
9 – Stereo Reconstruction 

Slides from A. Zisserman & S. Lazebnik 



Overview 

•  Single camera geometry 
•  Recap of Homogenous coordinates 
•  Perspective projection model 
•  Camera calibration 

•  Stereo Reconstruction 
•  Epipolar geometry 
•  Stereo correspondence  
•  Triangulation 



Single camera geometry 



Projection 



Projection 



Projective Geometry 

•  Recovery of structure from one image is inherently 
ambiguous 

•  Today focus on geometry that maps world to camera 
image 

x 

X? X? X? 



Recall: Pinhole camera model 

•  Principal axis: line from the camera center 
perpendicular to the image plane 

•  Normalized (camera) coordinate system: camera 
center is at the origin and the principal axis is the z-axis 
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Recall: Pinhole camera model 

PXx =



Recap: Homogeneous coordinates 

•  Is this a linear transformation? 

Trick:  add one more coordinate: 

homogeneous image  
coordinates 

homogeneous scene  
coordinates 

Converting from homogeneous coordinates 

•  no—division by z is nonlinear 

Slide by Steve Seitz 
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Principal point 

•  Principal point (p): point where principal axis intersects the 
image plane (origin of normalized coordinate system) 

•  Normalized coordinate system: origin is at the principal point 
•  Image coordinate system: origin is in the corner 
•  How to go from normalized coordinate system to image 

coordinate system? 
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Principal point offset 

principal point: ),( yx pp
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Pixel coordinates 

•  mx pixels per meter in horizontal direction,  
my pixels per meter in vertical direction 

Pixel size:  
yx mm
11

×

pixels/m m pixels 



( )C~-X~RX~cam =

Camera rotation and translation 

•  In general, the camera 
coordinate frame will 
be related to the world 
coordinate frame by a 
rotation and a 
translation 

coords. of point  
in camera frame 

coords. of camera center  
in world frame 

coords. of a point 
in world frame (nonhomogeneous) 
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Camera rotation and translation 

In non-homogeneous 
coordinates: 

Note: C is the null space of the camera projection matrix (PC=0) 



Camera parameters 
•  Intrinsic parameters 

•  Principal point coordinates 
•  Focal length 
•  Pixel magnification factors 
•  Skew (non-rectangular pixels) 
•  Radial distortion 
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Camera parameters 
•  Intrinsic parameters 

•  Principal point coordinates 
•  Focal length 
•  Pixel magnification factors 
•  Skew (non-rectangular pixels) 
•  Radial distortion 

•  Extrinsic parameters 
•  Rotation and translation relative to world coordinate 

system 



Camera calibration 

•  Given n points with known 3D coordinates Xi and known 
image projections xi, estimate the camera parameters 

? P

Xi 

xi 
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Camera calibration 
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Two linearly independent equations 



Camera calibration 

•  P has 11 degrees of freedom (12 parameters, but 
scale is arbitrary) 

•  One 2D/3D correspondence gives us two linearly 
independent equations 

•  Homogeneous least squares 
•  6 correspondences needed for a minimal solution 
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Camera calibration 

•  Note: for coplanar points that satisfy ΠTX=0, 
we will get degenerate solutions (Π,0,0), (0,Π,0), or 
(0,0,Π) 
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Camera calibration 

•  Once we’ve recovered the numerical form of the camera 
matrix, we still have to figure out the intrinsic and 
extrinsic parameters 

•  This is a matrix decomposition problem, not an 
estimation problem (see F&P sec. 3.2, 3.3)  



CSE 576, Spring 2008 Projective Geometry 23 

Alternative:  multi-plane calibration    
 

 
 

Images courtesy Jean-Yves Bouguet, Intel Corp. 

Advantage 
•  Only requires a plane 
•  Don’t have to know positions/orientations 
•  Good code available online! 

–  Intel’s OpenCV library:  http://www.intel.com/research/mrl/research/opencv/  

–  Matlab version by Jean-Yves Bouget:  
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html 

–  Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/  



Stereo Reconstruction  

known 
camera 

viewpoints 

Shape (3D) from two (or more) images 



Example 
images 

shape 

surface 
reflectance 



Scenarios 

The two images can arise from 
 
•  A stereo rig consisting of two cameras 

•  the two images are acquired simultaneously 
or  
 
•  A single moving camera (static scene) 

•  the two images are acquired sequentially 
 
The two scenarios are geometrically equivalent 



Stereo head 

Camera on a mobile vehicle  



The objective  

Given two images of a scene acquired by known cameras compute the 
3D position of the scene (structure recovery) 

 

Basic principle: triangulate from corresponding  image points 

•  Determine 3D  point at intersection of two back-projected rays 



Corresponding points are images of the same scene point 

Triangulation 

C C  / 

The back-projected points generate rays which intersect at the 
3D scene point 



An algorithm for stereo reconstruction 

1.  For each point in the first image determine the 
corresponding point in the second image 

(this is a search problem) 

2.  For each pair of matched points determine the 3D 
point by triangulation 

(this is an estimation problem) 



The correspondence problem 

Given a point x in one image find the corresponding point in the other 
image 

This appears to be a 2D search problem, but it is reduced to a 1D search 
by the epipolar constraint 



 
1.   Epipolar geometry 

•  the geometry of two cameras 
•  reduces the correspondence problem to a line search 

2.   Stereo correspondence algorithms 

3.   Triangulation 
 

Outline 



Notation 

x x / 

X

C C  / 

The two cameras are P and P/, and a 3D point X is imaged as  

for equations involving homogeneous quantities ‘=’ means ‘equal up to 
scale’ 

P P/ 

Warning 



Epipolar geometry 



Epipolar geometry 

Given an image point in one view, where is the corresponding point 
in the other view? 

epipolar line 

? 

baseline 

•  A point in one view  “generates” an epipolar line in the other view 
•  The corresponding point lies on this line 

epipole C  / C 



Epipolar line 

Epipolar constraint 
•  Reduces correspondence problem to 1D search along an 

epipolar line 



Epipolar geometry continued 

Epipolar geometry is a consequence of the coplanarity of the camera 
centres and scene point 

x x  / 

X

C C  / 

The camera centres, corresponding points and scene point lie 
in a single plane, known as the epipolar plane 



Nomenclature 

•  The epipolar line l/  is the image of the ray through x 

•  The epipole e is the point of intersection of the line joining the camera centres 
with the image plane 

"   this line is the baseline for a stereo rig, and 

"   the translation vector for a moving camera 

•  The epipole is the image of the centre of the other camera:  e = PC/ ,   e/ = P/C 

x x  / 

X

C C  / 

e 

left epipolar line 
right epipolar line 

e 
 / 

l/ 



The epipolar pencil 

e e  / 

baseline 

X

As the position of the 3D point X varies, the epipolar planes “rotate” about 
the baseline. This family of planes is known as an epipolar pencil. All 
epipolar lines intersect at the epipole. 

(a pencil is a one parameter family) 



The epipolar pencil 

e e  / 

baseline 

X

As the position of the 3D point X varies, the epipolar planes “rotate” about 
the baseline. This family of planes is known as an epipolar pencil. All 
epipolar lines intersect at the epipole. 

(a pencil is a one parameter family) 



Epipolar geometry example I: parallel cameras 

Epipolar geometry depends only on the relative pose (position and 
orientation) and internal parameters of the two cameras, i.e. the position of 
the camera centres and image planes. It does not depend on the scene 
structure (3D points external to the camera). 



Epipolar geometry example II: converging cameras 

Note, epipolar lines are in general not parallel 

e e  / 



Homogeneous notation for lines 



•  The line l through the two points p and q is  l = p x q  

Example: compute the point of intersection of the two lines l and m       
in the figure below 

Proof 

y 

x 

1 

2 

•  The intersection of two lines l and m is the point x = l x m 

l 

m

which is the point (2,1) 



Matrix representation of the vector cross product 



Example: compute the cross product of l and m 



Algebraic representation of epipolar geometry 

 
We know that the epipolar geometry defines a mapping 

x                       l/ 

point in first 
image 

epipolar line in 
second image 



P 

Derivation of the algebraic expression 

Outline 

Step 1: for a point x in the first image 
back project a ray with camera P 

Step 2: choose two points on the ray and 
project into the second image with camera P/ 

Step 3: compute the line through the two 
image points using the relation l/ = p x q  

P/ 



•  choose camera matrices 

internal 
calibration rotation translation 

from world to camera 
coordinate frame 

•  first camera 

world coordinate frame aligned with first camera 

•  second camera 



Step 1: for a point x in the first image 
back project a ray with camera 

P 

A point x back projects to a ray 

where Z is the point’s depth, since 

satisfies 



Step 2: choose two points on the ray and 
project into the second image with camera P/ 

P/ 

Consider two points on the ray 

 

•  Z = 0 is the camera centre 

•  Z =      is the point at infinity 

Project these two points into the second view 



Using the identity 

Compute the line through the points 

F 

F is the fundamental matrix  

Step 3: compute the line through the two 
image points using the relation l/ = p x q  



Example I: compute the fundamental matrix for a parallel camera stereo rig 

•  reduces to y = y/  , i.e. raster correspondence (horizontal scan-lines) 

f 

f 

X Y
Z



f 

f 

X Y
Z

Geometric interpretation ? 



Example II: compute F for a forward translating camera 

f 

f 

X Y
Z



f

f

X Y
Z

first image second image 







Summary: Properties of the Fundamental matrix 



Admin Interlude 

•  Assignment 1 due this time next week 
•  So come to office hours right after class! 

•  Meet Chaitanya Rudra (cr1512@nyu.edu) 
who is the class TA 



Stereo correspondence 
algorithms 



Problem statement 

Given: two images and their associated cameras compute 
corresponding image points. 
 
Algorithms may be classified into two types: 

1.  Dense: compute a correspondence at every pixel 
2.  Sparse: compute correspondences only for features 

 
The methods may be top down or bottom up 
 



Top down matching  

1.  Group model (house, windows, etc) independently in 
each image 

2.  Match points (vertices) between images 



Bottom up matching 
•  epipolar geometry reduces the correspondence search from 2D 
to a 1D search on corresponding epipolar lines 

•  1D correspondence problem 

b/ 
a/ 

b 
c a 

CB A 

c/ 





Stereograms 
•  Invented by Sir Charles Wheatstone, 1838 



Red/green stereograms 



Random dot stereograms 





Autostereograms 

Autostereograms: www.magiceye.com 



Autostereograms 

Autostereograms: www.magiceye.com 



Correspondence algorithms  

Algorithms may be top down or bottom up – random dot stereograms 
are an existence proof that bottom up algorithms are possible 

 
From here on only consider bottom up algorithms 
 

Algorithms may be classified into two types: 
1.  Dense: compute a correspondence at every pixel 
2.  Sparse: compute correspondences only for features 

 
 



 Example image pair – parallel cameras 



First image 



Second image 



Dense correspondence algorithm 

Search problem (geometric constraint): for each point in the left image, the 
corresponding point in the right image lies on the epipolar line (1D ambiguity) 

Disambiguating assumption (photometric constraint): the intensity 
neighbourhood of corresponding points are similar across images 

Measure similarity of neighbourhood intensity by cross-correlation  

Parallel camera example – epipolar lines are corresponding rasters  

epipolar 
line 



Intensity profiles 

•  Clear correspondence between intensities, but also noise and ambiguity 



region A 

Normalized Cross Correlation 

region B 

vector a vector b 

write regions as vectors 

a 

b



Cross-correlation of neighbourhood regions 

epipolar 
line 

translate so that mean is zero  

(exercise) 



left image band 

right image band 

cross 
correlation 

1

0

0.5 

x 



left image band 

right image band 

cross 
correlation 

1

0

x 

0.5 

target region 



Why is cross-correlation such a poor measure in the second case? 
1.  The neighbourhood region does not have a “distinctive” spatial intensity 

distribution 

2.  Foreshortening effects 

fronto-parallel surface 
imaged length the same 

slanting surface 
imaged lengths differ 



Limitations of similarity constraint 

Textureless surfaces Occlusions, repetition 

Non-Lambertian surfaces, specularities 



Results with window search 

Window-based matching Ground truth 

Data 



Sketch of a dense correspondence algorithm 

For each pixel in the left image 
•  compute the neighbourhood cross correlation along the 

corresponding epipolar line in the right image 
•  the corresponding pixel is the one with the highest cross 

correlation 
Parameters 

•  size (scale) of neighbourhood 
•  search disparity  

Other constraints 
•  uniqueness 
•  ordering 
•  smoothness of disparity field 

Applicability 
•  textured scene, largely fronto-parallel 



Stereo matching as energy minimization 

MAP estimate of disparity image D: )()|,(),|( 2121 DPDIIPIIDP ∝

I1 I2 D 

W1(i ) W2(i+D(i )) D(i ) 

)(),,( smooth21data DEDIIEE βα +=

)(log)|,(log),|(log 2121 DPDIIPIIDP −−∝−
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Stereo matching as energy minimization 

I1 I2 D 

•  Energy functions of this form can be minimized using 
graph cuts 

Y. Boykov, O. Veksler, and R. Zabih, 
Fast Approximate Energy Minimization via Graph Cuts,  PAMI 2001 

W1(i ) W2(i+D(i )) D(i ) 

)(),,( smooth21data DEDIIEE βα +=

( )∑ −=
ji

jDiDE
,neighbors

smooth )()(ρ( )221data ))(()(∑ +−=
i

iDiWiWE



Graph cuts solution 

Graph cuts Ground truth 

For the latest and greatest:  http://www.middlebury.edu/stereo/  

Y. Boykov, O. Veksler, and R. Zabih, 
Fast Approximate Energy Minimization via Graph Cuts,  PAMI 2001 



Example dense correspondence algorithm 

left image right image 



right image depth map 

3D reconstruction 

intensity = depth 



Texture mapped 3D triangulation 



range map 

Pentagon example 
left image right image 



Rectification 

e e  / 

For converging cameras 
•  epipolar lines are not parallel 



Project images onto plane parallel to baseline 

epipolar plane 



Rectification continued 

Convert converging cameras to parallel camera 
geometry by an image mapping 

Image mapping is a 2D homography (projective transformation) 

(exercise) 



Rectification continued 

Convert converging cameras to parallel camera 
geometry by an image mapping 

Image mapping is a 2D homography (projective transformation) 

(exercise) 



Example 
original stereo pair 

rectified stereo pair 



Note 
•  image movement (disparity) is inversely proportional to depth Z 

 

•  depth is inversely proportional to disparity 

Example: depth and disparity for a parallel camera stereo rig 

Then, y/ = y, and the disparity 

Derivation 

x

x / 

d 



Triangulation 



1. Vector solution 

C C  / 

Compute the mid-point of the shortest line between the 
two rays 



2. Linear triangulation (algebraic solution) 



Problem: does not minimize anything meaningful 

Advantage: extends to more than two views 



3. Minimizing a geometric/statistical error 



•  It can be shown that if the measurement noise is 
Gaussian mean zero,                  , then minimizing 
geometric error is the Maximum Likelihood Estimate of X 

•  The minimization appears to be over three parameters 
(the position X), but the problem can be reduced to a 
minimization over one parameter 



Different formulation of the problem 



Minimization method 
•  Parametrize the pencil of epipolar lines in the first image by t, 
such that the epipolar line is l(t) 

•  Using F compute the corresponding epipolar line in the second 
image l/ (t) 

•  Express the distance function                                 explicitly as a 
function of t 
•  Find the value of t that minimizes the distance function 

•  Solution is a 6th degree polynomial in t 



Other approaches  
to obtaining 3D 

structure 



Active stereo with structured light 

•  Project “structured” light patterns onto the object 
•  simplifies the correspondence problem 
•  Allows us to use only one camera 

camera  

projector 

L. Zhang, B. Curless, and S. M. Seitz. 
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic 
Programming. 3DPVT 2002 



Active stereo with structured light 

L. Zhang, B. Curless, and S. M. Seitz. 
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic 
Programming. 3DPVT 2002 



Microsoft Kinect 



Laser scanning 

•  Optical triangulation 
•  Project a single stripe of laser light 
•  Scan it across the surface of the object 
•  This is a very precise version of structured light scanning 

Digital Michelangelo Project 
http://graphics.stanford.edu/projects/mich/ 

 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Aligning range images 

•  A single range scan is not sufficient to describe a 
complex surface 

•  Need techniques to register multiple range images 
 
 

B. Curless and M. Levoy, 
A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH 
1996 



Aligning range images 

•  A single range scan is not sufficient to describe a 
complex surface 

•  Need techniques to register multiple range images 
 

•  … which brings us to multi-view stereo 


