Multi-Array Electrophysiology in Macaque V4 and IT

10mm

Img 1       Img 2              Img 5760

...

Neuron 1
Neuron 2
Neuron 3

Neuron 128

...

...



Measuring the DNN Representation

• Sent images to collaborators


• They ran their trained (usually trained on ImageNet) 
DNNs on our images to compute features


• We received features from different network layers.


• We have also run our own DNNs and verified results

Img 1       Img 2              Img 5760

...

...

Artificial neuron 1 
Artificial neuron 2 
Artificial neuron 3 

… 
Artificial neuron N

0.01 
3.26 
1.17 
… 

0.93



The Test: Effective Representation

An “effective” representation is one that 
makes the problem simple. 

Object recognition is a complex problem 
when represented at the pixels or retinae. 

Effective systems for visual object recognition 
transform the complex problem present in the 

pixel representation into a simple problem.



Result: Linear-SVM Analysis

Chance
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But are the DNNs “Like” the Neurons?
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Explanation of Variance
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Figure 6. Neural and model representation predictions of IT multi-unit responses. A) The
median predictions of IT multi-unit responses averaged over 10 train/test splits is plotted for model
representations and V4 multi-units. Error bars indicate standard deviation over the 10 train/test splits.
Predictions are normalized to correct for trial-to-trial variability of the IT multi-unit recording and
calculated as percentage of explained, explainable variance. The HMO, Krizhevsky et al. 2012, and
Zeiler & Fergus 2013 representations achieve IT multi-unit predictions that are comparable to the
predictions produced by the V4 multi-unit representation. B) The mean predictions over the 10
train/test splits for the V4 cortex multi-unit sample and the Zeiler & Fergus 2013 DNN are plotted
against each other for each IT multi-unit site.

goals (in this case category labels) and encoding models and representational similarity metrics are
informative about a model’s ability to capture image-dependent neural variability, even if this variability
is unrelated to task goals. We measured the performance of the model representations as encoding models
of the IT multi-unit responses by estimating linear regression models from the model representations to
the IT multi-unit responses. We estimated models on 80% of the images and tested on 20%, repeating
the procedure 10 times (see Methods). The median predictions averaged over the 10 splits are presented
in Figure 6A. For comparison, we also estimated regression models using the V4 multi-unit responses to
predict IT multi-unit responses. The results show that the Krizhevsky et al. 2012 and the Zeiler & Fergus
2013 DNNs achieve higher prediction accuracies than the HMO model, which was previously shown to
achieve high predictions on a similar test [27]. These predictions are similar in explained variance to the
predictions achieved by V4 multi-units. However, no model is able to fully account for the explainable
variance in the IT multi-unit responses. In Figure 6B we show the mean explained variance of each
IT multi-unit site as predicted by the V4 cortex multi-unit sample and the Zeiler & Fergus 2013 DNN.
There is a relatively weak relationship between the encoding performance of the neural V4 and DNN
representations (r = 0.48 between V4 and Zeiler & Fergus 2013, compared to r = 0.96 and r = 0.74 for
correlations between Krizhevsky et al. 2012 and Zeiler & Fergus 2013, and HMO and Zeiler & Fergus
2013, respectively), indicating that V4 and DNN representations may account for di↵erent sources of
variability in IT (see Discussion).

Finally, we measured representational similarity using the analysis methodology proposed in [32].
This analysis methodology measures how similar two representations are and is robust to global scalings
and rotations of the representational spaces. To compute the representational similarity between the IT
multi-unit and model representations, we computed object-level representational dissimilarity matrices



Accuracy vs # Features
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Figure S4. E↵ect of sampling the neural and noise-corrected model representations for the
linear-SVM analysis. We measure the mean testing-set linear-SVM generalization performance as we
change the number of neural sites (for neural representations), or the number of features (for model
representations). Measured samples are indicated by filled symbols and measured standard deviations
indicated by error bars. Multi-unit analysis is shown in panel A and single-unit analysis in B. The
model representations are noise corrected by adding noise that is matched to the IT multi-unit
measurements (A, as indicated by the † symbol) or single-unit measurements (B, as indicated by the ‡
symbol). This analysis reveals a similar relationship to that found using the kernel analysis
methodology (compare to Figure 5).

directly the number of neurons that go into each measurement. By using an independent dataset [10]
collected in our lab using single-electrode electrophysiology and comparing to our multi-electrode setup,
we determine based on spike counts that each multi-unit in our sample is approximately 4-5 single-units.
Therefore, in the right panel in Figure S5 we plot the results by multiplying the number of multi-units
by 5.0. This result indicates that the multi- and single-unit representations are roughly equivalent in
performance when we do not screen single-units. This remains surprising, as the physical averaging
process (averaging multiple single-units in a multi-unit recording) produces a loss of information and
may, a priori have been thought to reduce performance. However, after this correction the screened
single-units outperform the multi-units.

Processing time and energy consumption of computational models

The processing time of DNNs as implemented on current hardware is comparable to that of the macaque
and human visual systems. The algorithm of Zeiler & Fergus 2013, which is very similar in implementation
to Krizhevsky et al. 2012, utilizes a high-performance GPU and processes batches of 128 images in 8.4
seconds, or 65 ms per image. This processing time is shorter than the presentation times we use during
the neural recordings and for our estimate of human performance (both 100 ms). It is also shorter than
the integration window we use to measure IT multi-unit responses, which we average between 70 ms
and 170 ms post image onset. Finally, it is also comparable to the latency of response in IT cortex to
image presentation (typically 70 ms to 100 ms). However, the 65 ms processing time for the DNN does
not include the process of phototransduction (image capture) nor any communications latencies within
the computer system (e.g. between system memory and GPU memory). Behavioral response times of



Implications

• We now have a better quantitative understanding of 
feedforward visual processing in the brain (but far from 
complete!).


• DNNs likely rival and will soon surpass humans on 
natural rapid visual object recognition.


• DNNs may shortly surpass any human ability in rapid 
judgement (given enough data).



Caveats

• Only “image in a glance” task.


• Have we measured the “right” neurons?


• Have we used the “right” way to readout the neurons?


• Could attention influence the result?


• Could learning or exposure influence the result?


• Active decision making (animals are awake, but passive viewing).


• Limited Object Categories


• Images without context (but by design!)


