Neural Networks
| ecture 6

Rob Fergus

Individual neuron

Non-linearities (RELU, tanh, sigmoid)

Single layer model

Multiple layer models

Theoretical discussion: representational power
Examples shown decision surface for 1,2,3-layer nets
Training models

Backprop

Example modules

Special layers

Practical training tips

Setting learning rate

Debugging training

Regularization

Fergus, Miller, Puhrsch Introduction to Deep Learning

Additional Readings

Useful books and articles

@ Neural Networks for Pattern Reconition, Christopher M.
Bishop, Oxford University Press 1995.

o Red/Green cover, NOT newer book with yellow/beige cover.

@ Andrej Karpathy's C5231n Stanford Course on Neural Nets
http://cs231n.github.io/

@ Yann LeCun's NYU Deep Learning course
http://cilvr.cs.nyu.edu/doku.php?id=courses:
deeplearning?2015:start

Fergus, Miller, Puhrsch Introduction to Deep Learning

Neural Networks Overview

A bit more information about this

Input Output
@ Neural nets composed of

layers of artificial neurons.

@ Each layer computes some
function of layer beneath.

@ Inputs mapped In
feed-forward fashion to
output.

@ Consider only feed-forward
neural models at the
moment, 1.e. no cycles

Fergus, Miller, Puhrsch Introduction to Deep Learning

Historical

Overview

Origins of Neural Nets

@ Neural nets are an example of connectionism. Connectionism [Hebb
1940s] argues that complex behaviors arise from interconnected
networks of simple units. As opposed to formal operations on
symbols (computationalism).

@ Ear

y work in 1940's and 1950's by Hebb, McCulloch and Pitts on

artl

1cial neurons.

@ Perceptrons [Rosenblatt 1950's|. Single layer networks with simple

lear

ning rule.

@ Perceptron book [Minsky and Pappert 1969]. Showed limitations of
single layer models (e.g. cannot solve XOR).

Fergus, Miller, Puhrsch Introduction to Deep Learning

Historical Overview

More recent history

Back-propagation algorithm [Rumelhart, Hinton, Williams
1986]. Practical way to train networks.

Neocognitron [Fukushima 1980]. Proto-ConvNet, inspired by
[Hubel & Weisel 1959].

Convolutional Networks [LeCun & others 1989].
Bigger datasets, e.g. [ImageNet 2009]
Neural Nets applied to speech [Hinton's group 2011].

ConvNets applied to ImageNet Challenge 2012 [Krizhevsky,
Sutskever & Hinton NIPS 2012]

L ast few years, improved ConvNet architectures. Closing on
human performance.

Fergus, Miller, Puhrsch Introduction to Deep Learning

An Individual Neuron

Also known as a unit

@ Input: x (n x 1 vector)

@ Parameters: weights w (n x 1
vector), bias b (scalar) Input Output

n

@ Activation: a=>_._, x;jw; + b.
Note a Is a scalar.
Multiplicative interaction
between weights and input.

@ Point-wise non-linear function:
o(.), e.g. o(.) = tanh(.).

@ Output:
y =f(a)=0(>_;_, xiw; + b)

. b
@ Can think of bias as weight wy, A’Q

connected to constant input 1:
y = f(W"[1,x]).

Fergus, Miller, Puhrsch Introduction to Deep Learning

Single Layer Network

Multiple outputs

@ Input: x (n x 1 vector)

@ /M neurons

@ Parameters:

o weight matrix W (n x m)
o bias vector b (m x 1)

@ Non-linear function o(.)

e Output: y = o(Wx + b)
(mx1)

Input Output
layer layer
=

Fergus, Miller, Puhrsch

Introduction to Deep Learning

Non-linearities: Sigmoid

@ o(z) = 1+}e—z

@ Interpretation as firing rate of
neuron

@ Bounded between [0,1]

@ Saturation for large +ve,-ve
Inputs

@ Gradients go to zero

@ Outputs centered at 0.5 (poor
conditioning)

@ Not used In practice

Fergus, Miller, Puhrsch

0.5

A

= sigmoid(x)

oI 5

Introduction to Deep Learning

Non-linearities: Tanh

@ o(z) = tanh(z) | | Y= tanh(z)
@ Bounded in [+1,-1] range
@ Saturation for large +ve, -ve
inputs | | | | | >
-6 —4 =2 2 4 0

@ Outputs centered at zero

@ Preferable to sigmoid

Fergus, Miller, Puhrsch Introduction to Deep Learning

Non-linearities: Rectified Linear (RelLU)

@ o(z) = max(z,0)

@ Unbounded output (on positive A

side) O = ReLU(2)
@ Efficient to implement:

dO‘(Z) o {O 1} 4 |

@ Also seems to help convergence
(see 6x speedup vs tanh in 5 |
Krizhevsky et al.)

@ Drawback: if strongly in
negative region, unit is dead
forever (no gradient).

6 -4 -2 2 4 6

@ Default choice: widely used in
current models.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Non-linearities: Leaky RELU

o Leaky Rectified Linear 1
0(z) = 1[z > 0]max(0, x) + y|= PReLU(z)
1[z < 0]max(0, az)

o where a is small, e.g. 0.02 ol

@ Also known as probabilistic
ReLU (PRelLU) 21

@ Has non-zero gradients
everywhere (unlike RelLU)

@ « can also be learned (see -6 —4 =2 2 4 6
Kaiming He et al. 2015).

Fergus, Miller, Puhrsch Introduction to Deep Learning

Multiple Layers

A bit more information about this

Neural networks is composed
of multiple layers of neurons.

Input Hidden Output
@ Acyclic structure. Basic layer layer layer
model assumes full X1
connections between layers. ‘ h1

@ Layers between Input and X5 ‘ 1%
output are called hidden. “ ‘
@ Various names used: X3 \ :
o Artificial Neural Nets ~
(ANN) AN M
o Multi-layer Perceptron . ‘ ‘
(MLP) ' ‘
o Fully-connected network Xn ‘
@ Neurons typically called

units.

Fergus, Miller, Puhrsch Introduction to Deep Learning

3 layer MLP

Input Hiddenl Hidden2 Output
layer layer layer layer

e By convention, number of %! ‘ h% h%

layers Is hidden + output ‘

(i.e. does not include input). *2 " ‘ ‘ Y1
@ So 3-layer model has 2 ‘(2

hidden layers. = ‘;\ “ :
@ Parameters: weight matrices \\.» ’ '

W, W2, W3 and bias : ‘ : ’ i

vectors b', b*, b3. _2
= &

Fergus, Miller, Puhrsch Introduction to Deep Learning

Architecture Selection for MLPs

How to pick number of layers and units/layer

@ No good answer:

e Problem has now shifted from picking good features to picking
good architectures.

o (Non-answer) Pick using validation set.

o Hyper-parameter optimization [e.g. Snoek 2012
https://arxiv.org/pdf/1206.2944 |.

e Active area of research.

@ For fully connected models, 2 or 3 layers seems the most that
can be effectively trained (more later).

@ Regarding number of units/layer:

o Parameters grows with (units/layer)?.
o With large units/layer, can easily overfit.
e For classificaion, helps to expand towards output.

Fergus, Miller, Puhrsch Introduction to Deep Learning

TOY EXAMPLE: SYNTHETIC DATA

1 input & 1 output

100 hidden units in each Iayer ; ; ; : i
W e e *""

0.6 _ "
0.4_ ¥

0-2_ B

output
R

Y] SR ,
O ,

0.6 _ 'I -

; , 5 : : w1 hidden layer
0.8 _----illlr'-"' === 5 hidden Iayers

; ; ; ; ; “===3 hidden layers |
1 I I | [|
-20 -15 -10 -5 0 5 10 15

SYNTHETIC DATA

TOY EXAMPLE

...........

1
3

(Y

w10 hiddens

==="1000 hiddens

b,

&

g, : :
. x.\

e lm-.-.un fr!l...!.ﬂ.:.-.- .:M.-.-.-I.lmlllllwll!-W-IIIIIMII-._.

._.ﬁ.ﬁ.w.ﬂ.‘

| ’
~

s

17

20
Ranzato

10

0.8 ™™™ 100 hiddens

-15

-20

Input

Representational Power

What functions can you represent with an MLP?

@ 1 layer? Linear decision surface.

@ 2+ layers? In theory, can represent any function. Assuming
non-trivial non-linearity.
e Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

e Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html

e Simple proof by M. Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html

o D. Mackay book nttp:
//www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

@ But issue is efficiency: very wide two layers vs narrow deep
model?

@ In practice, more layers helps.

@ But beyond 3, 4 layers no improvement for fully connected
layers.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Training a model: Overview

How to set the parameters

e Given dataset {x, y}, pick appropriate cost function C.

@ Forward-pass (f-prop) examples through the model to get
predictions.

@ Get error using cost function C to compare prediction to
targets y.

@ Use back-propagation (b-prop) to pass error back through
model, adjusting parameters to minimize loss/energy E.

@ Back-propagation is essentially chain rule of derivatives back
through the model.

@ Each layer is differentiable w.r.t. to parameters and input.

@ Once gradients obtained, use Stochastic Gradient Descent
(SGD) to update weights.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Stochastic Gradient Descent

@ Want to minimize overall loss function E.
@ Loss is sum of individual losses over each example.

@ In gradient descent, we start with some initial set of
parameters 6°

o Update parameters: 0%t « 9% + nVé.

@ k is iteration index, 7 is learning rate (scalar; set
semi-manually).

@ Gradients Vf = %—g computed by b-prop.

@ In Stochastic gradient descent, compute gradient on sub-set
(batch) of data.

@ |f batchsize=1 then 6 is updated after each example.

@ Gradient direction is noisy, relative to average over all
examples (standard gradient descent).

Fergus, Miller, Puhrsch Introduction to Deep Learning

Computing Gradients in a multi-stage architecture

Forward Pass

@ Consider model with N layers.
Layer i has vector of weights
Wi; .

@ F-Prop (in red) takes input x

and passes It through each
Iayer F,'Z X = F,'(X,'_l, VV,)

@ Output of each layer x;;

. . . Wi
predlctlon Xp 1S output of top 4E/dWie—
Xi-1

|a er. dE/dXi-1
y 1|
@ Cost function C compares x, x1] | deiax:
W1
@ Overall energy X0 desired
o M m ..m\ - input X output Y
E=)_,C(x,y"), iesum

over all examples of C(x,,y).
[Figure: Y. LeCun and M. Ranzato]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Computing gradients

To compute the gradients, we could start by
wring the full energy E as a function of the

network parameters.

E(6) = iC(Fn(Fn_l(Fz(Fl(xg’,wl),wz),wn_l),w,,)»ym)

m=1

And then compute the partial
derivatives... instead, we can use the
chain rule to derive a compact
algorithm: back-propagation

E
1

—Cﬂmnﬂ E)

(output) X
| Xp-1

1X;
Fi(xi-ls w
Txi-l
$X,
FZ‘(XI: WZ)
[x,
Fl(x()s wl)

T

(input) X,

i<

Matrix calculus

* X column vector of size [nx1] |
X = %

M

‘xn

» We now define a function on vector x: y = F(x)
* If y 1s a scalar, then

dyldx =|dyldx, dyldx, L dylox,]

The derivative of y 1s a row vector of size [1xn]

 If y 1s a vector [m X% 1], then (Jacobian formulation):
dy, lox, dylox, L dylox
ay [ox = M M M
ay,, ldx, dy,lox, L dy,lox,

The derivative of y 1s a matrix of size [m*n]

(m rows and n columns)

Matrix calculus

* If y 1s a scalar and x 1s a matrix of size [nxm], then

dylox,, dylox, L dylox
wioX =| M M M

adylox,, dylix, L ay/ox,,

The output 1s a matrix of size [mxn]

Matrix calculus

* Chain rule:
For the function: z = h(x) =1 (g(x))

Its dertvative 1s: h’(x) =’ (g(x)) g’ (X)

and writing z=f(u), and u=g(x):

| _dz| du
dx|._ ~ du u=g(a) dx| _,
/ 1 \

[mxn] [mxp] [pxn]

with p = length vector u = lul, m =1zl, and n =[x

Example, it IzI=1, lul = 2, Ix|=4

= HHHE - Il EEEE
HEEEE

e Chain rule:

Matrix calculus

For the function: h(x) = 1,1, (...(1;(x))))

With u,=f;(x)
u; = f;(u;)
L = un: fn(un—l)

The derivative becomes a product of matrices:

%
dx

X=d

dz

du, _,

U, » =fn—2 (U, s)

 du,
du,

up = f(a)

(exercise: check that all the matrix dimensions work fine)

 du,
dx

X=d

Computing gradients

The energy E is the sum of the costs
associated to each training example x™,

y" "
E(0) = EC(XZ’,ym;H)

Its gradient with respect to the networks
parameters is:
OE A C(x).y":6)
02

m=1

1s how much E varies when the parameter 0, i1s varied.

Computing gradients

We could write the cost function to get the gradients:

C(xn,y;ﬁ) ~ C(Fn (xn—l’wn)9y)

with @ = [wl,wz,L ,wn]

It we compute the gradient with respect to the parameters of
the last layer (output layer) w,, using the chain rule:

4C 9C ox, IC OF,(x,,.w,)
ow dx ow. O ow

n n n n n

(how much the cost changes when we change w,,: 1s the product between how much the cost changes

when we change the output of the last layer and how much the output changes when we change the
layer parameters.)

Computing gradients: cost layer

It we compute the gradient with respect to the parameters of
the last layer (output layer) w,,, using the chain rule:

IC oC dx, oC OF,(x,.w,)

ow. — dx, ow, X, w.
7 "\
Will depend on the
For example, for an Euclidean loss: layer structure and
1 > non-linearity.
C(x,,y) = 5| x, =¥

The gradient is:

dC
ox

n

Computing gradients: layer i

We could write the full cost function to get the gradients:

C(x,.:0) = C(Fn(Fn_l(Fz(Fl(xO,wl),wz),wn_l),wn)aY)

It we compute the gradient with respect to w;, using the chain rule:

SOX,,, OX,

l

doC - &C. ox | o"xn_l.K
ow. ox ox _, ox _, ox. ow,

l n

\ 1
' \

49 é)Fi(xi—l’Wi)
oX . ow .
And this can be This 1s easy.

computed iteratively!

Backpropagation

oC JC dx, é’xn_l.K Sox;, ox,
ow., odx ox _, ox _, ox. ow

\ Y l \
49 é)F;(xi—l’Wi)
29 ow

It we have the value of £ we can compute the gradient at the
layer bellow as: 0X;

oC JC o,

é)xi_l é)xl é)xi—l
Gradi.ent Gradient or, (i-1>W)
layer i-1 layer i

X,

Backpropagation: layer 1

» Layer 1 has two inputs (during training)

Xi-1 £
1:i+1 é’xi
ic For layer 1, we need the derivatives:
Xi oF,(x,_;,w,;) oF;,(x,_,,w;)
Hidden layer i ox;_, ow,
* We compute the outputs
A = Fi(‘xi—l’wi)

oC dC JF(x,_;,w,)

ox,_, ox, X,

l

Forward Backward . The weight update equation is:
PasS PAsS 9C 9C OF(x, W)
ﬁi } 0X; ow,
0')E (sum over all

k+1 k
< W ; + Tlt - training examples

l é’W : to get E)

l

Fi,

W

Back prop gatlon summar
ard pass:

* For r each
training example.
Compute the outputs for

all layers (output)

x; =F(x,_,w;)
- Backwards pass: compute

cost derivatives iteratively
from top to bottom:

oC dC JF(x,_;,w,)
ox,_, ox, X,

l

- Compute gradients and
update weights.

(Input) X,

&

Linear Module

- Forward propagationx = F(x, ,W)=Wx,

i EEEN N
. — With W being a
. ..-. . matrix of size

- Backprop to input: . | Xout | | Xin |
Joc JC JF(x, W) JC ox,
dxin é)xout é)xin é)xout é)xin
If we look at the j component of output x,,:, with respect to the i component of the
input, Xi&:
xOl/t :
¥ — Wl] — é’F(xm ,W) _ W
dxin - ox

J

Therefore:

ac - HEEE-EEE BREE
W HEEE
% Py EEEE

34

’c Linear Module

Rout é)xout
- Forward propagationx = F(x, W)=Wx,
Xin oc ° Backprop to weights:
dx. oC dC JF(x,,W) 9C 0ox,,
oW ox oW 0X oW

out out

If we look at how the parameter W;; changes the cost, only the i component of the
output

will change, tlg,@:efore:é,c X JC JC JoC
_ . L = "X = Xip”
é)le ox out, 0')le T é)’xouti ! oW é)xout
é)xout-
W - = xinj ..-
HEN -

And now we can update the weights (by summing over all the training examples):
é)E (sum over all

k+1 k
Wij < le + T]t training examples

é’Wl.j to get E) 35

Xout

Linear Module

oW

= X. °

n

dC

oxX

out

Weight updates

Wk-l-le Wk +nt(_

ok
oW

)T

X

ou

L Pointwise function

- Forward propagation:
xouti - h('xini +bi)

h = an arbitrary function, b; is a bias term.

- Backprop to input: oC _ 9C How _ _9C -h'(x. +b)
é)‘xini é)xouti é)xini dxouti . |

- Backprop to bias: oC _ _IC Fow _ 9C - h'(x, +b,)
ob, ox,, b, ox,, e

We use this last expression to update the bias.

Some useful derivatives:

For hyperbolic tangenttanh'(x) = 1 — tanh”(x)

For ReLU: h(x) = max(0,x) h’(x)=1 [x>0]

Pointwise function

dC dC
db. dx

h'(x,, +b)

out;

Weight updates
oE
bi"'— bl +1 —
l l Tll‘ O')bl

FEuclidean cost module

Back propagation example

node 1 node 3

O ()
1
anh
: node 5

mnear
node 2 node 4
-1

G

Learning rate = -0.2 (because we used positive increments)

input Olltpllt

Euclidean loss

Training data: input desired output
node 1 node 2 node 5
1.0 0.1 0.5

Exercise: run one iteration of back propagation

Back propagation example

node 1 node 3

O Wi3=1

input output
node 2
After one iteration (rounding to two digits):
node 1 node 3
W13=1.02
input output

Toy Code: Neural Net Trainer in
fori=1:nr_layers -1 MATLAB

[h{i} jac{i}] = logistic(W{i} * h{i-1} + b{i});

end

h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};
prediction = softmax(h{l-1});

loss = - sum(sum(log(prediction) .* target));

dh{l-1} = prediction - target;
fori=nr_layers—-1:-1:1

Wgrad{i} = dh{i} * h{i-1}';
bgrad{i} = sum(dh({i}, 2);

dh{i-1} = (W{i}' * dh{i}) .* jac{i-1};
end

fori=1:nr_layers -1
W{i} = W{i} — (Ir/ batch_size) * Wgrad{i};
b{i} = b{i} — (Ir/batch_size) * bgrad{i};

42
end

Ranzato -"

TOY EXAMPLE: SYNTHETIC DATA

N

1 input & 1 output , ,
3 hidden layers, 1000 hiddens -

Regression of cosine

2_
@

43
. Ranzato »

TOY EXAMPLE: SYNTHETIC DATA

!

& Target

®* Before training

© After 1 epoch

® At the end of training

O e PRy .

1 input & 1 output
3 hidden layers, 1000 hiddens
. Regression of cosine
| | | |

L 2 3 4

Ranza’ro "

Alternate Topologies

@ Models with complex graph
structures can be trained by
backprop.

@ Each node in the graph must
be differentiable w.r.t.
parameters and inputs.

@ |f no cycles exist, then b-prop
takes a single pass.

@ If cycles exist, we have a
recurrent network which will be
discussed In subsequent
lectures.

Fergus, Miller, Puhrsch

|
I

[Figure: Y. LeCun and M. Ranzato]

Introduction to Deep Learning

@ Plus module has K inputs
X1,...,Xk. Output is sum of

. K
INPUtS: Xout =)41 Xk

OE = OE
o, = Dxoy VK

@ Plus B-prop:

@ Branch module has a single
input, but K outputs
X1, ...,XK that are just copies
of input: xx = x;,Vk

@ Branch B-prop:
OE K OE

Oxin 4—=k=1 a_Xk

Fergus, Miller, Puhrsch

Branch / Plus Module

APUS ModuA

\YBranch Modue\%

[Slide: Y. LeCun and M. Ranzato]

Introduction to Deep Learning

Softmax Module

Single input x. Normalized output vector z, i.e. > .z =1.
. . exp—pBXx

F-Prop: z; = S~ exp — A,

B 1s "temperature’, usually set to 1.

B-prop:

It = J, then g_fgl — Z,'(]. — Z,').

It #], then g—ij’ = —ZiZj.

Often combined with cross-entropy cost function:

C
E — S:c—l yilog(Zi)-
Conveniently, this yields b-prop: % = X; — VY.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Practical Tips for Backprop

[from M. Ranzato and Y. LeCun]

Use RelLU non-linearities (tanh and logistic are falling out of favor).
Use cross-entropy loss for classification.

Use Stochastic Gradient Descent on minibatches.

Shuffle the training samples.

Normalize the input variables (zero mean, unit variance). More on
this later.

Schedule to decrease the learning rate

Use a bit of L1 or L2 regularization on the weights (or a
combination) But it's best to turn it on after a couple of epochs

Use dropout for regularization (Hinton et al 2012
http://arxiv.org/abs/1207.0580)

See also [LeCun et al. Efficient Backprop 1998]

And also Neural Networks, Tricks of the Trade (2012 edition) edited
by G. Montavon, G. B. Orr, and K-R Muller (Springer)

Fergus, Miller, Puhrsch Introduction to Deep Learning

Setting the Learning Rate

@ Learning rate n has dramatic wl
effect on resulting model.

@ Pretend energy surface is
quadratic bowl (in reality,

much more complex). w?2
@ Gradient descent direction is | ,
just local, so it surface is highly
elipitical then easy to have t
learning rate too large and E
oscillate.
@ Dithicult to have single learning
rate that works for all
dimensions. W |

[Figures: G. Hinton]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Annealing of Learning Rate

@ Constant learning rate n typically not optimal.

@ Start with largest value that for which training loss decreases, e.g.
0.1.

@ T hen train until validation error flatens out.
@ Divide n by, say, 0.3.
@ Repeat.

eid: 8 (data)
0.9} —+—¢id: 8 (test) |

10 20 30 40 50 60
Epochs

Fergus, Miller, Puhrsch Introduction to Deep Learning

Automatic Adjustment of Learning Rate

@ Smart way of adjusting n automatically?

@ Active area of research in optimization community.

o ADAGRAD: Ak = (VO)X
VK 1([ver>2

[Duchi et al., Adaptive subgradient methods for online leaning and stochastic optimization, in COLT, 2010].

_ _ RMS[A6]*—
o ADADELTA: A0* = — prs<om (V)

[ADADELTA: An Adaptive Learning Rate Method, Matthew D. Zeiler, arXiv 1212.5701, 2012].

@ RMSProp (similar to ADADELTA)
E[([VH])] = 0. -OEI(IVO] ?)<H 4 0.1([VO]?)"

AOx = g
\/E[([VH]2 “J+e (VO)

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

@ ADAM uses different learning rate for each parameter
ADAM: A method for Stochastic Optimization, Kingma and Ba, ICLR 2015].

Fergus, Miller, Puhrsch Introduction to Deep Learning

Momentum

To speed convergence

Add momentum term to the weight update.

Encourages updates to keep following previous direction.

Damps oscillations in directions of high curvature.

Builds up speed in directions with gentle but consistent gradient.
Usually helps speed up convergence.

O < 0K + a(AQ) 1 — Vo

« typically around 0.9.

[Slide: G. Hinton]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Nesterov Momentum

@ Simple idea.
@ Update weights with momentum vector.
@ T hen measure gradient and take step.

@ This Is opposite order to regular momentum.

4

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

[Figure: G. Hinton]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Batch Normalization

@ Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift, Sergey loffe, Christian
Szegedy, arXiv:1502.03167

Input: Values of x over a mini-batch: B = {x1__,, };
Parameters to be learned: v, 3 0.81
Output: {y; = BN, 5(x;)}
: Y S -+
1 ?n - ‘ .—--_-\. '.. _ ==
g — — Z T // mini-batch mean P N
m 4 1,
=1
1 e
2 2 i e = = =Incepti
Op — Z(Trg — 1iB) // mini-batch variance R
=1 esHr e BN-x5
BN-x30
— £r; — B . + - BN-x5-Sigmoid
Lq 2 // normalize 4 Steps to match Inception
VO T € : . : ; :
.] 10M 15M 20M 25M 30M
y; < vx; + B = BN, g(x;) // scale and shift
Figure 2: Single crop validation accuracy of Inception

Algorithm 1: Batch Normalizing Transform, applied to 444 jts batch-normalized variants, vs. the number of
activation x over a mini-batch. training steps.

Fergus, Miller, Puhrsch Introduction to Deep Learning

L ocal Minima

Non-convexity of energy surface

@ Non-convexity means there are multiple minima.

@ Gradient descent is local method: minima you fall into
depends on your initial starting point.

@ Maybe some mimima have much lower energy than others?

@ The Loss Surfaces of Multilayer Networks Choromanska et al.
http://arxiv.org/pdf/1412.0233v3.pdf

cou I'\tA

|
| 50
i R
il 100
mﬂ s
PN [
0.68 O_'m

0.09
loss

Fergus, Miller, Puhrsch

Introduction to Deep Learning

@ G. E. Hinton, N. Srivastava, A.
Krizhevsky, |. Sutskever and R.

R. Salakhutdinov, Improving 0 R
neural networks by preventing) — 2000-2000-1000-50
co-adaptation of feature u l

detectors, arXiv:1207.0580 36 fraining wittQut dropout

2012 AWM

@ Fully connected layers only.

Classification Error %

LTy
P
T

training with dropout

m

@ Randomly set activations in
layer to zero

30

@ Gives ensemble of models 26} = o 55 o =0

Epochs

@ Similar to bagging
[Breiman94], but differs in that
parameters are shared

Fergus, Miller, Puhrsch Introduction to Deep Learning

Debugging Training

What to do when its not working

@ Training diverges:
e Learning rate may be too large decrease learning rate
e BPROP is buggy numerical gradient checking

@ Parameters collapse / loss is minimized but accuracy is low

@ Check loss function:
e Is it appropriate for the task you want to solve?
e Does it have degenerate solutions? Check pull-up term.

@ Network Is underperforming

e Compute flops and nr. params. if too small, make net larger
o Visualize hidden units/params fix optmization

@ Network i1s too slow

e Compute flops and nr. params. GPU, distrib. framework,
make net smaller

Fergus, Miller, Puhrsch Introduction to Deep Learning

Debugging Training (2)

What to do when its not working

@ Inspect hidden units.
@ Should be sparse across samples and features (left).

@ In bad training, strong correlations are seen (right), and also
units ignore Input.

samples
mi

o R I 1 TTea

hidden unit hidden unit

[Figures: M. Ranzato}

Fergus, Miller, Puhrsch Introduction to Deep Learning

Debugging Training (3)

What to do when its not working

@ Visualize weights

too noisy too lack
correlated structure

Good training: learned filters exhibit structure and are uncorrelated.

[Figure: M. Ranzato}

Fergus, Miller, Puhrsch Introduction to Deep Learning

Regularization

The Intuition

Small model Big model Big model

+ Regularize

@ Better to have big model and regularize, than unfit with small
model.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Regularizing the model

Help to prevent over-fitting

Weight sharing (greatly reduce the number of parameters)
Data augmentation (e.g., jittering, noise injection, etc.)
Dropout.

Weight decay (L2, L1).

Sparsity in the hidden units.

Multi-task learning.

Fergus, Miller, Puhrsch Introduction to Deep Learning

