
Fi#ng	 &	 Matching	

Lectures	 7	 &	 8	 	 –	 Prof.	 Fergus	

Slides	 	 from:	 S.	 Lazebnik,	 S.	 Seitz,	 M.	 Pollefeys,	 A.	 Effros.	 	

How do we build panorama?

•  We need to match (align) images

Matching with Features

• Detect	 feature	 points	 in	 both	 images	

Matching with Features

• Detect	 feature	 points	 in	 both	 images	

• Find	 corresponding	 pairs	

Matching with Features

• Detect	 feature	 points	 in	 both	 images	

• Find	 corresponding	 pairs	
• Use	 these	 pairs	 to	 align	 images	

Matching with Features

• Detect	 feature	 points	 in	 both	 images	

• Find	 corresponding	 pairs	
• Use	 these	 pairs	 to	 align	 images	

Previous	 lecture	

Overview

•  Fi#ng	 techniques	
– Least	 Squares	
– Total	 Least	 Squares	

•  RANSAC	
•  Hough	 VoRng	

•  Alignment	 as	 a	 fi#ng	 problem	

Source: K. Grauman

Fitting
•  Choose a parametric model to represent a set

of features

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

•  Noise in the measured feature locations
•  Extraneous data: clutter (outliers), multiple lines
•  Missing data: occlusions

Case study: Line detection

Slide: S. Lazebnik

Fitting: Issues
•  If we know which points belong to the line,

how do we find the “optimal” line
parameters?
•  Least squares

•  What if there are outliers?
•  Robust fitting, RANSAC

•  What if there are many lines?
•  Voting methods: RANSAC, Hough transform

•  What if we’re not even sure it’s a line?
•  Model selection

Slide: S. Lazebnik

Overview

•  Fi#ng	 techniques	
– Least	 Squares	
– Total	 Least	 Squares	

•  RANSAC	
•  Hough	 VoRng	

•  Alignment	 as	 a	 fi#ng	 problem	

Least squares line fitting
Data: (x1, y1), …, (xn, yn)
Line equation: yi = m xi + b
Find (m, b) to minimize

∑ =
−−=

n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

Slide: S. Lazebnik

Least squares line fitting
Data: (x1, y1), …, (xn, yn)
Line equation: yi = m xi + b
Find (m, b) to minimize

022 =−= YXXBX
dB
dE TT

[]

)()()(2)()(

1

1
1 2

2
11

1

2

XBXBYXBYYXBYXBY

XBY
b
m

x

x

y

y

b
m

xyE

TTTT

nn

n

i ii

+−=−−=

−=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−=∑ =

Normal equations: least squares solution to
XB=Y

∑ =
−−=

n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

YXXBX TT =
Slide: S. Lazebnik

Matlab Demo

%%%% let's make some points
n = 10;
true_grad = 2;
true_intercept = 3;
noise_level = 0.04;

x = rand(1,n);
y = true_grad*x + true_intercept + randn(1,n)*noise_level;

figure; plot(x,y,'rx');
hold on;

%%% make matrix for linear system
X = [x(:) ones(n,1)];

%%% Solve system of equations
p = inv(X'*X)*X'*y(:); % Pseudo-inverse
p = pinv(X) * y(:); % Pseduo-inverse
p = X \ y(:); % Matlab's \ operator

est_grad = p(1);
est_intercept = p(2);

plot(x,est_grad*x+est_intercept,'b-');

fprintf('True gradient: %f, estimated gradient: %f\n',true_grad,est_grad);
fprintf('True intercept: %f, estimated intercept: %f\n',true_intercept,est_intercept);

Problem with “vertical” least squares
•  Not rotation-invariant
•  Fails completely for vertical lines

Slide: S. Lazebnik

Overview

•  Fi#ng	 techniques	
– Least	 Squares	
– Total	 Least	 Squares	

•  RANSAC	
•  Hough	 VoRng	

•  Alignment	 as	 a	 fi#ng	 problem	

Total least squares
Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|

∑ =
−+=

n

i ii dybxaE
1

2)((xi, yi)

ax+by=d
Unit normal: N=

(a, b)

Slide: S. Lazebnik

Total least squares
Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|
Find (a, b, d) to minimize the sum of
squared perpendicular distances ∑ =

−+=
n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

∑ =
−+=

n

i ii dybxaE
1

2)(

Unit normal: N=
(a, b)

Total least squares
Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|
Find (a, b, d) to minimize the sum of
squared perpendicular distances ∑ =

−+=
n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

∑ =
−+=

n

i ii dybxaE
1

2)(

Unit normal: N=
(a, b)

0)(2
1

=−+−=
∂

∂
∑ =

n

i ii dybxa
d
E ybxax

n
bx

n
ad n

i i
n

i i +=+= ∑∑ == 11

)()())()((

2
11

1
2 UNUN

b
a

yyxx

yyxx
yybxxaE T

nn

n

i ii =⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

=−+−=∑ =

0)(2 == NUU
dN
dE T

Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU
associated with the smallest eigenvalue (least squares solution
to homogeneous linear system UN = 0) Slide: S. Lazebnik

Total least squares

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

=

yyxx

yyxx
U

nn

11

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
=

∑∑

∑∑

==

==
n

i
i

n

i
ii

n

i
ii

n

i
i

T

yyyyxx

yyxxxx
UU

1

2

1

11

2

)())((

))(()(

second moment matrix

Slide: S. Lazebnik

Total least squares

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

=

yyxx

yyxx
U

nn

11

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
=

∑∑

∑∑

==

==
n

i
i

n

i
ii

n

i
ii

n

i
i

T

yyyyxx

yyxxxx
UU

1

2

1

11

2

)())((

))(()(

),(yx

N = (a, b)

second moment matrix

),(yyxx ii −−

Slide: S. Lazebnik

Least squares: Robustness to noise
Least squares fit to the red points:

Slide: S. Lazebnik

Least squares: Robustness to noise
Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Slide: S. Lazebnik

Robust estimators
•  General approach: minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

()()σθρ ;,ii
i

xr∑

The robust function
ρ behaves like
squared distance for
small values of the
residual u but
saturates for larger
values of u

Slide: S. Lazebnik

Choosing the scale: Just right

The effect of the outlier is minimized
Slide: S. Lazebnik

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small

Slide: S. Lazebnik

Choosing the scale: Too large

Behaves much the same as least squares

Overview

•  Fi#ng	 techniques	
– Least	 Squares	
– Total	 Least	 Squares	

•  RANSAC	
•  Hough	 VoRng	

•  Alignment	 as	 a	 fi#ng	 problem	

RANSAC
•  Robust fitting can deal with a few outliers –

what if we have very many?
•  Random sample consensus (RANSAC):

Very general framework for model fitting in
the presence of outliers

•  Outline
•  Choose a small subset of points uniformly at random
•  Fit a model to that subset
•  Find all remaining points that are “close” to the model and

reject the rest as outliers
•  Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.
Random Sample Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.

Slide: S. Lazebnik

RANSAC for line fitting
Repeat N times:
•  Draw s points uniformly at random
•  Fit line to these s points
•  Find inliers to this line among the remaining

points (i.e., points whose distance from the
line is less than t)

•  If there are d or more inliers, accept the line
and refit using all inliers

Source: M. Pollefeys

Choosing the parameters
•  Initial number of points s

•  Typically minimum number needed to fit the model

•  Distance threshold t
•  Choose t so probability for inlier is p (e.g. 0.95)
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

•  Number of samples N
•  Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

Choosing the parameters
•  Initial number of points s

•  Typically minimum number needed to fit the model

•  Distance threshold t
•  Choose t so probability for inlier is p (e.g. 0.95)
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

•  Number of samples N
•  Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

() ()()sepN −−−= 11log/1log

()() pe
Ns −=−− 111

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys

Choosing the parameters
•  Initial number of points s

•  Typically minimum number needed to fit the model

•  Distance threshold t
•  Choose t so probability for inlier is p (e.g. 0.95)
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

•  Number of samples N
•  Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

()() pe
Ns −=−− 111

Source: M. Pollefeys

() ()()sepN −−−= 11log/1log

Choosing the parameters
•  Initial number of points s

•  Typically minimum number needed to fit the model

•  Distance threshold t
•  Choose t so probability for inlier is p (e.g. 0.95)
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

•  Number of samples N
•  Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

•  Consensus set size d
•  Should match expected inlier ratio

Source: M. Pollefeys

Adaptively determining the number of samples

•  Inlier ratio e is often unknown a priori, so pick
worst case, e.g. 50%, and adapt if more
inliers are found, e.g. 80% would yield e=0.2

•  Adaptive procedure:
•  N=∞, sample_count =0
•  While N >sample_count

– Choose a sample and count the number of inliers
–  Set e = 1 – (number of inliers)/(total number of points)
– Recompute N from e:

–  Increment the sample_count by 1

() ()()sepN −−−= 11log/1log

Source: M. Pollefeys

RANSAC pros and cons
•  Pros

•  Simple and general
•  Applicable to many different problems
•  Often works well in practice

•  Cons
•  Lots of parameters to tune
•  Can’t always get a good initialization of the model based on

the minimum number of samples
•  Sometimes too many iterations are required
•  Can fail for extremely low inlier ratios
•  We can often do better than brute-force sampling

Source: M. Pollefeys

Voting schemes
•  Let each feature vote for all the models that

are compatible with it
•  Hopefully the noise features will not vote

consistently for any single model
•  Missing data doesn’t matter as long as there

are enough features remaining to agree on a
good model

Overview

•  Fi#ng	 techniques	
– Least	 Squares	
– Total	 Least	 Squares	

•  RANSAC	
•  Hough	 VoRng	

•  Alignment	 as	 a	 fi#ng	 problem	

Hough transform
•  An early type of voting scheme
•  General outline:

•  Discretize parameter space into bins
•  For each feature point in the image, put a vote in every bin in

the parameter space that could have generated this point
•  Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.
Int. Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

Parameter space representation
•  A line in the image corresponds to a point in

Hough space

Image space Hough parameter space

Source: S. Seitz

Parameter space representation
•  What does a point (x0, y0) in the image space

map to in the Hough space?

Image space Hough parameter space

Source: S. Seitz

Parameter space representation
•  What does a point (x0, y0) in the image space

map to in the Hough space?
•  Answer: the solutions of b = –x0m + y0
•  This is a line in Hough space

Image space Hough parameter space

Source: S. Seitz

Parameter space representation
•  Where is the line that contains both (x0, y0) and

(x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz

Parameter space representation
•  Where is the line that contains both (x0, y0) and

(x1, y1)?
•  It is the intersection of the lines b = –x0m + y0 and

b = –x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz

•  Problems with the (m,b) space:
•  Unbounded parameter domain
•  Vertical lines require infinite m

Parameter space representation

•  Problems with the (m,b) space:
•  Unbounded parameter domain
•  Vertical lines require infinite m

•  Alternative: polar representation

Parameter space representation

ρθθ = + sincos yx

Each point will add a sinusoid in the (θ,ρ) parameter space

Algorithm outline
•  Initialize accumulator H

to all zeros
•  For each edge point (x,y)

in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ
 H(θ, ρ) = H(θ, ρ) + 1

 end
end

•  Find the value(s) of (θ, ρ) where H(θ, ρ) is a
local maximum

•  The detected line in the image is given by
 ρ = x cos θ + y sin θ

ρ

θ

features votes

Basic illustration

Square Circle

Other shapes

Several lines

A more complicated image

http://ostatic.com/files/images/ss_hough.jpg

features votes

Effect of noise

features votes

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise
•  Number of votes for a line of 20 points with

increasing noise:

Random points

Uniform noise can lead to spurious peaks in the array
features votes

Random points
•  As the level of uniform noise increases, the

maximum number of votes increases too:

Dealing with noise
•  Choose a good grid / discretization

•  Too coarse: large votes obtained when too many different
lines correspond to a single bucket

•  Too fine: miss lines because some points that are not
exactly collinear cast votes for different buckets

•  Increment neighboring bins (smoothing in
accumulator array)

•  Try to get rid of irrelevant features
•  Take only edge points with significant gradient magnitude

Hough transform for circles
•  How many dimensions will the parameter

space have?
•  Given an oriented edge point, what are all

possible bins that it can vote for?

Hough transform for circles

),(),(yxIryx ∇+

x

y

(x,y)
x

y

r

),(),(yxIryx ∇−

image space Hough parameter space

Generalized Hough transform
•  We want to find a shape defined by its boundary

points and a reference point

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes,
Pattern Recognition 13(2), 1981, pp. 111-122.

a

p

Generalized Hough transform
•  We want to find a shape defined by its boundary

points and a reference point
•  For every boundary point p, we can compute the

displacement vector r = a – p as a function of
gradient orientation θ

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes,
Pattern Recognition 13(2), 1981, pp. 111-122.

a

θ r(θ)

Generalized Hough transform
•  For model shape: construct a table indexed

by θ storing displacement vectors r as
function of gradient direction

•  Detection: For each edge point p with
gradient orientation θ:
•  Retrieve all r indexed with θ
•  For each r(θ), put a vote in the Hough space at p + r(θ)

•  Peak in this Hough space is reference point
with most supporting edges

•  Assumption: translation is the only
transformation here, i.e., orientation and scale
are fixed

Source: K. Grauman

Example

model shape

Example

displacement vectors for model points

Example

range of voting locations for test point

Example

range of voting locations for test point

Example

votes for points with θ =

Example

displacement vectors for model points

Example

range of voting locations for test point

votes for points with θ =

Example

Application in recognition
•  Instead of indexing displacements by gradient

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele,
Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

training image

visual codeword with
displacement vectors

Application in recognition
•  Instead of indexing displacements by gradient

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele,
Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

test image

Overview

•  Fi#ng	 techniques	
– Least	 Squares	
– Total	 Least	 Squares	

•  RANSAC	
•  Hough	 VoRng	

•  Alignment	 as	 a	 fi#ng	 problem	

Image alignment

•  Two broad approaches:
•  Direct (pixel-based) alignment

–  Search for alignment where most pixels agree
•  Feature-based alignment

–  Search for alignment where extracted features agree
–  Can be verified using pixel-based alignment

Source: S. Lazebnik

Alignment as fitting
•  Previously: fitting a model to features in one image

∑
i

i Mx),(residual
Find model M that minimizes

M

xi

Source: S. Lazebnik

Alignment as fitting
•  Previously: fitting a model to features in one image

•  Alignment: fitting a model to a transformation between
pairs of features (matches) in two images

∑
i

i Mx),(residual

∑ ʹ′
i

ii xxT)),((residual

Find model M that minimizes

Find transformation T
that minimizes

M

xi

T

xi
xi

'

Source: S. Lazebnik

2D transformation models

•  Similarity
(translation,
scale, rotation)

•  Affine

•  Projective
(homography)

Source: S. Lazebnik

Let’s start with affine transformations
•  Simple fitting procedure (linear least squares)
•  Approximates viewpoint changes for roughly planar

objects and roughly orthographic cameras
•  Can be used to initialize fitting for more complex

models

Source: S. Lazebnik

Fitting an affine transformation
•  Assume we know the correspondences, how do we

get the transformation?

),(ii yx ʹ′ʹ′
),(ii yx

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
ʹ′

ʹ′

2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ʹ′

ʹ′
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

Source: S. Lazebnik

Fitting an affine transformation

•  Linear system with six unknowns
•  Each match gives us two linearly independent

equations: need at least three to solve for the
transformation parameters

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ʹ′

ʹ′
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

Source: S. Lazebnik

Feature-based alignment outline

Feature-based alignment outline

•  Extract features

Feature-based alignment outline

•  Extract features
•  Compute putative matches

Feature-based alignment outline

•  Extract features
•  Compute putative matches
•  Loop:

•  Hypothesize transformation T

Feature-based alignment outline

•  Extract features
•  Compute putative matches
•  Loop:

•  Hypothesize transformation T
•  Verify transformation (search for other matches consistent

with T)

Feature-based alignment outline

•  Extract features
•  Compute putative matches
•  Loop:

•  Hypothesize transformation T
•  Verify transformation (search for other matches consistent

with T)

Dealing with outliers
•  The set of putative matches contains a very high

percentage of outliers
•  Geometric fitting strategies:

•  RANSAC
•  Hough transform

RANSAC
RANSAC loop:
1.  Randomly select a seed group of matches
2.  Compute transformation from seed group
3.  Find inliers to this transformation
4.  If the number of inliers is sufficiently large, re-compute

least-squares estimate of transformation on all of the
inliers

Keep the transformation with the largest number of inliers

RANSAC example: Translation

Putative matches

Source: A. Efros

RANSAC example: Translation

Select one match, count inliers

Source: A. Efros

RANSAC example: Translation

Select one match, count inliers

Source: A. Efros

RANSAC example: Translation

Select translation with the most inliers

Source: A. Efros

Motion estimation techniques
•  Feature-based methods

•  Extract visual features (corners, textured areas) and track them
over multiple frames

•  Sparse motion fields, but more robust tracking
•  Suitable when image motion is large (10s of pixels)

•  Direct methods
•  Directly recover image motion at each pixel from spatio-temporal

image brightness variations
•  Dense motion fields, but sensitive to appearance variations
•  Suitable for video and when image motion is small

Optical flow
Combination of slides from Rick Szeliski, Steve Seitz,

Alyosha Efros and Bill Freeman and Fredo Durand

Motion estimation: Optical flow

Will start by estimating motion of each pixel separately
Then will consider motion of entire image

Why estimate motion?
Lots of uses

•  Track object behavior
•  Correct for camera jitter (stabilization)
•  Align images (mosaics)
•  3D shape reconstruction
•  Special effects

Problem definition: optical flow

How to estimate pixel motion from image H to image I?
•  Solve pixel correspondence problem

–  given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
•  color constancy: a point in H looks the same in I

–  For grayscale images, this is brightness constancy
•  small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Let’s look at these constraints more closely
•  brightness constancy: Q: what’s the equation?

•  small motion: (u and v are less than 1 pixel)
–  suppose we take the Taylor series expansion of I:

H(x,y)=I(x+u, y+v)

Optical flow equation
Combining these two equations

In the limit as u and v go to zero, this becomes exact

Optical flow equation

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

•  The component of the flow in the gradient direction is determined
•  The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

2 unknowns, one equation

http://en.wikipedia.org/wiki/Barber's_pole

Aperture problem

Aperture problem

Solving the aperture problem
How to get more equations for a pixel?

•  Basic idea: impose additional constraints
–  most common is to assume that the flow field is smooth locally
–  one method: pretend the pixel’s neighbors have the same (u,v)

»  If we use a 5x5 window, that gives us 25 equations per pixel!

RGB version
How to get more equations for a pixel?

•  Basic idea: impose additional constraints
–  most common is to assume that the flow field is smooth locally
–  one method: pretend the pixel’s neighbors have the same (u,v)

»  If we use a 5x5 window, that gives us 25*3 equations per pixel!

Note that RGB is not enough to disambiguate
because R, G & B are correlated
Just provides better gradient

Lukas-Kanade flow
Prob: we have more equations than unknowns

•  The summations are over all pixels in the K x K window
•  This technique was first proposed by Lukas & Kanade (1981)

Solution: solve least squares problem
•  minimum least squares solution given by solution (in d) of:

Aperture Problem and Normal Flow

0

0

=•∇

=++

UI

IvIuI tyx

The gradient constraint:

Defines a line in the (u,v) space

u

v

I
I

I
Iu t

∇

∇

∇
−=⊥

Normal Flow:

Combining Local Constraints

u

v
11
tIUI −=•∇
22
tIUI −=•∇
33
tIUI −=•∇

etc.

Conditions for solvability
•  Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
•  ATA should be invertible
•  ATA should not be too small due to noise

–  eigenvalues λ1 and λ2 of ATA should not be too small
•  ATA should be well-conditioned

–  λ1/ λ2 should not be too large (λ1 = larger eigenvalue)
ATA is solvable when there is no aperture problem

Eigenvectors of ATA

•  Recall the Harris corner detector: M = ATA is
the second moment matrix

•  The eigenvectors and eigenvalues of M relate
to edge direction and magnitude
•  The eigenvector associated with the larger eigenvalue points

in the direction of fastest intensity change
•  The other eigenvector is orthogonal to it

Interpreting the eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2

λ1 and λ2 are small “Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of image points using eigenvalues
of the second moment matrix:

Local Patch Analysis

Edge

–  large gradients, all the same
–  large λ1, small λ2

Low texture region

–  gradients have small magnitude
–  small λ1, small λ2

High textured region

–  gradients are different, large magnitudes
–  large λ1, large λ2

Observation
This is a two image problem BUT

•  Can measure sensitivity by just looking at one of the images!
•  This tells us which pixels are easy to track, which are hard

–  very useful later on when we do feature tracking...

Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns

•  Substituting into the brightness constancy
equation:

yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

0≈+⋅+⋅ tyx IvIuI

Affine motion

0)()(654321 ≈++++++ tyx IyaxaaIyaxaaI

•  Substituting into the brightness constancy
equation:

yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

•  Each pixel provides 1 linear constraint in
 6 unknowns

[] 2∑ ++++++= tyx IyaxaaIyaxaaIaErr)()()(654321

•  Least squares minimization:

Affine motion

Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

•  Suppose ATA is easily invertible
•  Suppose there is not much noise in the image

 When our assumptions are violated
•  Brightness constancy is not satisfied
•  The motion is not small
•  A point does not move like its neighbors

–  window size is too large
–  what is the ideal window size?

Iterative Refinement
Iterative Lukas-Kanade Algorithm

1.  Estimate velocity at each pixel by solving Lucas-Kanade equations
2.  Warp H towards I using the estimated flow field

- use image warping techniques
3.  Repeat until convergence

Optical Flow: Iterative Estimation

x x0

Initial guess:
Estimate:

estimate
update

(using d for displacement here instead of u)

Optical Flow: Iterative Estimation

x x0

estimate
update

Initial guess:
Estimate:

Optical Flow: Iterative Estimation

x x0

Initial guess:
Estimate:
Initial guess:
Estimate:

estimate
update

Optical Flow: Iterative Estimation

x x0

Optical Flow: Iterative Estimation
Some Implementation Issues:

•  Warping is not easy (ensure that errors in warping are
smaller than the estimate refinement)

•  Warp one image, take derivatives of the other so you don’t
need to re-compute the gradient after each iteration.

•  Often useful to low-pass filter the images before motion
estimation (for better derivative estimation, and linear
approximations to image intensity)

Revisiting the small motion assumption

Is this motion small enough?
•  Probably not—it’s much larger than one pixel (2nd order terms dominate)
•  How might we solve this problem?

Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
images can have many pixels with the same intensity.
I.e., how do we know which ‘correspondence’ is correct?

nearest match is correct
(no aliasing)

nearest match is incorrect
(aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift

Reduce the resolution!

image I image H

Gaussian pyramid of image H Gaussian pyramid of image I

image I image H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image I image J

Gaussian pyramid of image H Gaussian pyramid of image I

image I image H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Feature-based methods (e.g. SIFT+Ransac+regression)
•  Extract visual features (corners, textured areas) and track them over

multiple frames
•  Sparse motion fields, but possibly robust tracking
•  Suitable especially when image motion is large (10-s of pixels)

Direct-methods (e.g. optical flow)

•  Directly recover image motion from spatio-temporal image brightness
variations

•  Global motion parameters directly recovered without an intermediate feature
motion calculation

•  Dense motion fields, but more sensitive to appearance variations
•  Suitable for video and when image motion is small (< 10 pixels)

Recap: Classes of Techniques

