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Panoramas	
  

Facebook 360 photos 



How do we build panorama? 

•  We need to match (align) images 



Matching with Features 
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  feature	
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  in	
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  images	
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Recall: Edge detection 
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Edge detection, Take 2 
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Source: S. Seitz 



From edges to blobs 
•  Edge = ripple 
•  Blob = superposition of two ripples 

Spatial selection: the magnitude of the Laplacian 
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is 
“matched” to the scale of the blob 

maximum 



Scale selection 
•  We want to find the characteristic scale of the 

blob by convolving it with Laplacians at several 
scales and looking for the maximum response 

•  However, Laplacian response decays as scale 
increases: 

Why does this happen? 

increasing σ original signal 
(radius=8) 



Scale normalization 
•  The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ 
increases 

 

πσ 2
1



Scale normalization 
•  The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ 
increases 

•  To keep response the same (scale-invariant), 
must multiply Gaussian derivative by σ 

•  Laplacian is the second Gaussian derivative, 
so it must be multiplied by σ2 



Effect of scale normalization 

Scale-normalized Laplacian response 

Unnormalized Laplacian response Original signal 

maximum 



Blob detection in 2D 
Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D 
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Blob detection in 2D 
Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D 
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Scale selection 
•  At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r? 

r 

image Laplacian 



Scale selection 
•  At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r? 
•  To get maximum response, the zeros of the Laplacian 

have to be aligned with the circle 
•  Zeros of Laplacian is given by (up to scale): 

 
 

•  Therefore, the maximum response occurs at  

r 

image 

.2/r=σ

circle 
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Characteristic scale 
•  We define the characteristic scale of a blob 

as the scale that produces peak of Laplacian 
response in the blob center 

characteristic scale 
T. Lindeberg (1998). "Feature detection with automatic scale selection." 
International Journal of Computer Vision 30 (2): pp 77--116.  



Scale-space blob detector 
1.  Convolve image with scale-normalized 

Laplacian at several scales 
2.  Find maxima of squared Laplacian response 

in scale-space 



Scale-space blob detector: Example 



Scale-space blob detector: Example 



Scale-space blob detector: Example 



Matching with Features 
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Basic idea: 
•  Take 16x16 square window around detected feature 
•  Compute edge orientation (angle of the gradient - 90°) for each pixel 
•  Throw out weak edges (threshold gradient magnitude) 
•  Create histogram of surviving edge orientations 

Scale Invariant Feature Transform 

Adapted from slide by David Lowe 

0 2π 
angle histogram 

Former NYU faculty &  
Prof. Ken Perlin’s advisor 

David Lowe IJCV 2004 



Orienta3on	
  Histogram	
  
•  4x4	
  spa3al	
  bins	
  (16	
  bins	
  total)	
  
•  Gaussian	
  center-­‐weigh3ng	
  
•  8-­‐bin	
  orienta3on	
  histogram	
  per	
  bin	
  
•  8	
  x	
  16	
  =	
  128	
  dimensions	
  total	
  
•  Normalized	
  to	
  unit	
  norm	
  



Feature stability to affine 
change 

•  Match features after random change in image scale & 
orientation, with 2% image noise, and affine distortion 

•  Find nearest neighbor in database of 30,000 features 



Distinctiveness of features 
•  Vary size of database of features, with 30 degree affine 

change, 2% image noise 
•  Measure % correct for single nearest neighbor match 



SIFT – Scale Invariant Feature Transform1 

•  Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, and 
to moderate affine transformations 

1	
  D.Lowe.	
  “Dis3nc3ve	
  Image	
  Features	
  from	
  Scale-­‐Invariant	
  Keypoints”.	
  Accepted	
  to	
  IJCV	
  2004	
  
2	
  K.Mikolajczyk,	
  C.Schmid.	
  “A	
  Performance	
  Evalua3on	
  of	
  Local	
  Descriptors”.	
  CVPR	
  2003	
  

Scale	
  =	
  2.5	
  
Rota3on	
  =	
  450	
  



SIFT	
  invariances	
  

•  Spa3al	
  binning	
  gives	
  tolerance	
  to	
  small	
  
shids	
  in	
  loca3on	
  and	
  scale	
  

•  Explicit	
  orienta3on	
  normaliza3on	
  
•  Photometric	
  normaliza3on	
  by	
  making	
  all	
  
vectors	
  unit	
  norm	
  

•  Orienta3on	
  histogram	
  gives	
  robustness	
  to	
  
small	
  local	
  deforma3ons	
  



Summary of SIFT 
Extraordinarily robust matching technique 

•  Can handle changes in viewpoint 
–  Up to about 60 degree out of plane rotation 

•  Can handle significant changes in illumination 
–  Sometimes even day vs. night (below) 

•  Fast and efficient—can run in real time 
•  Lots of code available 

–  http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT  
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Source: K. Grauman 

Fitting 
•  Choose a parametric model to represent a set 

of features 

simple model: lines simple model: circles 

complicated model: car 



Fitting: Issues 

•  Noise in the measured feature locations 
•  Extraneous data: clutter (outliers), multiple lines 
•  Missing data: occlusions 

Case study: Line detection 

Slide: S. Lazebnik 



Fitting: Issues 
•  If we know which points belong to the line, 

how do we find the “optimal” line 
parameters? 
•  Least squares 

 

•  What if there are outliers? 
•  Robust fitting, RANSAC 

 

•  What if there are many lines? 
•  Voting methods: RANSAC, Hough transform 

 

•  What if we’re not even sure it’s a line? 
•  Model selection 

Slide: S. Lazebnik 
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Least squares line fitting 
Data: (x1, y1), …, (xn, yn) 
Line equation: yi = m xi + b 
Find (m, b) to minimize  

∑ =
−−=

n

i ii bxmyE
1

2)(
(xi, yi) 

y=mx+b 

Slide: S. Lazebnik 



Least squares line fitting 
Data: (x1, y1), …, (xn, yn) 
Line equation: yi = m xi + b 
Find (m, b) to minimize  
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Matlab Demo 
  
%%%% let's make some points 
n = 10; 
true_grad = 2; 
true_intercept = 3; 
noise_level = 0.04; 
  
x = rand(1,n); 
y = true_grad*x + true_intercept + randn(1,n)*noise_level; 
  
figure; plot(x,y,'rx'); 
hold on; 
  
%%% make matrix for linear system 
X = [x(:) ones(n,1)]; 
  
%%% Solve system of equations 
p = inv(X'*X)*X'*y(:); % Pseudo-inverse 
p = pinv(X) * y(:); % Pseduo-inverse 
p = X \ y(:); % Matlab's \ operator  
  
est_grad = p(1); 
est_intercept = p(2); 
  
plot(x,est_grad*x+est_intercept,'b-'); 
  
fprintf('True gradient: %f, estimated gradient: %f\n',true_grad,est_grad); 
fprintf('True intercept: %f, estimated intercept: %f\n',true_intercept,est_intercept); 
  
 



Problem with “vertical” least squares 
•  Not rotation-invariant 
•  Fails completely for vertical lines 

Slide: S. Lazebnik 
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Total least squares 
Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d| 

∑ =
−+=

n

i ii dybxaE
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ax+by=d 
Unit normal: 

N=(a, b) 
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Total least squares 
Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d| 
Find (a, b, d) to minimize the sum of 
squared perpendicular distances ∑ =
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Total least squares 
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Total least squares 
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Total least squares 
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Least squares: Robustness to noise 
Least squares fit to the red points: 

Slide: S. Lazebnik 



Least squares: Robustness to noise 
Least squares fit with an outlier: 

Problem: squared error heavily penalizes outliers 
Slide: S. Lazebnik 



Robust estimators 
•  General approach: minimize 

 
ri (xi, θ) – residual of ith point w.r.t. model parameters θ 
ρ – robust function with scale parameter σ   

( )( )σθρ ;,ii
i

xr∑

The robust function 
ρ behaves like 
squared distance for 
small values of the 
residual u but 
saturates for larger 
values of u 

Slide: S. Lazebnik 



Choosing the scale: Just right 

The effect of the outlier is minimized 
Slide: S. Lazebnik 



The error value is almost the same for every 
point and the fit is very poor 

Choosing the scale: Too small 

Slide: S. Lazebnik 



Choosing the scale: Too large 

Behaves much the same as least squares 
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RANSAC 
•  Robust fitting can deal with a few outliers – 

what if we have very many? 
•  Random sample consensus (RANSAC):  

Very general framework for model fitting in 
the presence of outliers 

•  Outline 
•  Choose a small subset of points uniformly at random 
•  Fit a model to that subset 
•  Find all remaining points that are “close” to the model and 

reject the rest as outliers 
•  Do this many times and choose the best model 

M. A. Fischler, R. C. Bolles. 
Random Sample Consensus: A Paradigm for Model Fitting with Applications to 
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 
381-395, 1981.  

Slide: S. Lazebnik 



RANSAC for line fitting 
Repeat N times: 
•  Draw s points uniformly at random 
•  Fit line to these s points 
•  Find inliers to this line among the remaining 

points (i.e., points whose distance from the 
line is less than t) 

•  If there are d or more inliers, accept the line 
and refit using all inliers 

Source: M. Pollefeys 



Choosing the parameters 
•  Initial number of points s 

•  Typically minimum number needed to fit the model 

•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

•  Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

Source: M. Pollefeys 
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•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
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sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
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proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 

Source: M. Pollefeys 
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•  Initial number of points s 
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•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 
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Choosing the parameters 
•  Initial number of points s 

•  Typically minimum number needed to fit the model 

•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

•  Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

•  Consensus set size d 
•  Should match expected inlier ratio 

Source: M. Pollefeys 



Adaptively determining the number of samples 

•  Inlier ratio e is often unknown a priori, so pick 
worst case, e.g. 50%, and adapt if more 
inliers are found, e.g. 80% would yield e=0.2  

•  Adaptive procedure: 
•  N=∞, sample_count =0 
•  While N >sample_count 

– Choose a sample and count the number of inliers 
–  Set e = 1 – (number of inliers)/(total number of points) 
– Recompute N from e: 

 
 
 

–  Increment the sample_count by 1 

( ) ( )( )sepN −−−= 11log/1log

Source: M. Pollefeys 



RANSAC pros and cons 
•  Pros 

•  Simple and general 
•  Applicable to many different problems 
•  Often works well in practice 

•  Cons 
•  Lots of parameters to tune 
•  Can’t always get a good initialization of the model based on 

the minimum number of samples 
•  Sometimes too many iterations are required 
•  Can fail for extremely low inlier ratios 
•  We can often do better than brute-force sampling 

Source: M. Pollefeys 



Voting schemes 
•  Let each feature vote for all the models that 

are compatible with it 
•  Hopefully the noise features will not vote 

consistently for any single model 
•  Missing data doesn’t matter as long as there 

are enough features remaining to agree on a 
good model 
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Hough transform 
•  An early type of voting scheme 
•  General outline:  

•  Discretize parameter space into bins 
•  For each feature point in the image, put a vote in every bin in 

the parameter space that could have generated this point 
•  Find bins that have the most votes 

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 
Int. Conf. High Energy Accelerators and Instrumentation, 1959  

Image space Hough parameter space 



Parameter space representation 
•  A line in the image corresponds to a point in 

Hough space 

Image space Hough parameter space 

Source: S. Seitz 



Parameter space representation 
•  What does a point (x0, y0) in the image space 

map to in the Hough space? 

Image space Hough parameter space 

Source: S. Seitz 



Parameter space representation 
•  What does a point (x0, y0) in the image space 

map to in the Hough space? 
•  Answer: the solutions of b = –x0m + y0 
•  This is a line in Hough space 

Image space Hough parameter space 

Source: S. Seitz 



Parameter space representation 
•  Where is the line that contains both (x0, y0) and 

(x1, y1)? 

Image space Hough parameter space 

(x0, y0) 

(x1, y1) 

b = –x1m + y1 

Source: S. Seitz 



Parameter space representation 
•  Where is the line that contains both (x0, y0) and 

(x1, y1)? 
•  It is the intersection of the lines b = –x0m + y0 and  

b = –x1m + y1  

Image space Hough parameter space 

(x0, y0) 

(x1, y1) 

b = –x1m + y1 

Source: S. Seitz 



•  Problems with the (m,b) space: 
•  Unbounded parameter domain 
•  Vertical lines require infinite m 

Parameter space representation 



•  Problems with the (m,b) space: 
•  Unbounded parameter domain 
•  Vertical lines require infinite m 

•  Alternative: polar representation 

Parameter space representation 

ρθθ =  +  sincos yx

Each point will add a sinusoid in the (θ,ρ) parameter space   



Algorithm outline 
•  Initialize accumulator H  

to all zeros 
•  For each edge point (x,y)  

in the image 
 For θ = 0 to 180 
     ρ = x cos θ + y sin θ 
     H(θ, ρ) = H(θ, ρ) + 1 

    end 
end 

•  Find the value(s) of (θ, ρ) where H(θ, ρ) is a 
local maximum 

•  The detected line in the image is given by  
 ρ = x cos θ + y sin θ 

ρ 

θ 



features votes 

Basic illustration 



Square  Circle  

Other shapes 



Several lines 



A more complicated image 

http://ostatic.com/files/images/ss_hough.jpg 



features votes 

Effect of noise 



features votes 

Effect of noise 

Peak gets fuzzy and hard to locate 



Effect of noise 
•  Number of votes for a line of 20 points with 

increasing noise: 



Random points 

Uniform noise can lead to spurious peaks in the array 
features votes 



Random points 
•  As the level of uniform noise increases, the 

maximum number of votes increases too: 



Dealing with noise 
•  Choose a good grid / discretization 

•  Too coarse: large votes obtained when too many different 
lines correspond to a single bucket 

•  Too fine: miss lines because some points that are not 
exactly collinear cast votes for different buckets 

•  Increment neighboring bins (smoothing in 
accumulator array) 

•  Try to get rid of irrelevant features  
•  Take only edge points with significant gradient magnitude 



Hough transform for circles 
•  How many dimensions will the parameter 

space have? 
•  Given an oriented edge point, what are all 

possible bins that it can vote for? 



Hough transform for circles  
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image space Hough parameter space 



Generalized Hough transform 
•  We want to find a shape defined by its boundary 

points and a reference point 

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 
Pattern Recognition 13(2), 1981, pp. 111-122.  

a 



p 

Generalized Hough transform 
•  We want to find a shape defined by its boundary 

points and a reference point 
•  For every boundary point p, we can compute the 

displacement vector r = a – p as a function of 
gradient orientation θ 

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 
Pattern Recognition 13(2), 1981, pp. 111-122.  

a 

θ r(θ) 



Generalized Hough transform 
•  For model shape: construct a table indexed 

by θ storing displacement vectors r as 
function of gradient direction 

•  Detection: For each edge point p with 
gradient orientation θ: 
•  Retrieve all r indexed with θ 
•  For each r(θ), put a vote in the Hough space at p + r(θ) 

•  Peak in this Hough space is reference point 
with most supporting edges 

•  Assumption: translation is the only 
transformation here, i.e., orientation and scale 
are fixed 

Source: K. Grauman 



Overview 

•  Fi#ng	
  techniques	
  
– Least	
  Squares	
  
– Total	
  Least	
  Squares	
  

•  RANSAC	
  
•  Hough	
  Vo3ng	
  

•  Alignment	
  as	
  a	
  fi#ng	
  problem	
  



Image alignment 

•  Two broad approaches: 
•  Direct (pixel-based) alignment 

–  Search for alignment where most pixels agree 
•  Feature-based alignment 

–  Search for alignment where extracted features agree 
–  Can be verified using pixel-based alignment 

Source: S. Lazebnik 



Alignment as fitting 
•  Previously: fitting a model to features in one image 
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Source: S. Lazebnik 



Alignment as fitting 
•  Previously: fitting a model to features in one image 

 
 
 
 
 
 

•  Alignment: fitting a model to a transformation between 
pairs of features (matches) in two images 

∑
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Find model M that minimizes 

Find transformation T  
that minimizes 

M 
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T 
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Source: S. Lazebnik 



2D transformation models 

•  Similarity 
(translation,  
scale, rotation) 
 
 

•  Affine 
 
 

•  Projective 
(homography) 
 

Source: S. Lazebnik 



Let’s start with affine transformations 
•  Simple fitting procedure (linear least squares) 
•  Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 
•  Can be used to initialize fitting for more complex 

models 

Source: S. Lazebnik 



Fitting an affine transformation 
•  Assume we know the correspondences, how do we 

get the transformation? 
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Fitting an affine transformation 

•  Linear system with six unknowns 
•  Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters 
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Feature-based alignment outline 



Feature-based alignment outline 

•  Extract features 



Feature-based alignment outline 

•  Extract features 
•  Compute putative matches 



Feature-based alignment outline 

•  Extract features 
•  Compute putative matches 
•  Loop: 

•  Hypothesize transformation T 



Feature-based alignment outline 

•  Extract features 
•  Compute putative matches 
•  Loop: 

•  Hypothesize transformation T 
•  Verify transformation (search for other matches consistent 

with T) 



Feature-based alignment outline 

•  Extract features 
•  Compute putative matches 
•  Loop: 

•  Hypothesize transformation T 
•  Verify transformation (search for other matches consistent 

with T) 



Dealing with outliers 
•  The set of putative matches contains a very high 

percentage of outliers 
•  Geometric fitting strategies: 

•  RANSAC 
•  Hough transform 



RANSAC 
RANSAC loop: 
1.  Randomly select a seed group of matches 
2.  Compute transformation from seed group 
3.  Find inliers to this transformation  
4.  If the number of inliers is sufficiently large, re-compute 

least-squares estimate of transformation on all of the 
inliers 
 

Keep the transformation with the largest number of inliers 



RANSAC example: Translation 

Putative matches 

Source: A. Efros 



RANSAC example: Translation 

Select one match, count inliers 

Source: A. Efros 



RANSAC example: Translation 

Select one match, count inliers 

Source: A. Efros 



RANSAC example: Translation 

Select translation with the most inliers 

Source: A. Efros 



Motion estimation techniques 
•  Feature-based methods 

•  Extract visual features (corners, textured areas) and track them 
over multiple frames 

•  Sparse motion fields, but more robust tracking 
•  Suitable when image motion is large (10s of pixels) 

•  Direct methods 
•  Directly recover image motion at each pixel from spatio-temporal 

image brightness variations 
•  Dense motion fields, but sensitive to appearance variations 
•  Suitable for video and when image motion is small  

 



Optical flow 
Combination of slides from Rick Szeliski, Steve Seitz, 

Alyosha Efros and Bill Freeman and Fredo Durand 



Motion estimation: Optical flow 

Will start by estimating motion of each pixel separately 
Then will consider motion of entire image  



Why estimate motion? 
Lots of uses 

•  Track object behavior 
•  Correct for camera jitter (stabilization) 
•  Align images (mosaics) 
•  3D shape reconstruction 
•  Special effects 



Problem definition:  optical flow 

How to estimate pixel motion from image H to image I? 
•  Solve pixel correspondence problem 

–  given a pixel in H, look for nearby pixels of the same color in I 

Key assumptions 
•  color constancy:  a point in H looks the same in I 

–  For grayscale images, this is brightness constancy 
•  small motion:  points do not move very far 

This is called the optical flow problem 



Optical flow constraints (grayscale images) 

Let’s look at these constraints more closely 
•  brightness constancy:   Q:  what’s the equation? 

•  small motion:  (u and v are less than 1 pixel) 
–  suppose we take the Taylor series expansion of I: 

H(x,y)=I(x+u, y+v) 



Optical flow equation 
Combining these two equations 

In the limit as u and v go to zero, this becomes exact 
 



Optical flow equation 

Q:  how many unknowns and equations per pixel? 

Intuitively, what does this constraint mean? 

•  The component of the flow in the gradient direction is determined 
•  The component of the flow parallel to an edge is unknown 

This explains the Barber Pole illusion 
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm 
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html  

2 unknowns, one equation 

http://en.wikipedia.org/wiki/Barber's_pole 



Aperture problem 



Aperture problem 



Solving the aperture problem 
How to get more equations for a pixel? 

•  Basic idea:  impose additional constraints 
–  most common is to assume that the flow field is smooth locally 
–  one method:  pretend the pixel’s neighbors have the same (u,v) 

»  If we use a 5x5 window, that gives us 25 equations per pixel! 



RGB version 
How to get more equations for a pixel? 

•  Basic idea:  impose additional constraints 
–  most common is to assume that the flow field is smooth locally 
–  one method:  pretend the pixel’s neighbors have the same (u,v) 

»  If we use a 5x5 window, that gives us 25*3 equations per pixel! 

Note that RGB is not enough to disambiguate  
because R, G & B are correlated 
Just provides better gradient 



Lukas-Kanade flow 
Prob:  we have more equations than unknowns 

•  The summations are over all pixels in the K x K window 
•  This technique was first proposed by Lukas & Kanade (1981) 

Solution:  solve least squares problem 
•  minimum least squares solution given by solution (in d) of: 



Aperture Problem and Normal Flow 
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Combining Local Constraints 
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Conditions for solvability 
•  Optimal (u, v) satisfies Lucas-Kanade equation 

When is This Solvable? 
•  ATA should be invertible  
•  ATA should not be too small due to noise 

–  eigenvalues λ1 and λ2 of ATA should not be too small 
•  ATA should be well-conditioned 

–    λ1/ λ2 should not be too large (λ1 = larger eigenvalue) 
ATA is solvable when there is no aperture problem 



Eigenvectors of ATA 

•  Recall the Harris corner detector: M = ATA is 
the second moment matrix 

•  The eigenvectors and eigenvalues of M relate 
to edge direction and magnitude  
•  The eigenvector associated with the larger eigenvalue points 

in the direction of fastest intensity change 
•  The other eigenvector is orthogonal to it 



Interpreting the eigenvalues 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2 

λ1 and λ2 are small “Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of image points using eigenvalues 
of the second moment matrix: 



Local Patch Analysis 



Edge 

–  large gradients, all the same 
–  large λ1, small λ2 



Low texture region 

–  gradients have small magnitude 
–  small λ1, small λ2 



High textured region 

–  gradients are different, large magnitudes 
–  large λ1, large λ2 



Observation 
This is a two image problem BUT 

•  Can measure sensitivity by just looking at one of the images! 
•  This tells us which pixels are easy to track, which are hard 

–  very useful later on when we do feature tracking... 



Motion models 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 

3D rotation 

3 unknowns 



•  Substituting into the brightness constancy 
equation: 
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Affine motion 
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•  Substituting into the brightness constancy 
equation: 

yaxaayxv
yaxaayxu
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•   Each pixel provides 1 linear constraint in  
    6 unknowns 
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•  Least squares minimization: 

Affine motion 



Errors in Lukas-Kanade 
What are the potential causes of errors in this procedure? 

•  Suppose ATA is easily invertible 
•  Suppose there is not much noise in the image 

 When our assumptions are violated 
•  Brightness constancy is not satisfied 
•  The motion is not small 
•  A point does not move like its neighbors 

–  window size is too large 
–  what is the ideal window size? 



Iterative Refinement 
Iterative Lukas-Kanade Algorithm 

1.  Estimate velocity at each pixel by solving Lucas-Kanade equations 
2.  Warp H towards I using the estimated flow field 

- use image warping techniques 
3.  Repeat until convergence 



Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 

estimate 
update 

(using d for displacement here instead of u) 



Optical Flow: Iterative Estimation 

x x0 

estimate 
update 

Initial guess:  
Estimate: 



Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 
Initial guess:  
Estimate: 

estimate 
update 



Optical Flow: Iterative Estimation 

x x0 



Optical Flow: Iterative Estimation 
Some Implementation Issues: 

•  Warping is not easy (ensure that errors in warping are 
smaller than the estimate refinement) 

•  Warp one image, take derivatives of the other so you don’t 
need to re-compute the gradient after each iteration. 

•  Often useful to low-pass filter the images before motion 
estimation (for better derivative estimation, and linear 
approximations to image intensity) 



Revisiting the small motion assumption 

Is this motion small enough? 
•  Probably not—it’s much larger than one pixel (2nd order terms dominate) 
•  How might we solve this problem? 



Optical Flow: Aliasing 

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity. 
I.e., how do we know which ‘correspondence’ is correct?  

nearest match is correct 
(no aliasing) 

nearest match is incorrect 
(aliasing) 

To overcome aliasing: coarse-to-fine estimation. 

actual shift 

estimated shift 



Reduce the resolution! 



image I image H 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Coarse-to-fine optical flow estimation 



image I image J 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H 

Coarse-to-fine optical flow estimation 

run iterative L-K 

run iterative L-K 

warp & upsample 

. 

. 

. 



Feature-based methods (e.g. SIFT+Ransac+regression) 
•  Extract visual features (corners, textured areas) and track them over 

multiple frames 
•  Sparse motion fields, but possibly robust tracking 
•  Suitable especially when image motion is large (10-s of pixels) 

 
Direct-methods (e.g. optical flow) 

•  Directly recover image motion from spatio-temporal image brightness 
variations 

•  Global motion parameters directly recovered without an intermediate feature 
motion calculation 

•  Dense motion fields, but more sensitive to appearance variations 
•  Suitable for video and when image motion is small (< 10 pixels) 

Recap: Classes of Techniques 


