

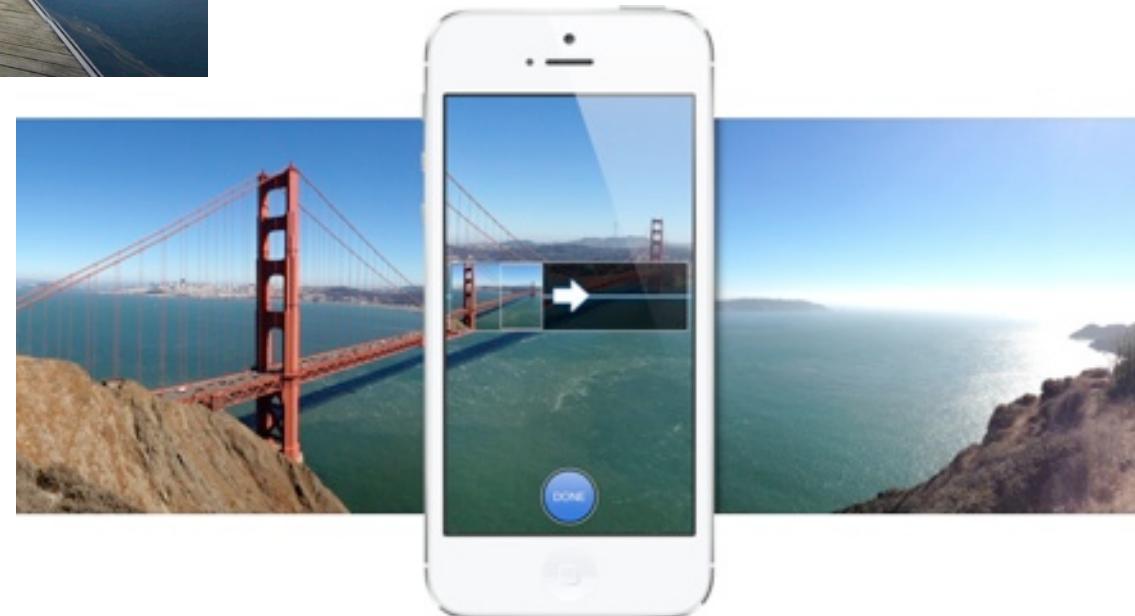
Fitting & Matching Region Representation Image Alignment, Optical Flow

Lectures 5 & 6 – Prof. Fergus

Panoramas



Facebook 360 photos

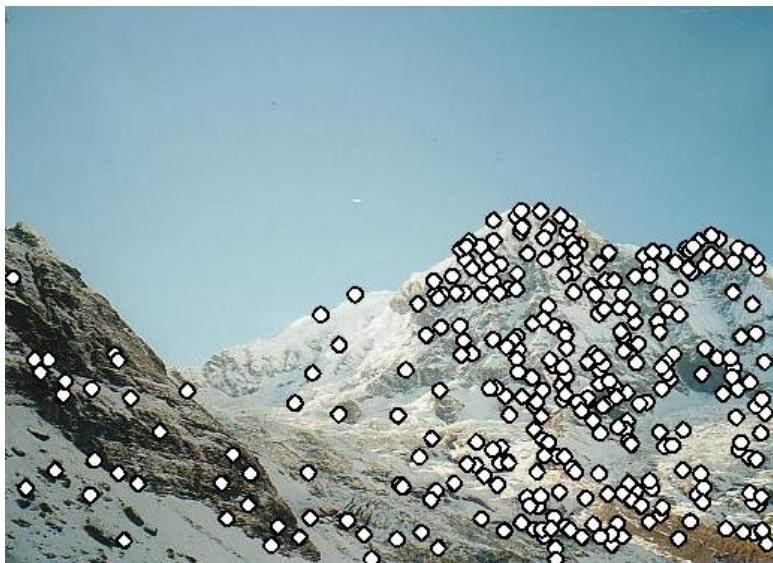


How do we build panorama?

- We need to match (align) images

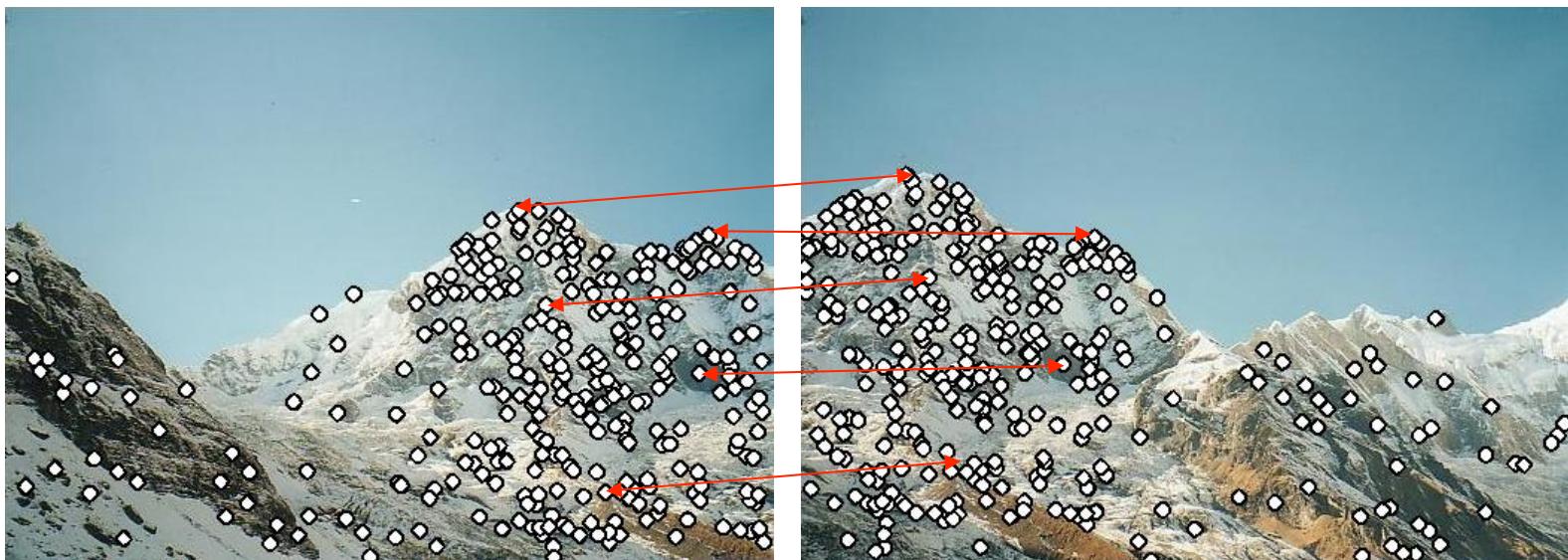
Matching with Features

- Detect feature points in both images



Matching with Features

- Detect feature points in both images
- Find corresponding pairs



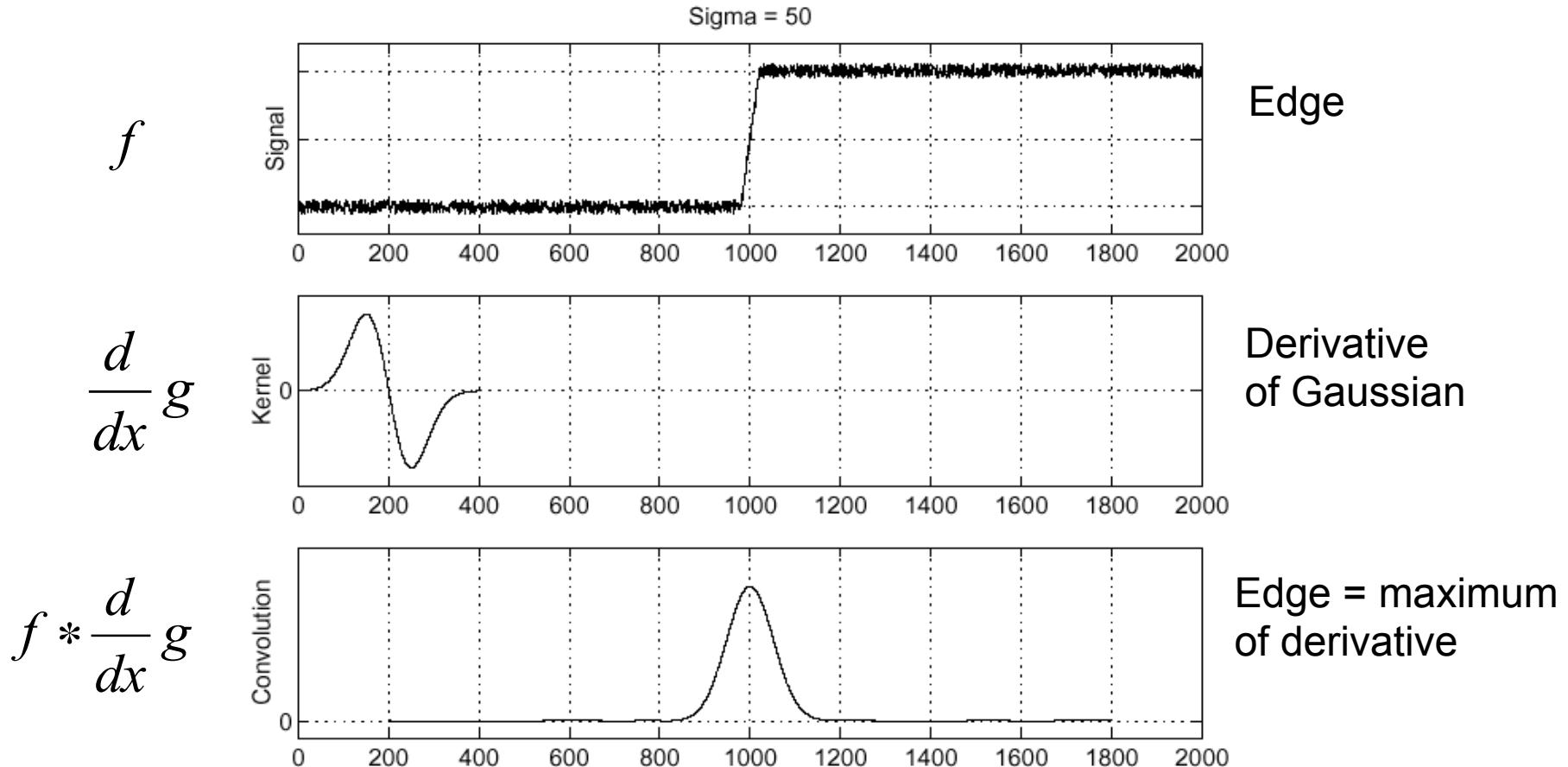
Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

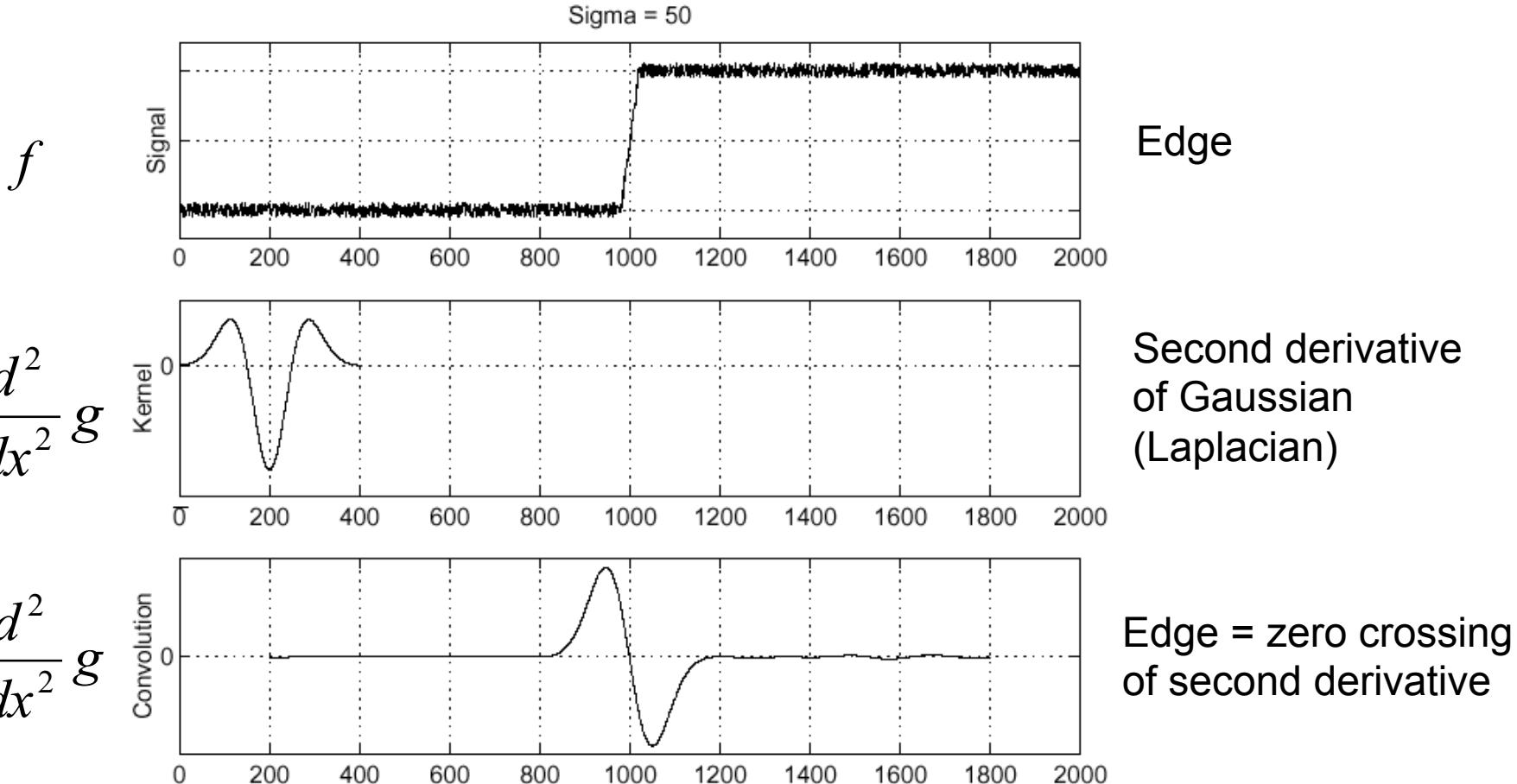
Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Recall: Edge detection

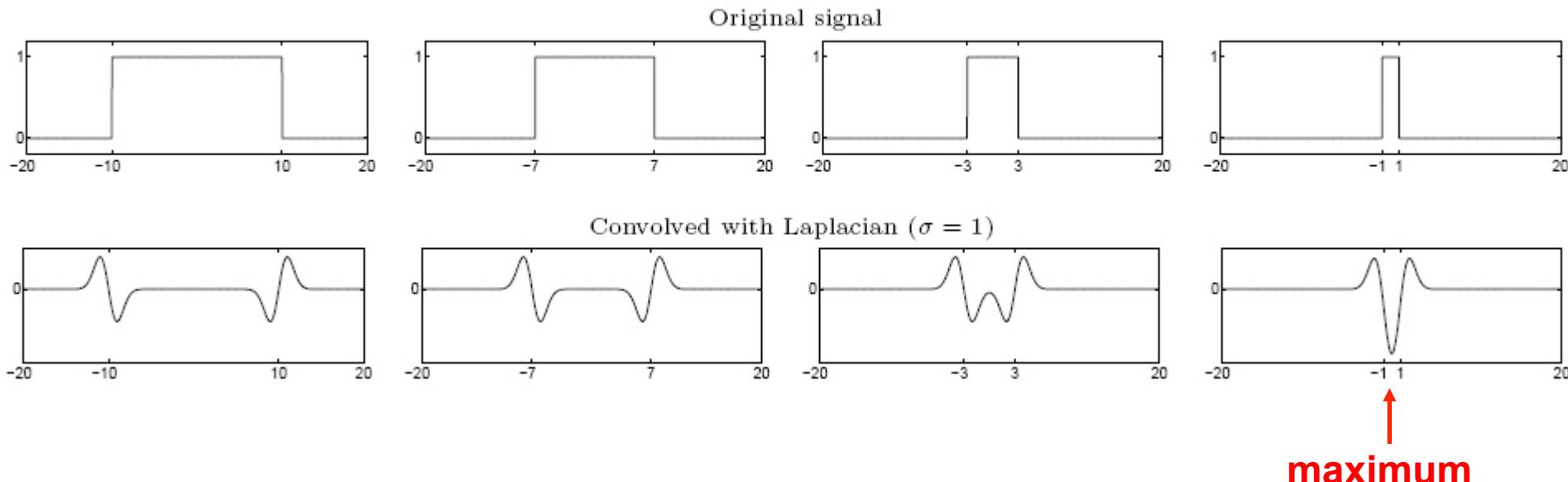


Edge detection, Take 2



From edges to blobs

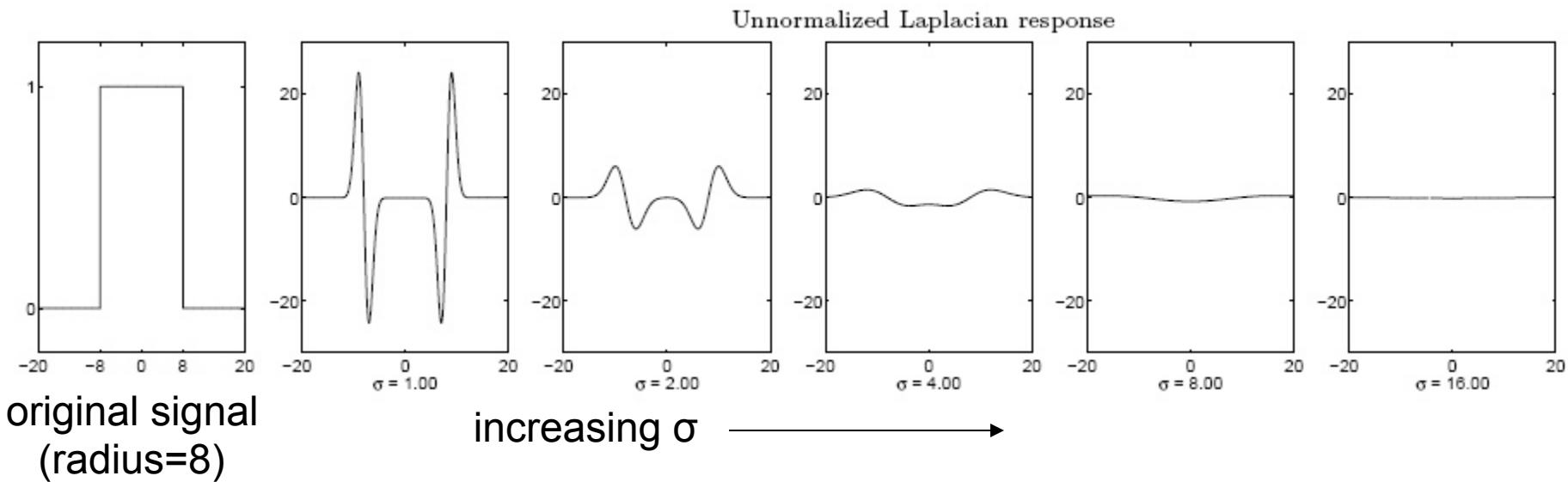
- Edge = ripple
- Blob = superposition of two ripples



Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is “matched” to the scale of the blob

Scale selection

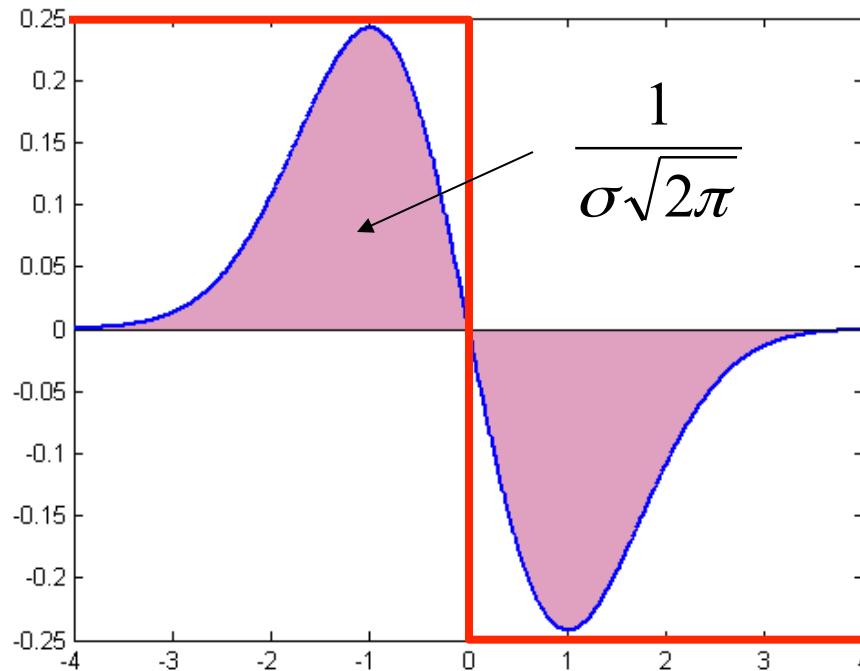
- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:



Why does this happen?

Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

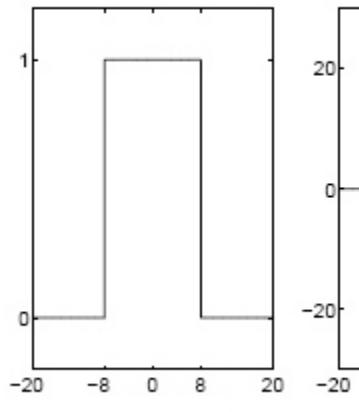
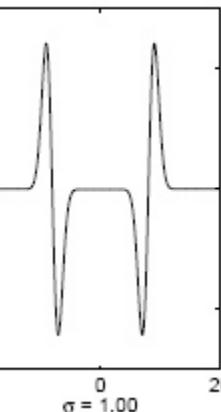
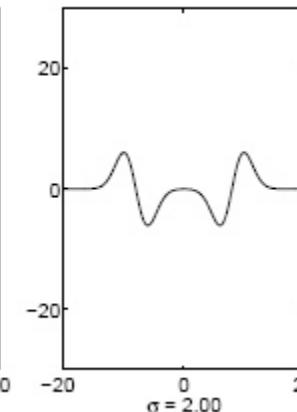
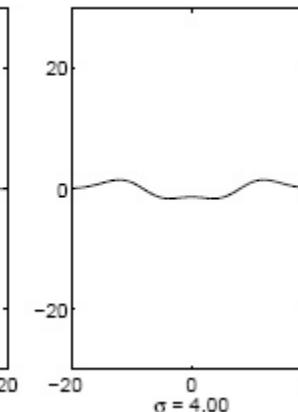
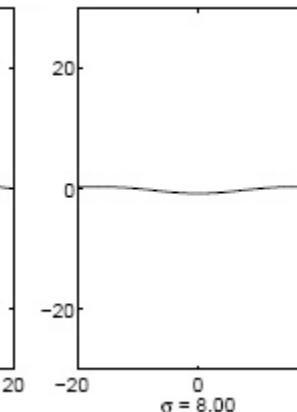
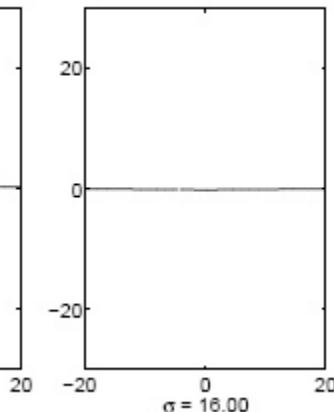


Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

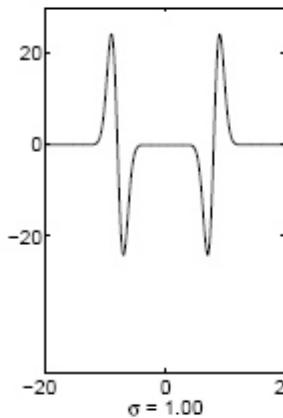
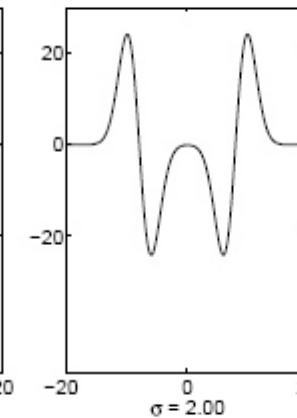
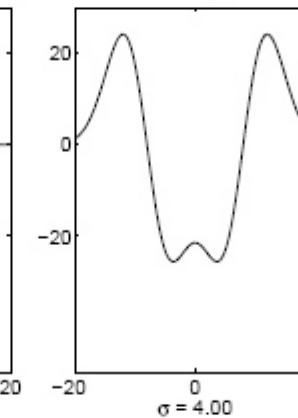
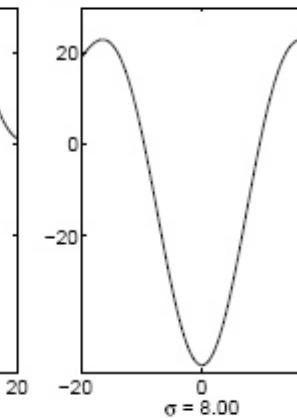
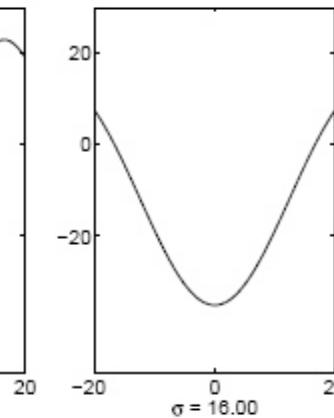
Effect of scale normalization

Original signal



Unnormalized Laplacian response

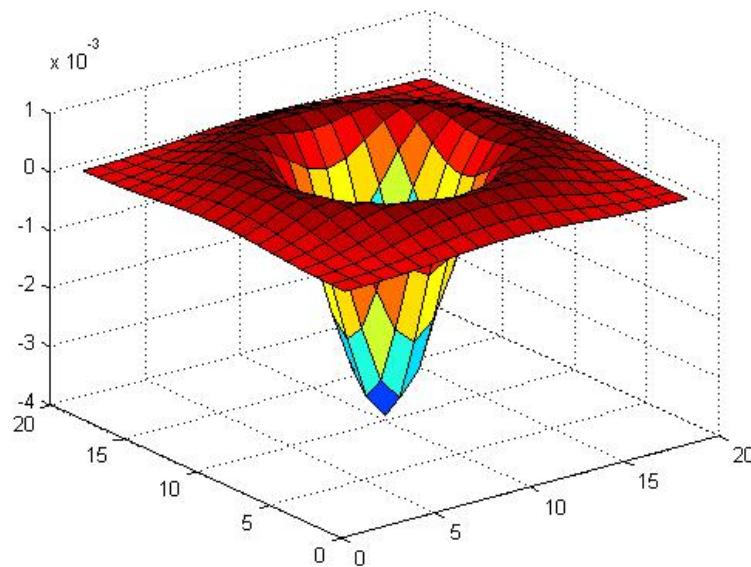
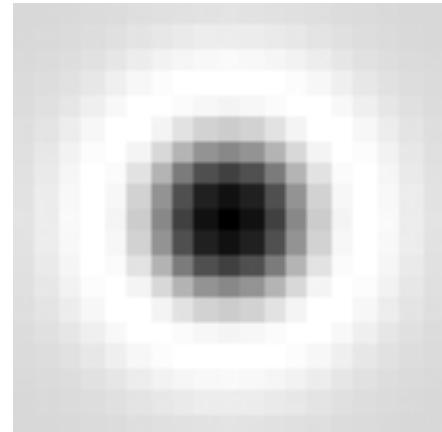
Scale-normalized Laplacian response



maximum

Blob detection in 2D

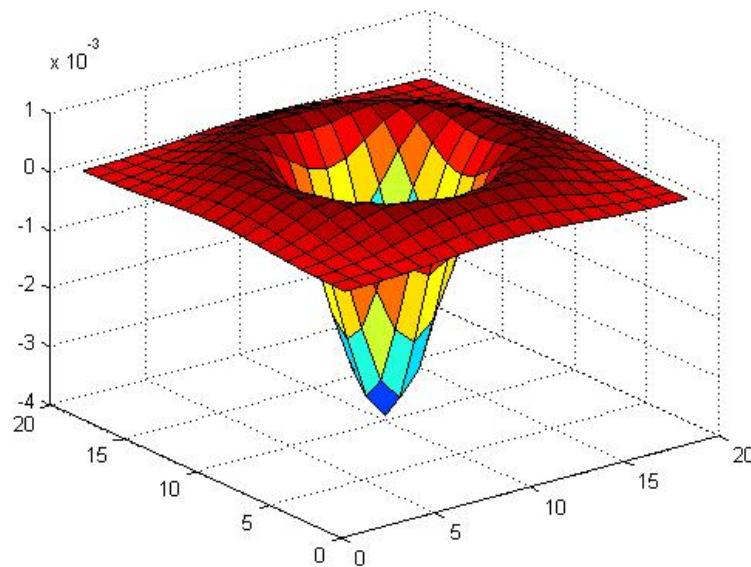
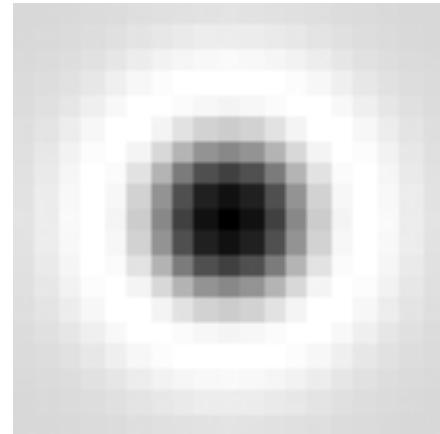
Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D



$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = \frac{1}{\pi\sigma^4} \left(1 - \frac{x^2 + y^2}{2\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Blob detection in 2D

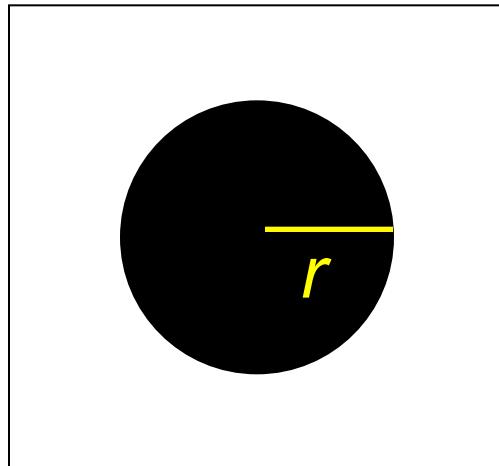
Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D



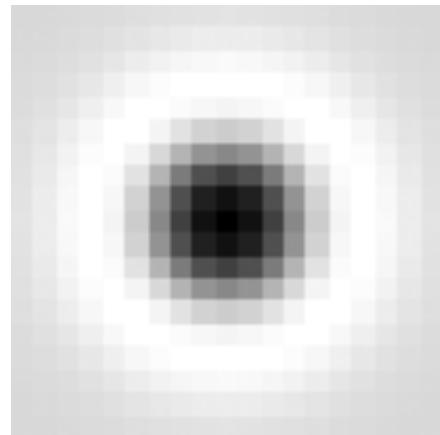
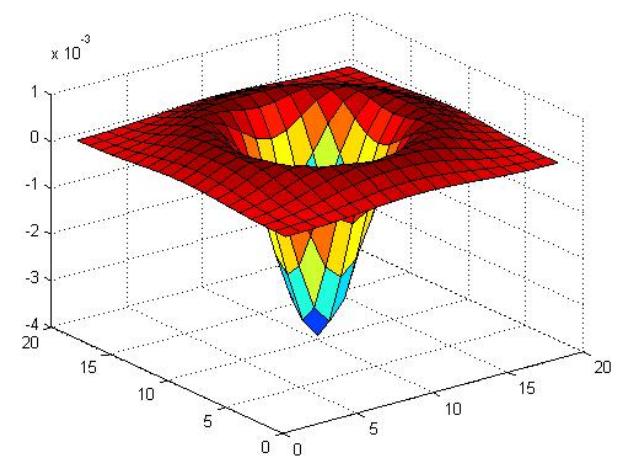
Scale-normalized: $\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$

Scale selection

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r ?



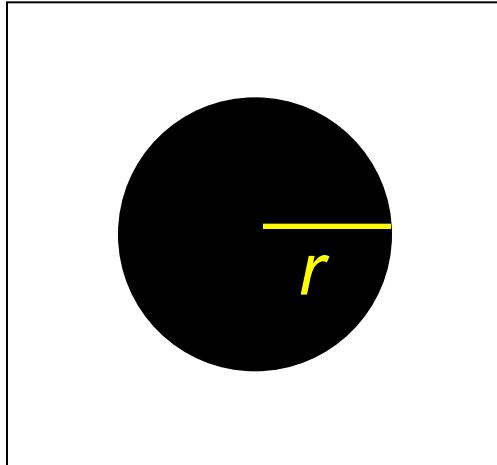
image



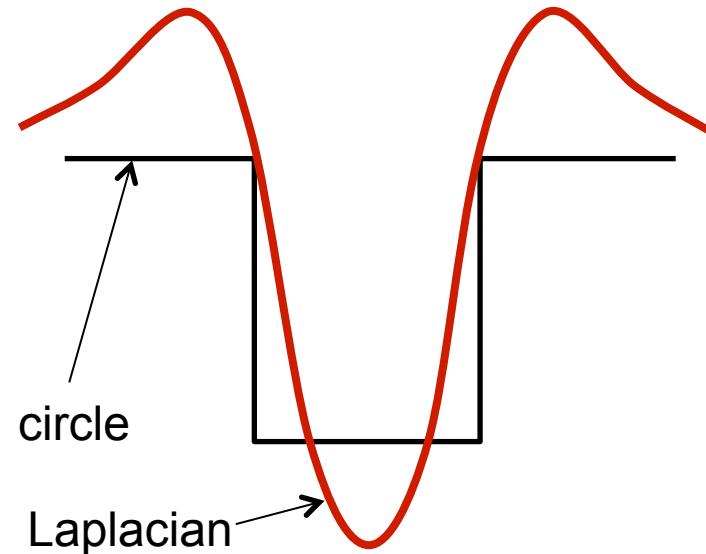
Laplacian

Scale selection

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r ?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- Zeros of Laplacian is given by (up to scale): $\left(1 - \frac{x^2 + y^2}{2\sigma^2}\right) = 0$
- Therefore, the maximum response occurs at $\sigma = r / \sqrt{2}$.

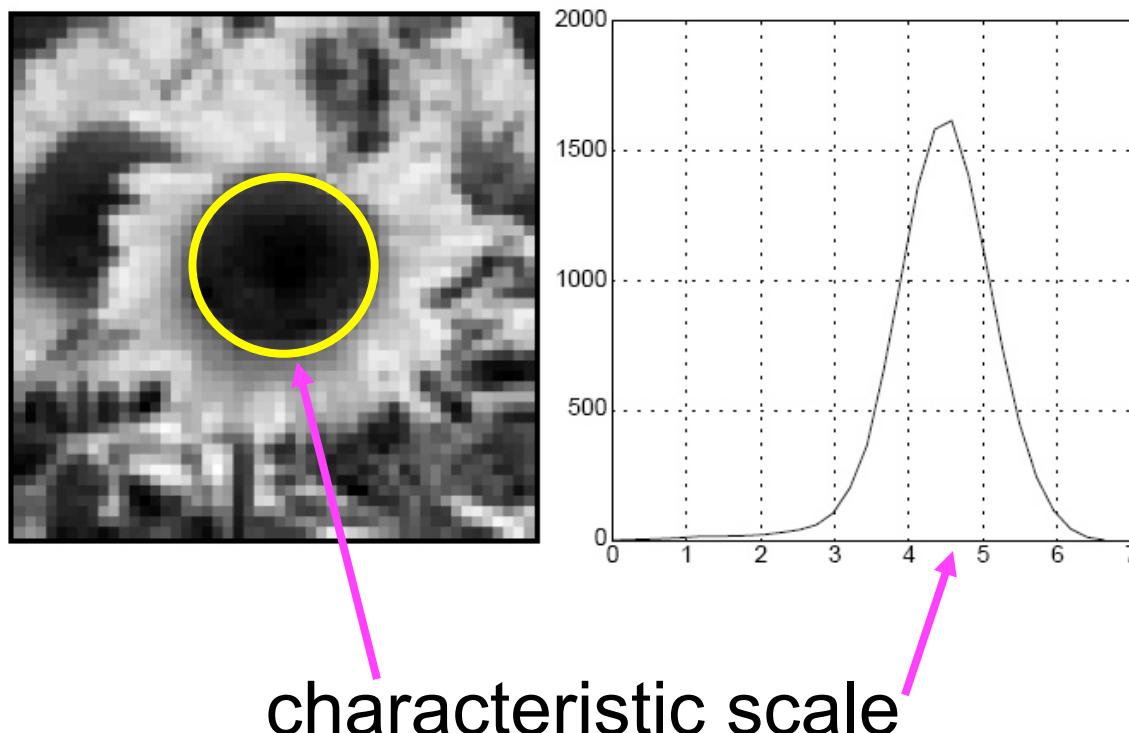


image



Characteristic scale

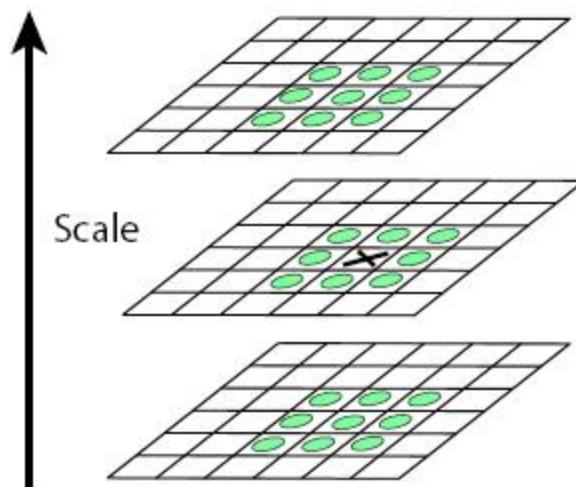
- We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center



T. Lindeberg (1998). ["Feature detection with automatic scale selection."](#)
International Journal of Computer Vision **30** (2): pp 77–116.

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales
2. Find maxima of squared Laplacian response in scale-space



Scale-space blob detector: Example



Scale-space blob detector: Example

$\sigma = 11.9912$

Scale-space blob detector: Example



Matching with Features

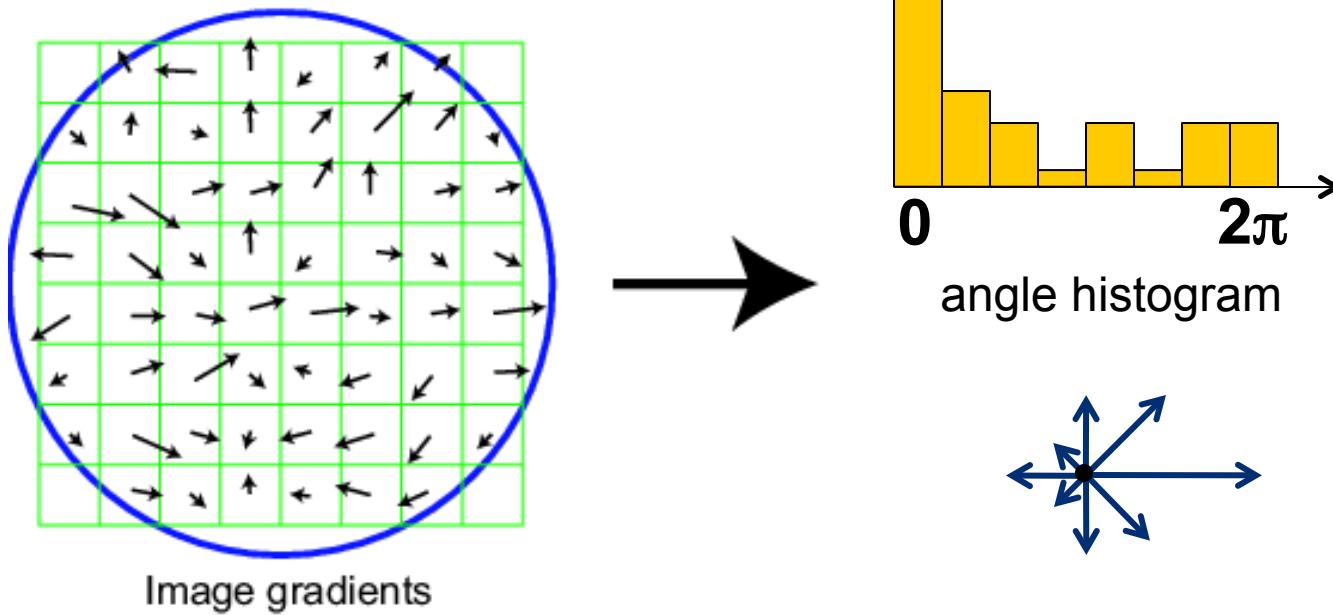
- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Scale Invariant Feature Transform

Basic idea:

David Lowe IJCV 2004

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient - 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

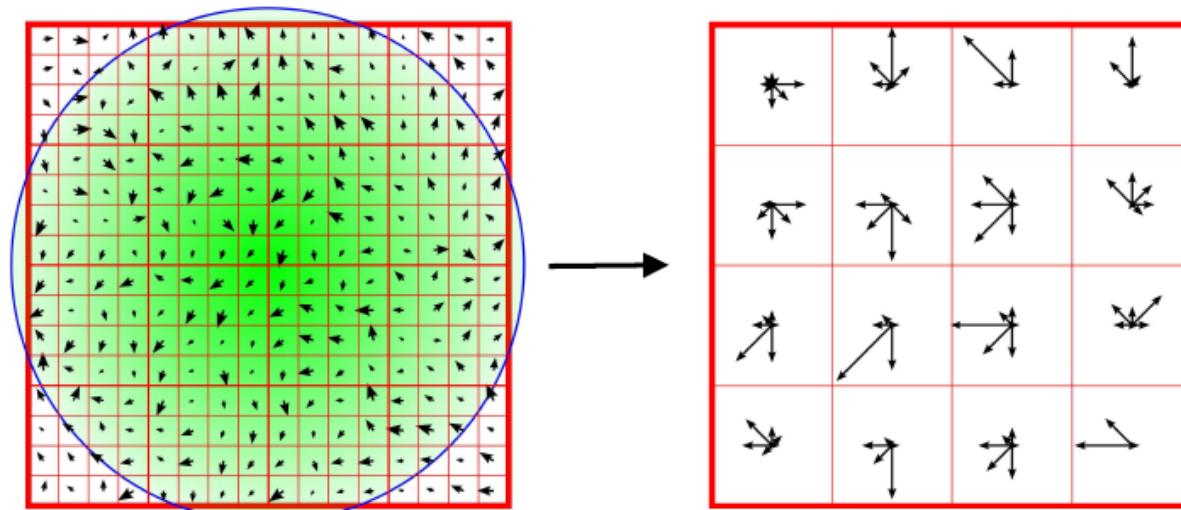


Adapted from slide by David Lowe

Former NYU faculty &
Prof. Ken Perlin's advisor

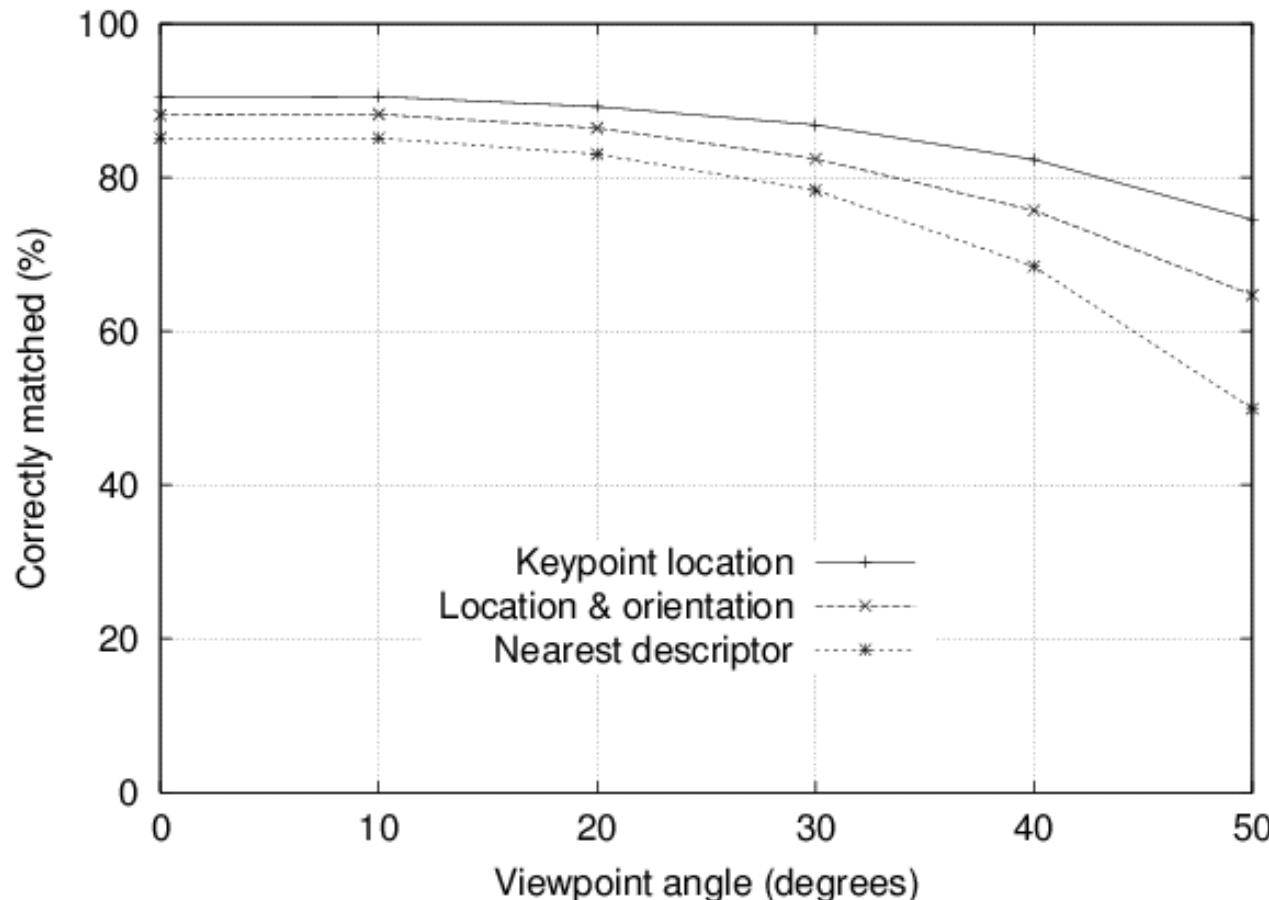
Orientation Histogram

- 4x4 spatial bins (16 bins total)
- Gaussian center-weighting
- 8-bin orientation histogram per bin
- $8 \times 16 = 128$ dimensions total
- Normalized to unit norm



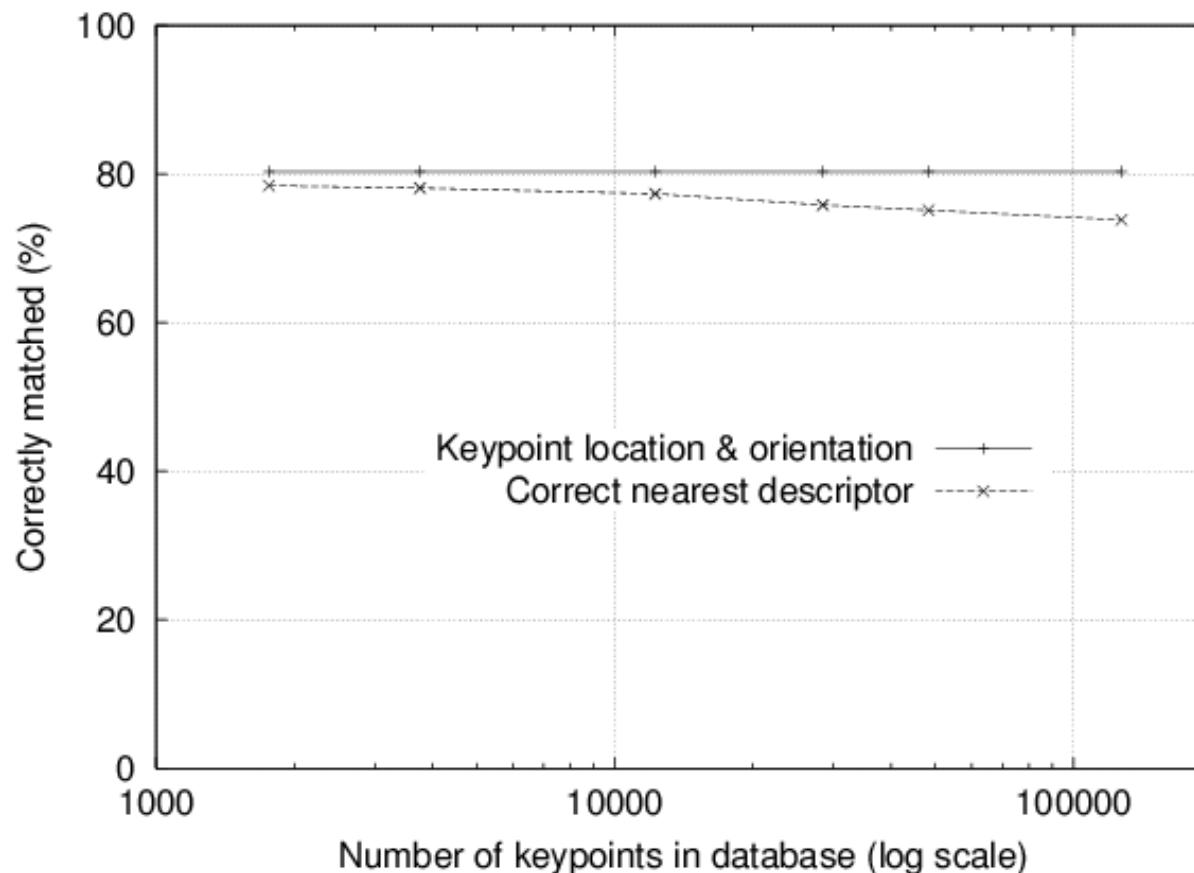
Feature stability to affine change

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features



Distinctiveness of features

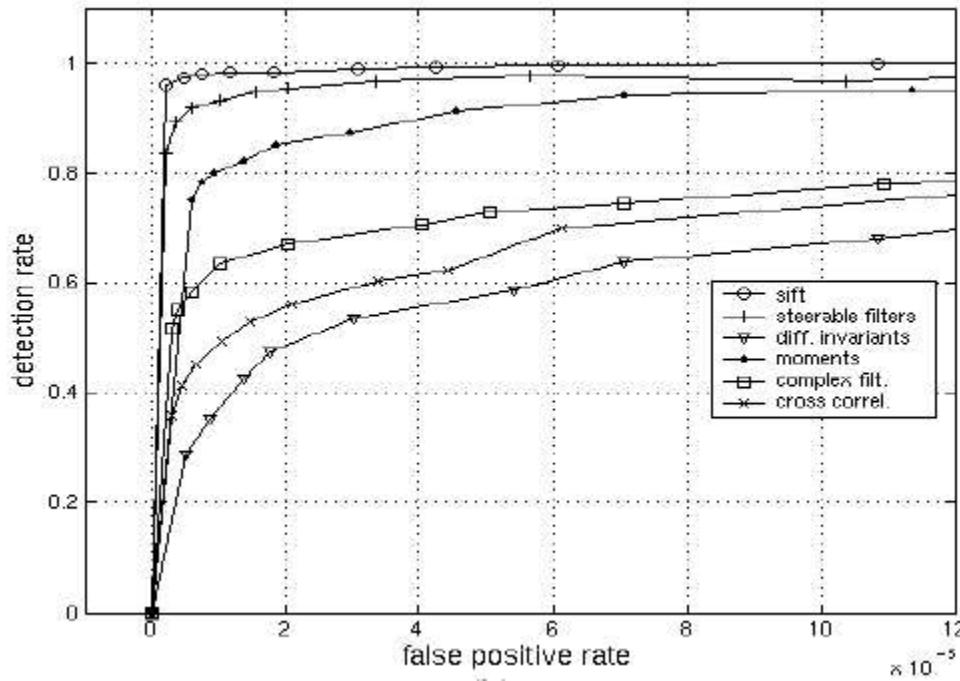
- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match



SIFT – Scale Invariant Feature Transform¹

- Empirically found² to show very good performance, invariant to *image rotation, scale, intensity change*, and to moderate *affine* transformations

Scale = 2.5
Rotation = 45^0



¹ D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004

² K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

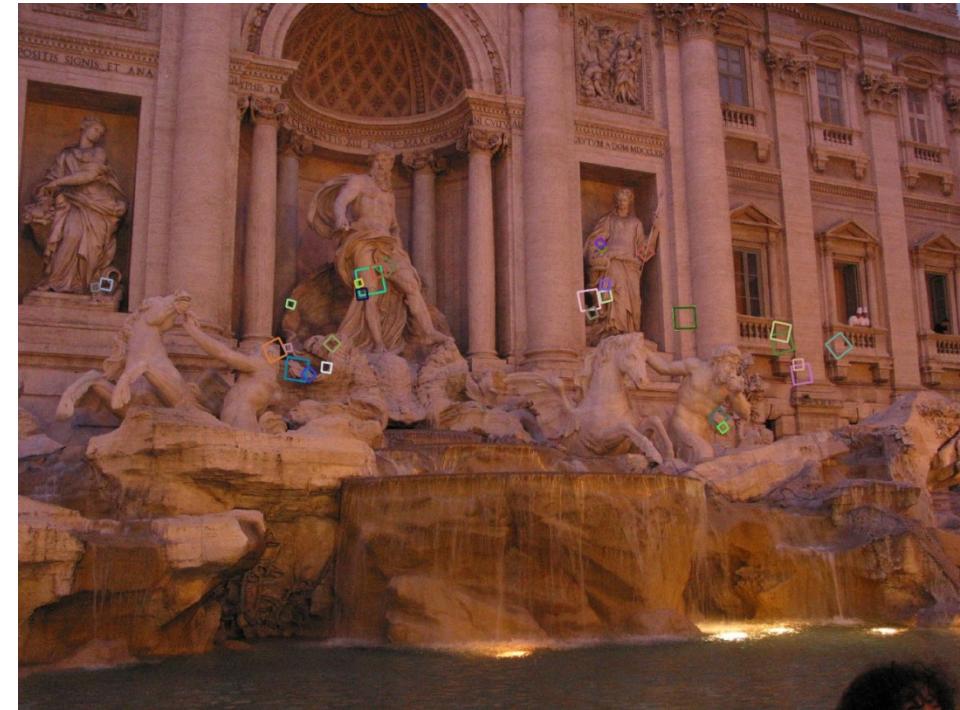
SIFT invariances

- Spatial binning gives tolerance to small shifts in location and scale
- Explicit orientation normalization
- Photometric normalization by making all vectors unit norm
- Orientation histogram gives robustness to small local deformations

Summary of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT



Matching with Features

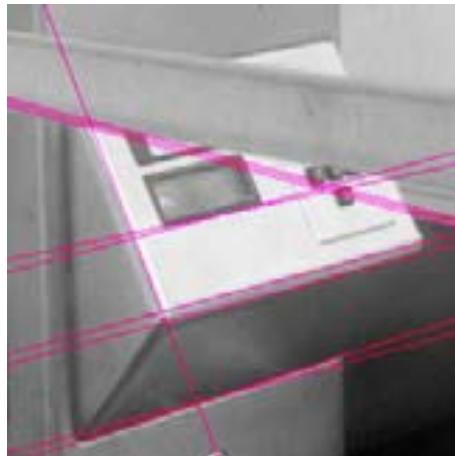
- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Overview

- Fitting techniques
 - Least Squares
 - Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Fitting

- Choose a parametric model to represent a set of features



simple model: lines

simple model: circles

complicated model: car

Fitting: Issues

Case study: Line detection

- **Noise** in the measured feature locations
- **Extraneous data**: clutter (outliers), multiple lines
- **Missing data**: occlusions

Fitting: Issues

- If we know which points belong to the line, how do we find the “optimal” line parameters?
 - Least squares
- What if there are outliers?
 - Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform
- What if we’re not even sure it’s a line?
 - Model selection

Overview

- Fitting techniques
 - Least Squares
 - Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

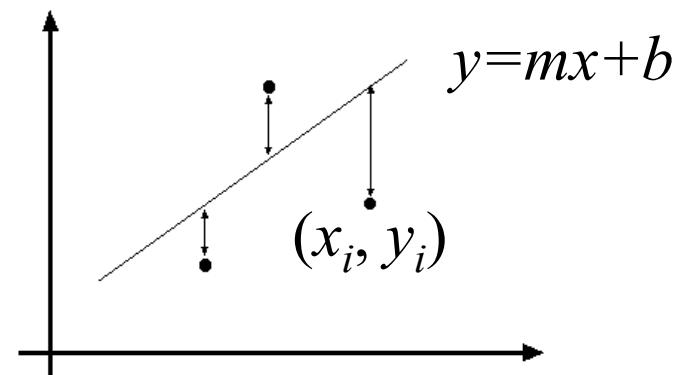
Least squares line fitting

Data: $(x_1, y_1), \dots, (x_n, y_n)$

Line equation: $y_i = mx_i + b$

Find (m, b) to minimize

$$E = \sum_{i=1}^n (y_i - mx_i - b)^2$$



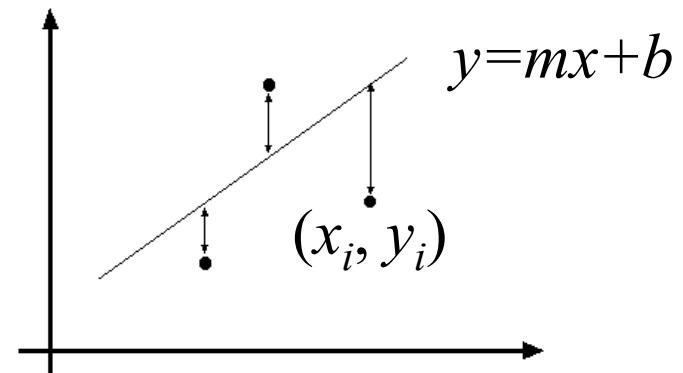
Least squares line fitting

Data: $(x_1, y_1), \dots, (x_n, y_n)$

Line equation: $y_i = mx_i + b$

Find (m, b) to minimize

$$E = \sum_{i=1}^n (y_i - mx_i - b)^2$$



$$E = \sum_{i=1}^n \left(y_i - \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right)^2 = \left\| \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right\|^2 = \|Y - XB\|^2$$

$$= (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)$$

$$\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0$$

$$X^T XB = X^T Y$$

Normal equations: least squares solution to
 $XB = Y$

Matlab Demo

```
%%%% let's make some points
n = 10;
true_grad = 2;
true_intercept = 3;
noise_level = 0.04;

x = rand(1,n);
y = true_grad*x + true_intercept + randn(1,n)*noise_level;

figure; plot(x,y,'rx');
hold on;

%%%% make matrix for linear system
X = [x(:) ones(n,1)];

%%%% Solve system of equations
p = inv(X'*X)*X'*y(:); % Pseudo-inverse
p = pinv(X) * y(:); % Pseduo-inverse
p = X \ y(:); % Matlab's \ operator

est_grad = p(1);
est_intercept = p(2);

plot(x,est_grad*x+est_intercept,'b-');

fprintf('True gradient: %f, estimated gradient: %f\n',true_grad,est_grad);
fprintf('True intercept: %f, estimated intercept: %f\n',true_intercept,est_intercept);
```

Problem with “vertical” least squares

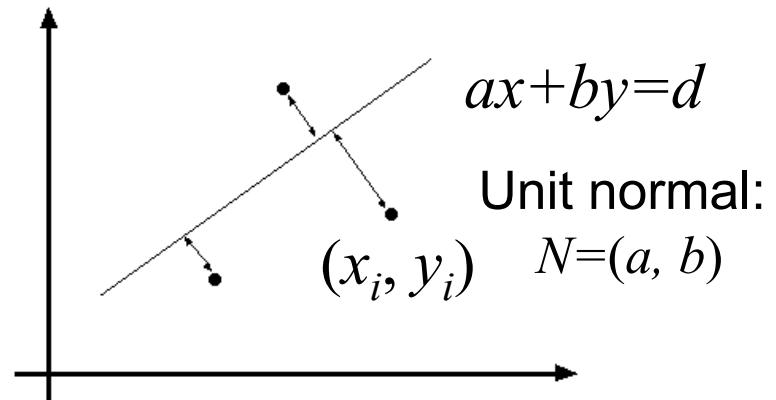
- Not rotation-invariant
- Fails completely for vertical lines

Overview

- Fitting techniques
 - Least Squares
 - Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Total least squares

Distance between point (x_i, y_i) and line $ax+by=d$ ($a^2+b^2=1$): $|ax_i + by_i - d|$

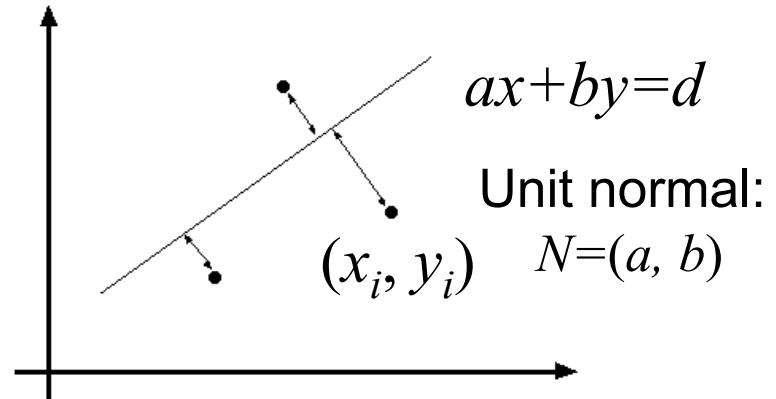


Total least squares

Distance between point (x_i, y_i) and line $ax+by=d$ ($a^2+b^2=1$): $|ax_i + by_i - d|$

Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^n (ax_i + by_i - d)^2$$



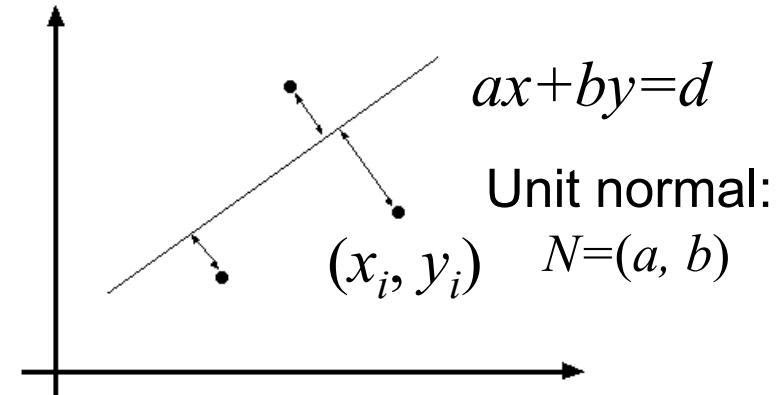
Total least squares

Distance between point (x_i, y_i) and line $ax+by=d$ ($a^2+b^2=1$): $|ax_i + by_i - d|$

Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^n (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^n -2(ax_i + by_i - d) = 0$$



$$d = \frac{a}{n} \sum_{i=1}^n x_i + \frac{b}{n} \sum_{i=1}^n y_i = a\bar{x} + b\bar{y}$$

$$E = \sum_{i=1}^n (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \left\| \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \right\|^2 = (UN)^T (UN)$$

Solution to $(U^T U)N = 0$, subject to $\|N\|^2 = 1$: eigenvector of $U^T U$ associated with the smallest eigenvalue (least squares solution to *homogeneous linear system* $UN = 0$)

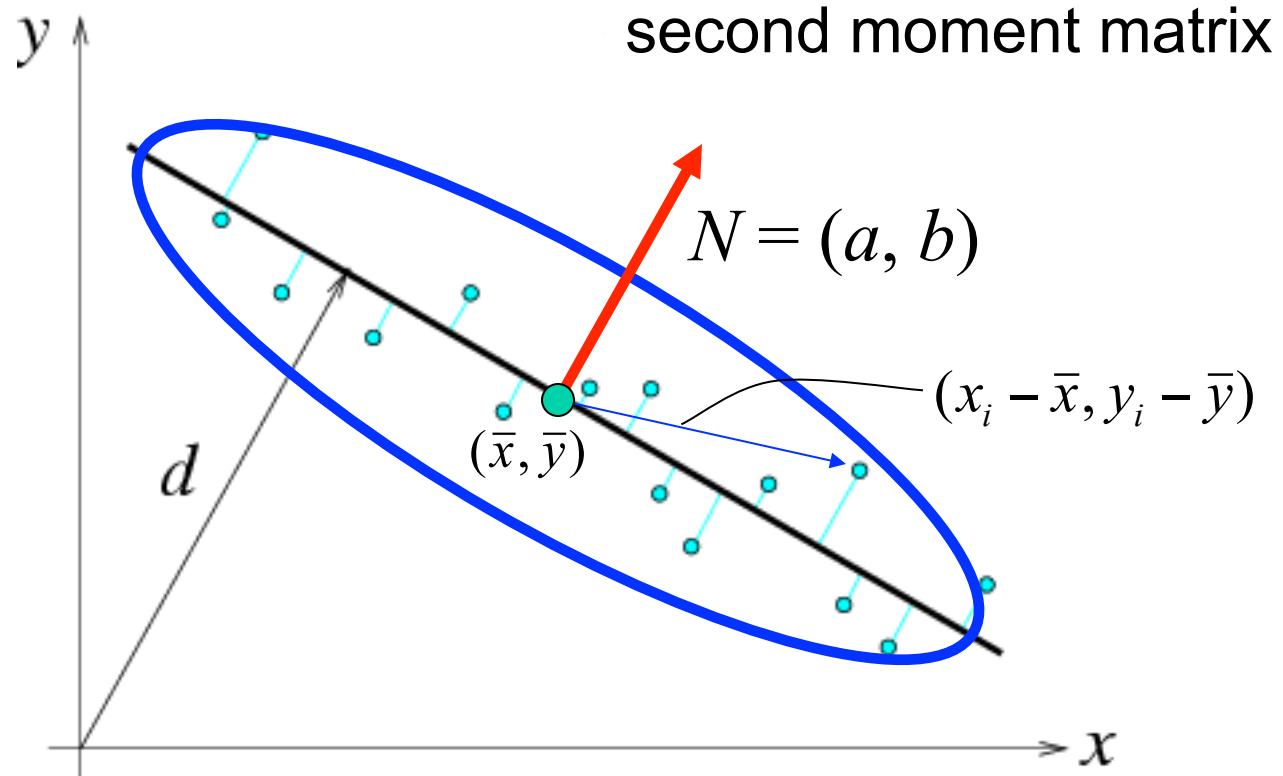
Total least squares

$$U = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \bar{x})^2 & \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^n (y_i - \bar{y})^2 \end{bmatrix}$$

second moment matrix

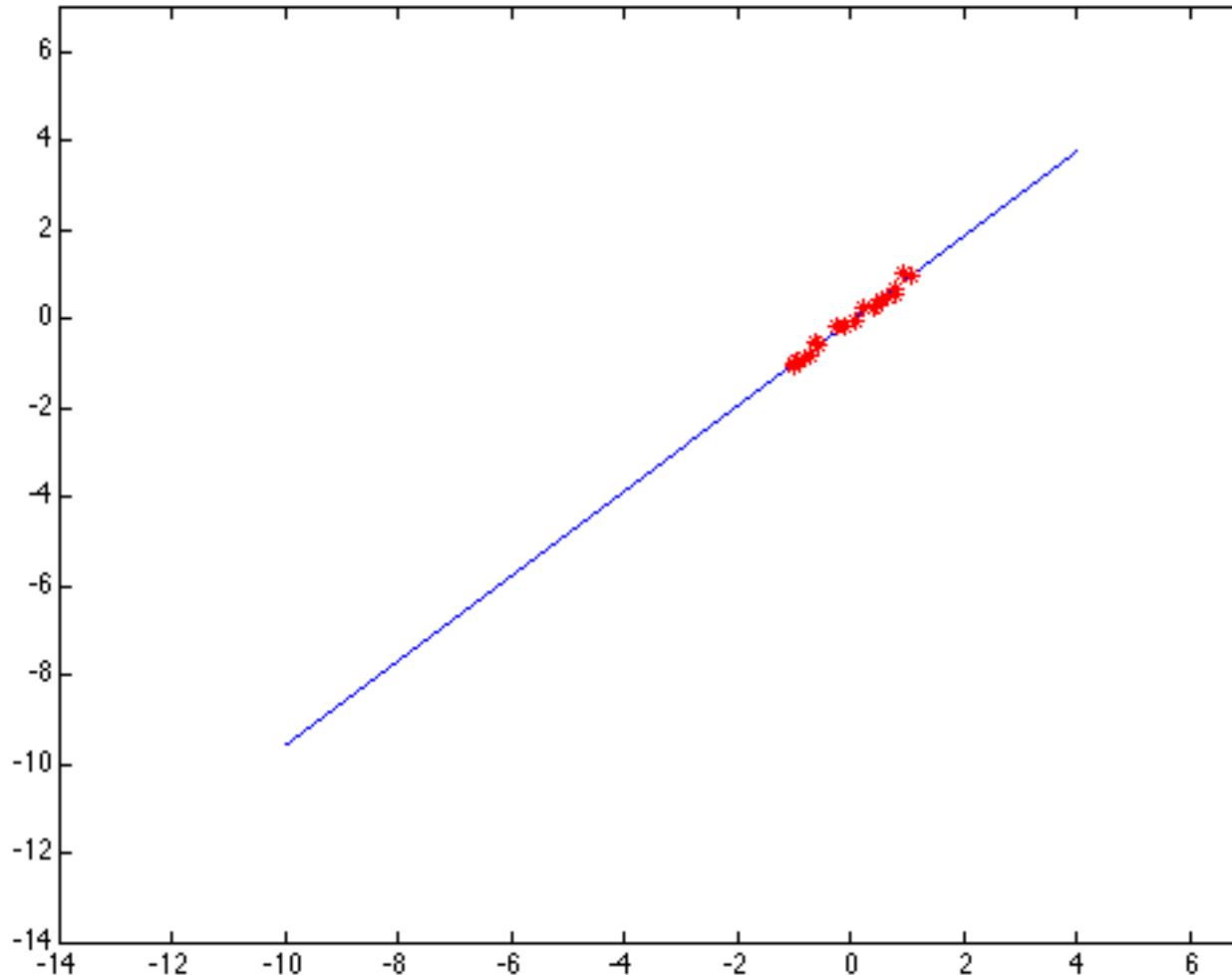
Total least squares

$$U = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \bar{x})^2 & \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^n (y_i - \bar{y})^2 \end{bmatrix}$$



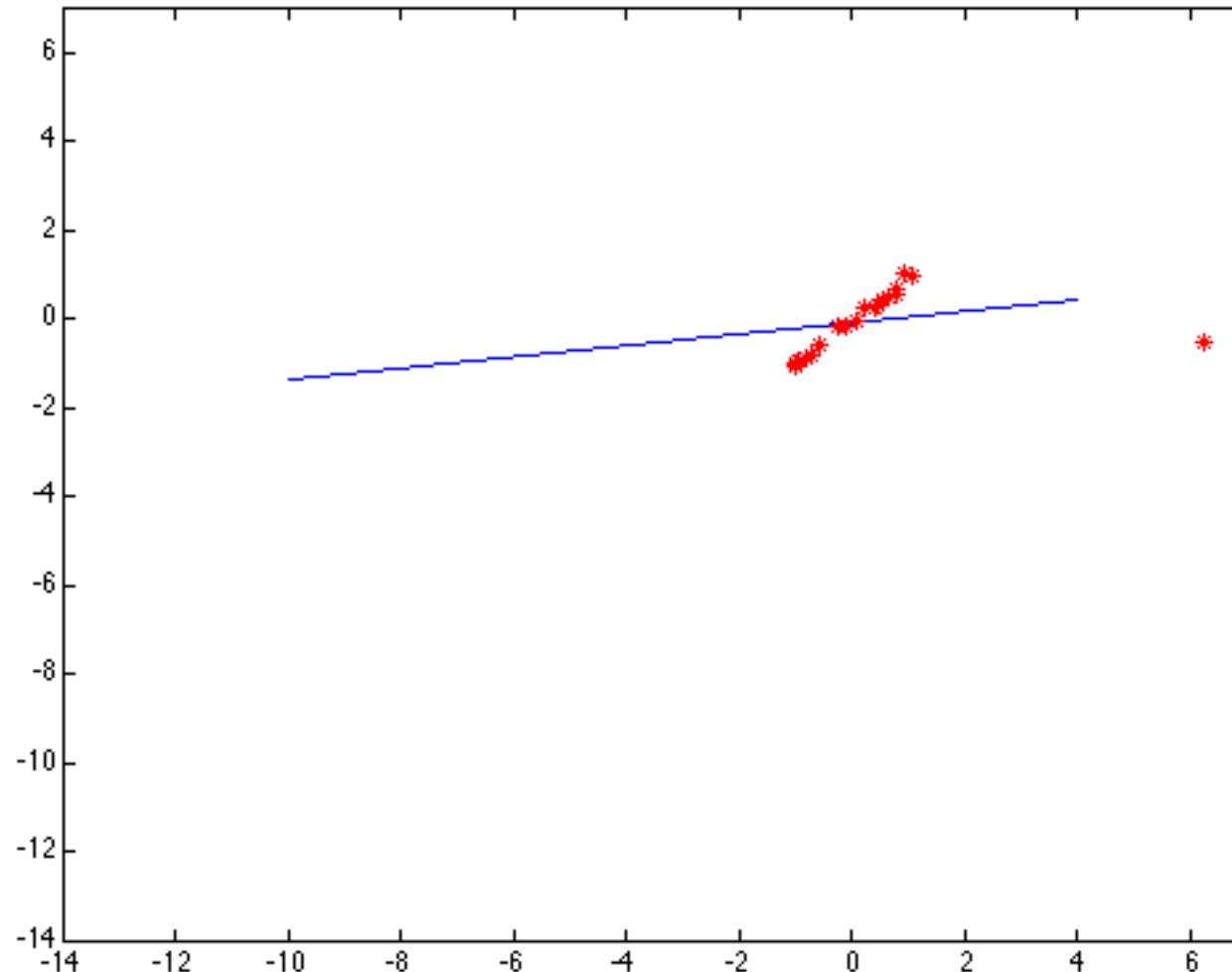
Least squares: Robustness to noise

Least squares fit to the red points:



Least squares: Robustness to noise

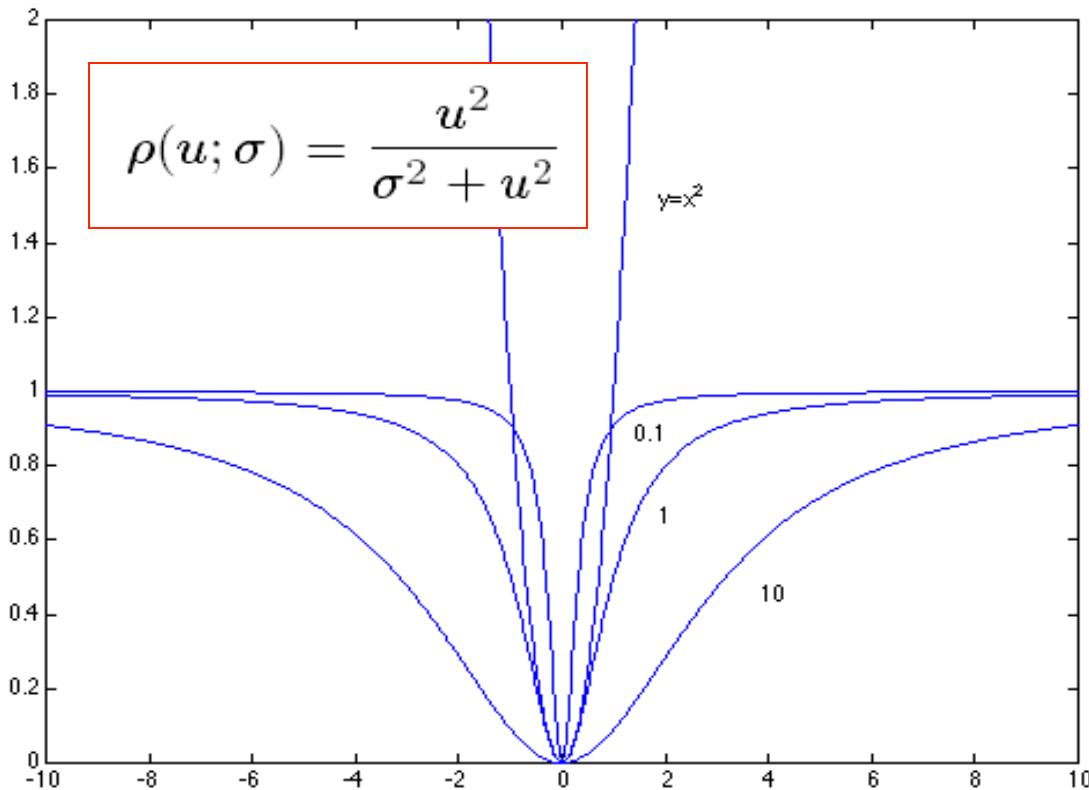
Least squares fit with an outlier:



Problem: squared error heavily penalizes outliers

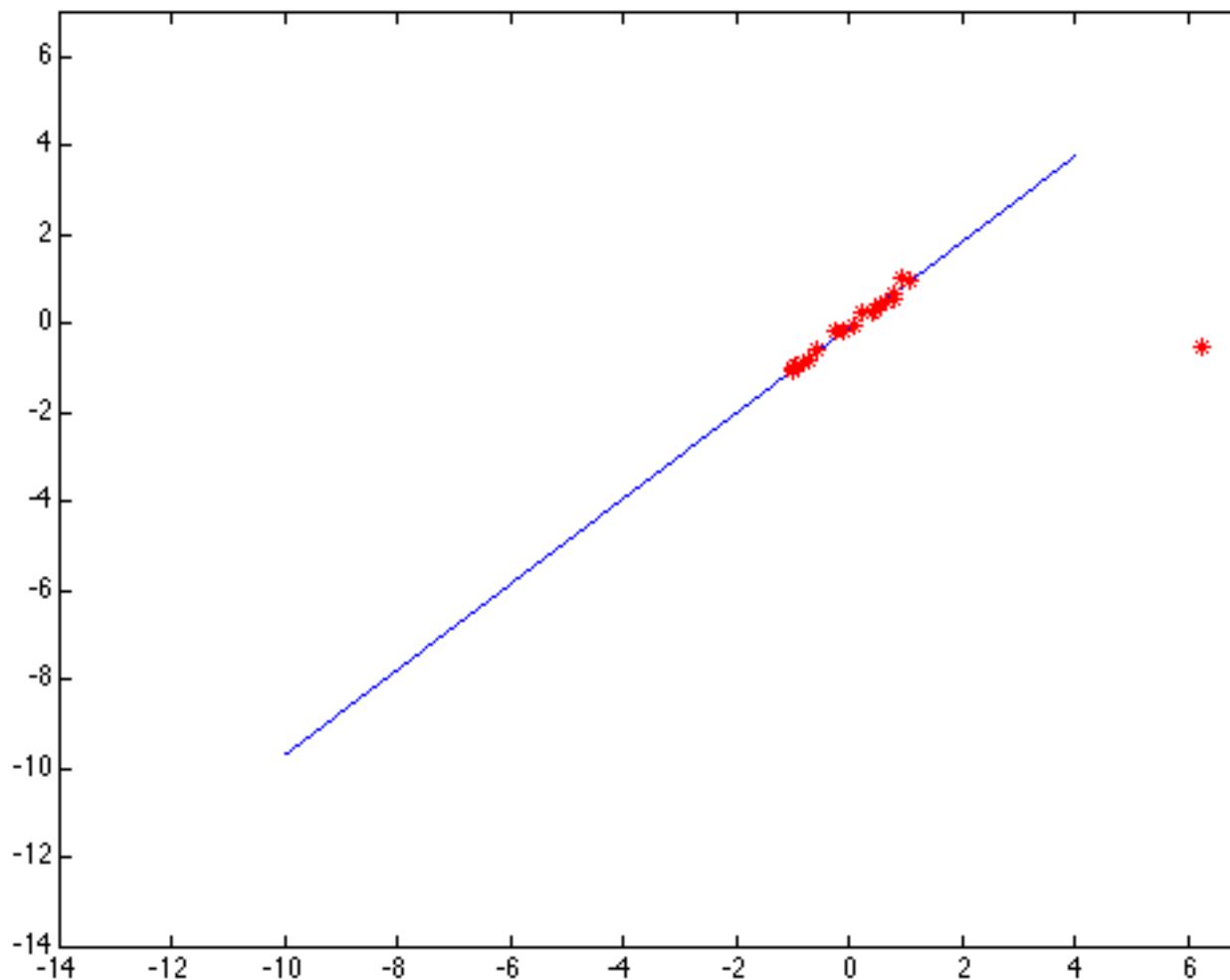
Robust estimators

- General approach: minimize $\sum_i \rho(r_i(x_i, \theta); \sigma)$
 $r_i(x_i, \theta)$ – residual of i th point w.r.t. model parameters θ
 ρ – robust function with scale parameter σ



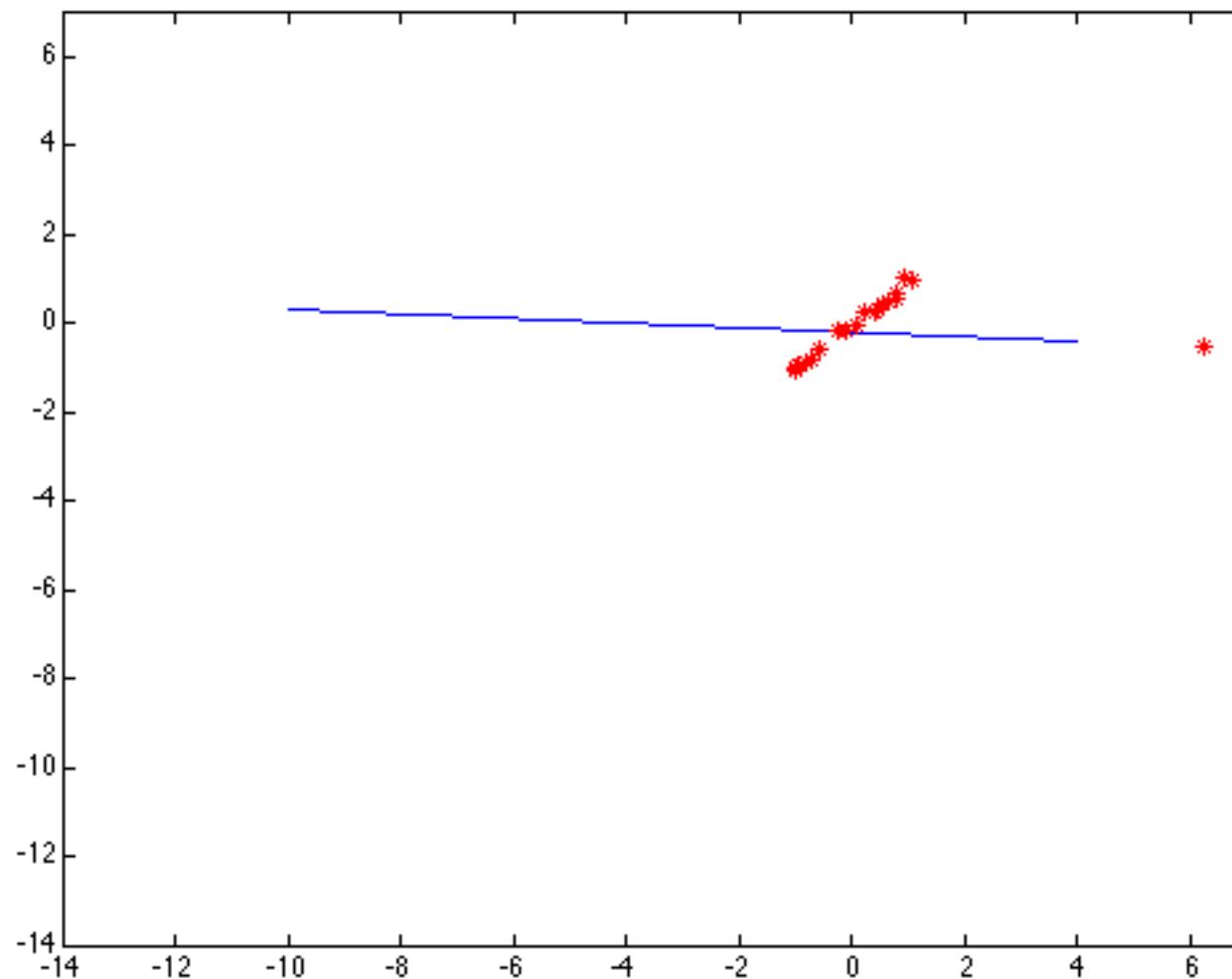
The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right



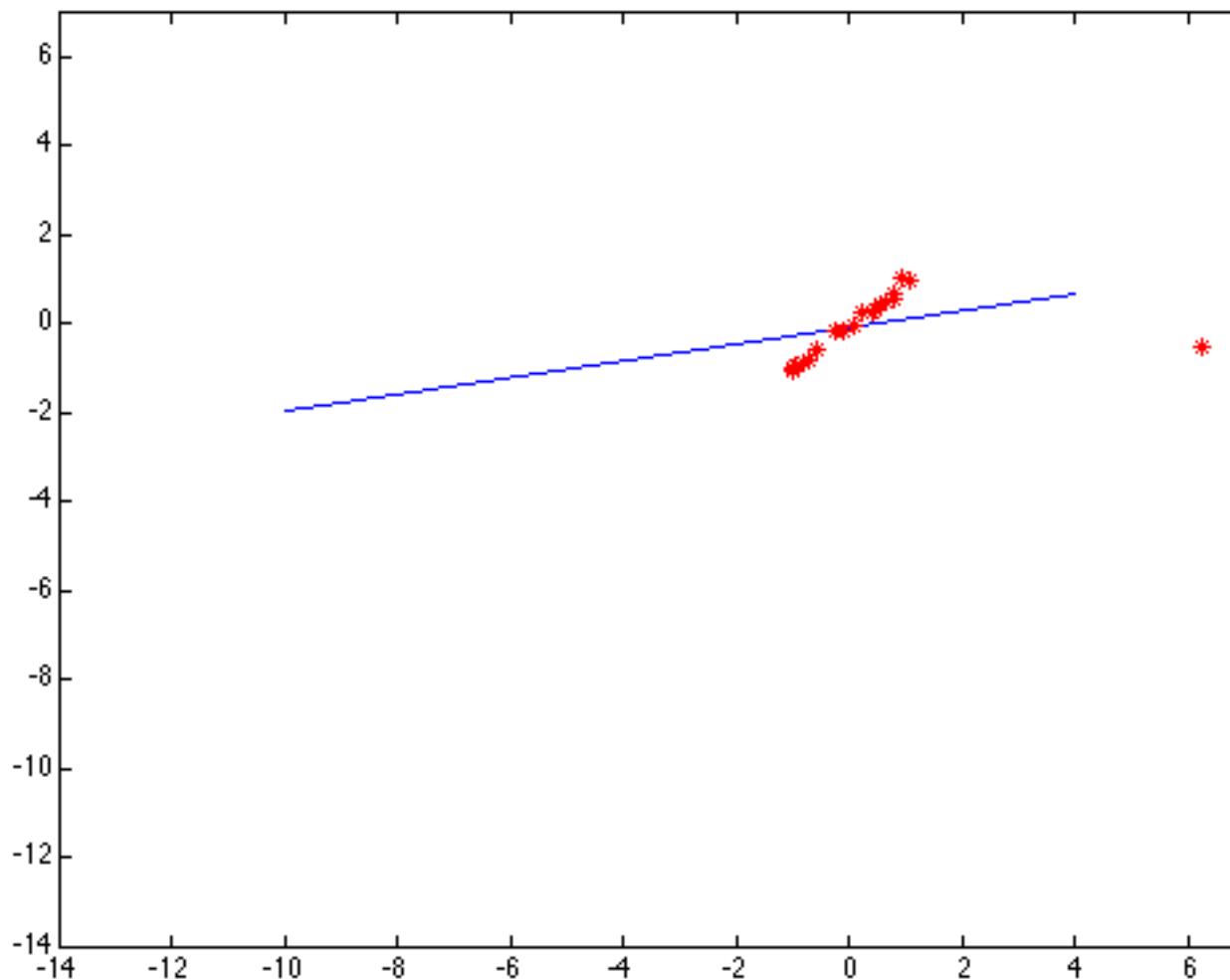
The effect of the outlier is minimized

Choosing the scale: Too small



The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large



Behaves much the same as least squares

Overview

- Fitting techniques
 - Least Squares
 - Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

RANSAC

- Robust fitting can deal with a few outliers – what if we have very many?
- Random sample consensus (RANSAC):
Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are “close” to the model and reject the rest as outliers
 - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.

[Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.](#) Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for line fitting

Repeat N times:

- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$
- Number of samples N
 - Choose N so that, with probability p , at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$
- Number of samples N
 - Choose N so that, with probability p , at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$\left(1 - (1 - e)^s\right)^N = 1 - p$$

$$N = \log(1 - p) / \log\left(1 - (1 - e)^s\right)$$

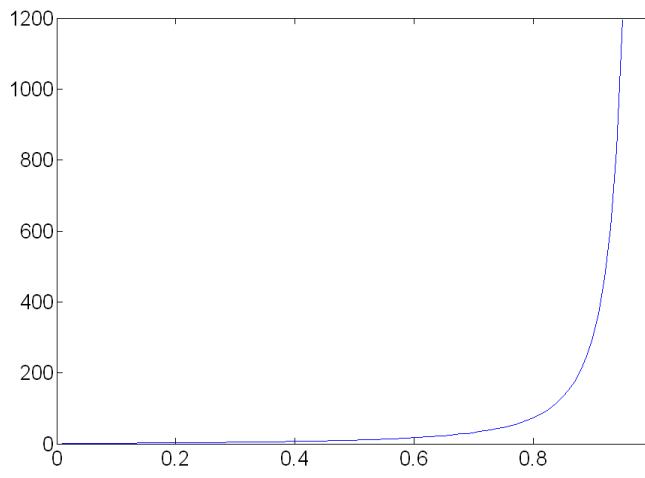
s	proportion of outliers e							
	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$
- Number of samples N
 - Choose N so that, with probability p , at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$\left(1 - (1 - e)^s\right)^N = 1 - p$$

$$N = \log(1 - p) / \log\left(1 - (1 - e)^s\right)$$



Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$
- Number of samples N
 - Choose N so that, with probability p , at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Consensus set size d
 - Should match expected inlier ratio

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield $e=0.2$
- Adaptive procedure:
 - $N=\infty$, $sample_count = 0$
 - While $N > sample_count$
 - Choose a sample and count the number of inliers
 - Set $e = 1 - (\text{number of inliers})/(\text{total number of points})$
 - Recompute N from e :

$$N = \log(1 - p) / \log\left(1 - (1 - e)^s\right)$$

- Increment the $sample_count$ by 1

RANSAC pros and cons

- Pros
 - Simple and general
 - Applicable to many different problems
 - Often works well in practice
- Cons
 - Lots of parameters to tune
 - Can't always get a good initialization of the model based on the minimum number of samples
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Overview

- Fitting techniques
 - Least Squares
 - Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Hough transform

- An early type of voting scheme
- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

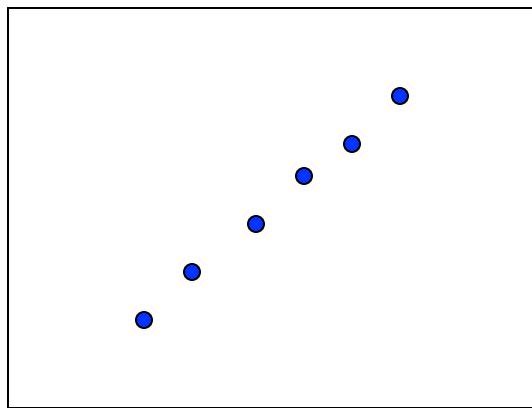
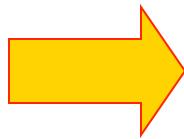
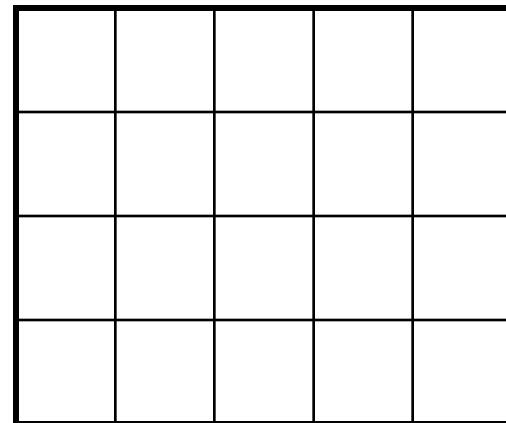


Image space

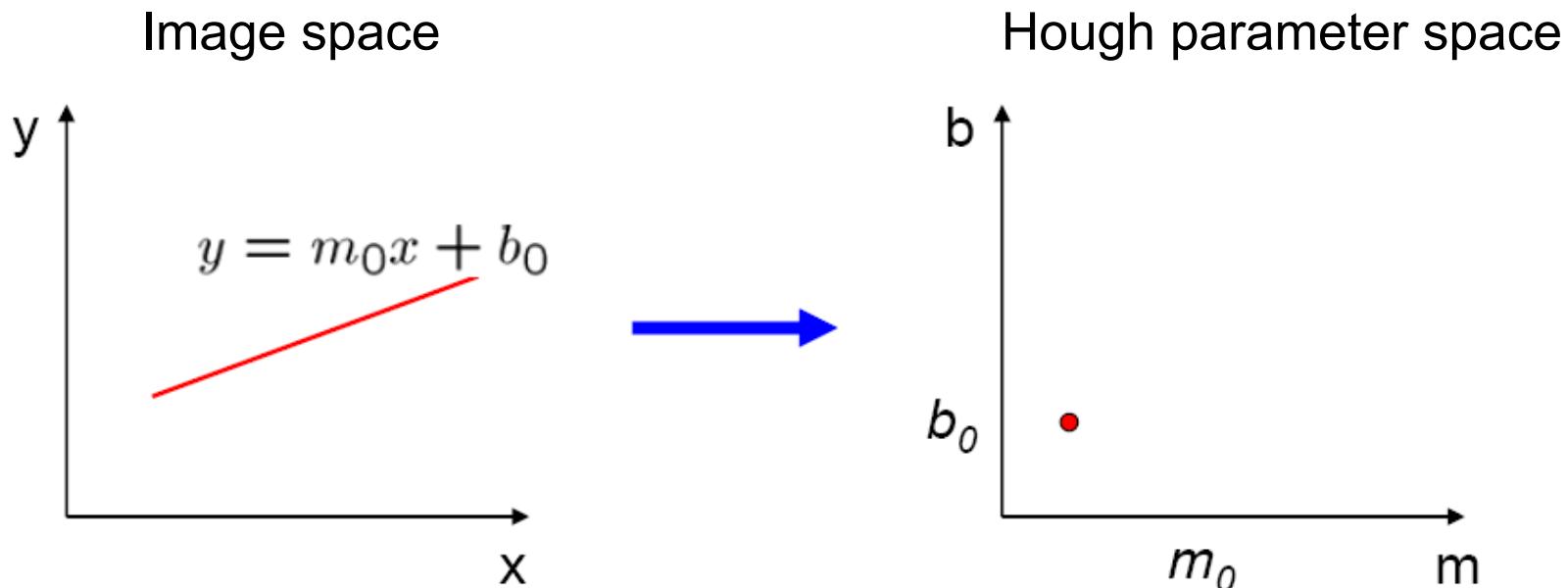


Hough parameter space

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

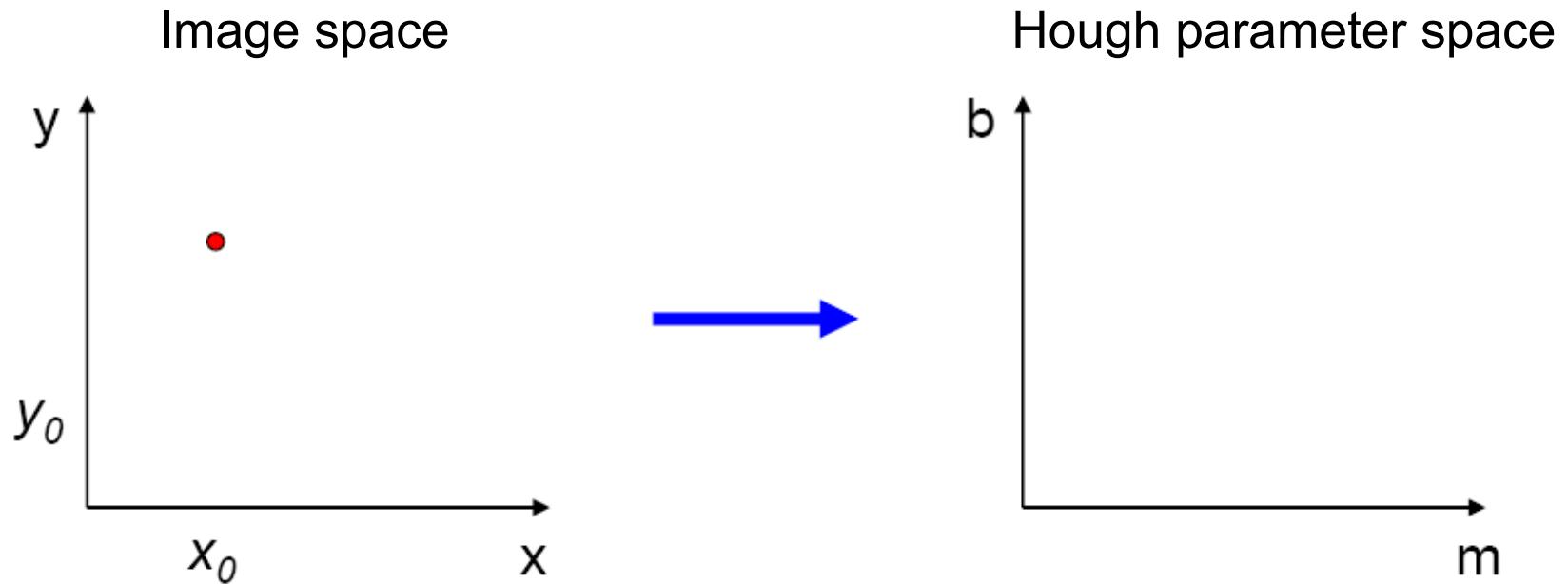
Parameter space representation

- A line in the image corresponds to a point in Hough space



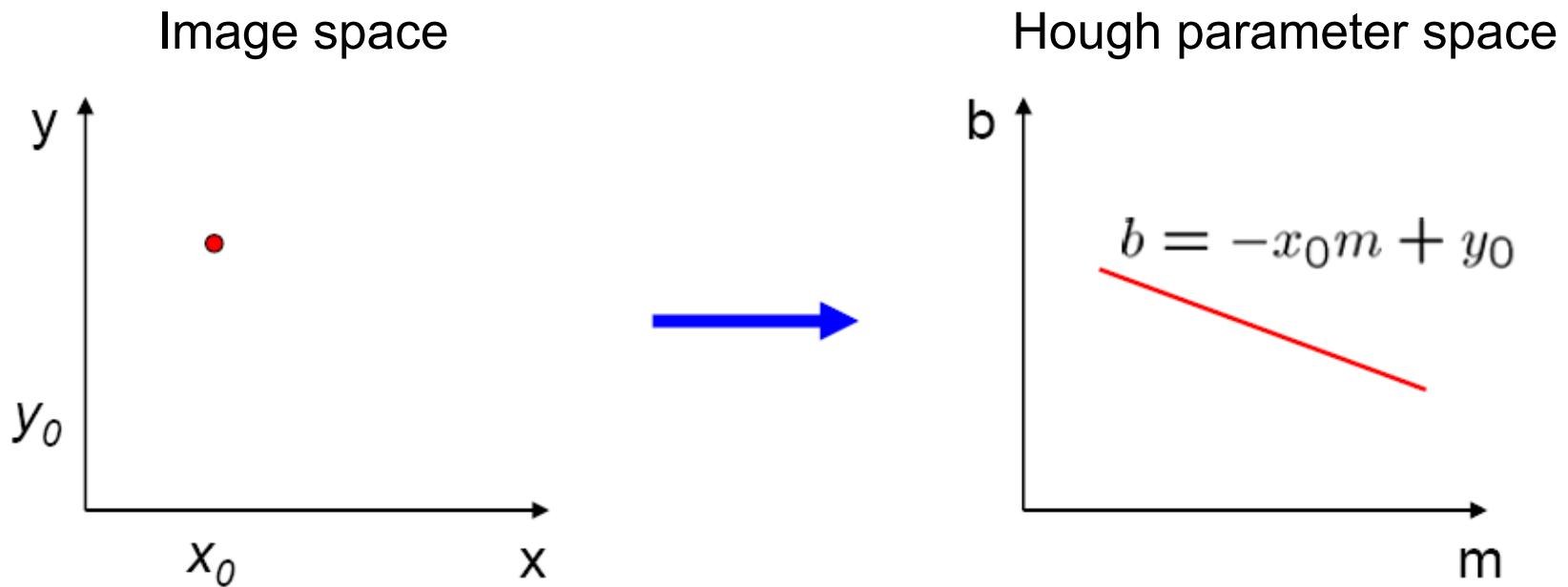
Parameter space representation

- What does a point (x_0, y_0) in the image space map to in the Hough space?



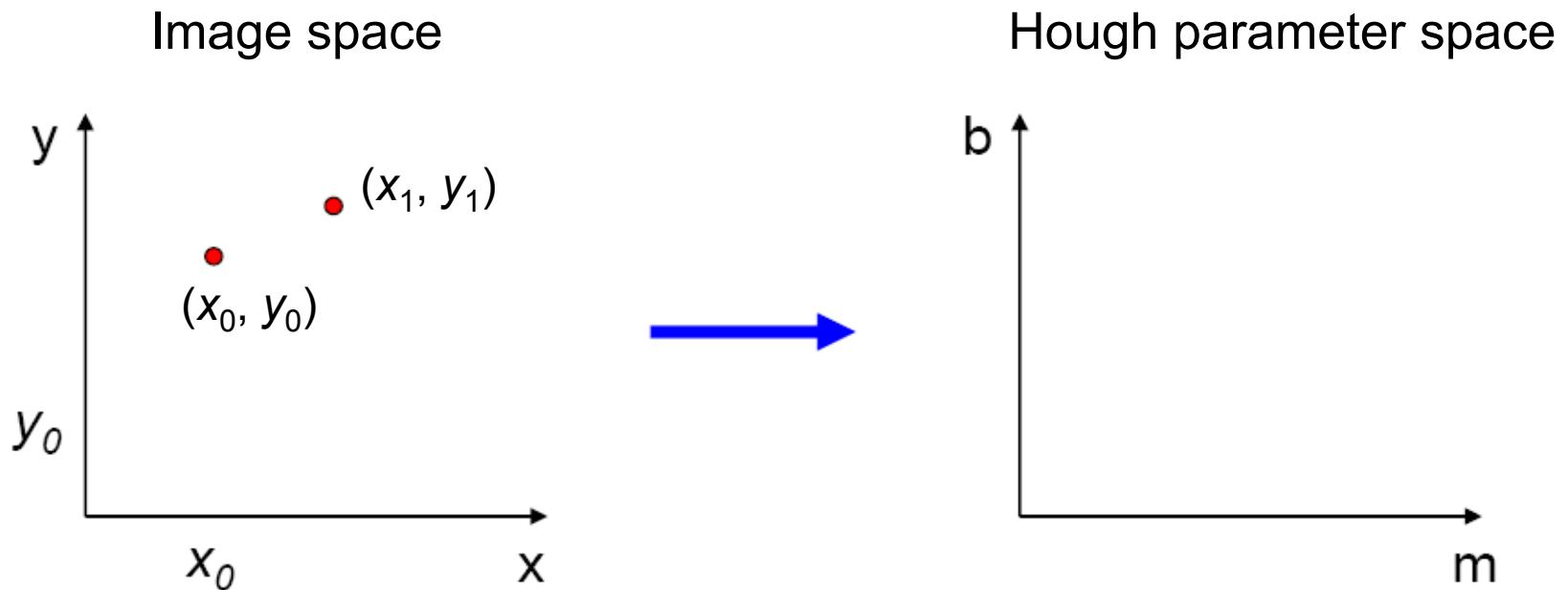
Parameter space representation

- What does a point (x_0, y_0) in the image space map to in the Hough space?
 - Answer: the solutions of $b = -x_0m + y_0$
 - This is a line in Hough space



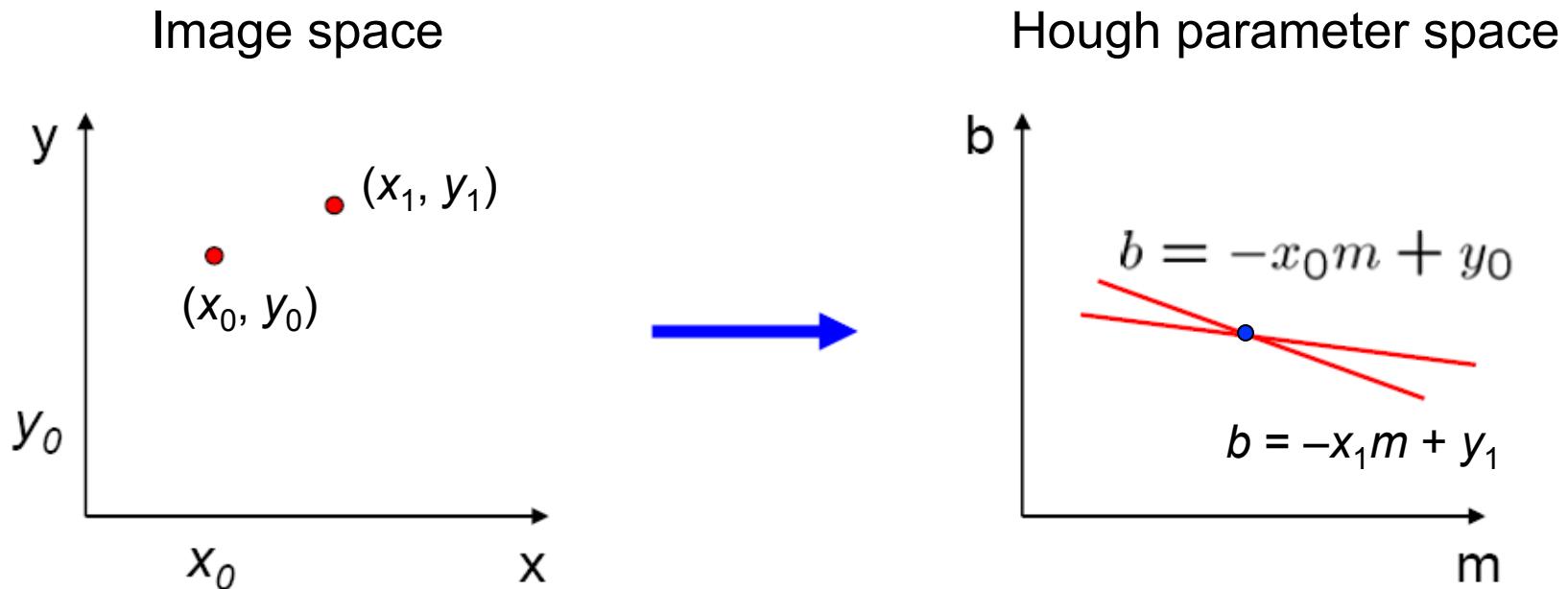
Parameter space representation

- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?



Parameter space representation

- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

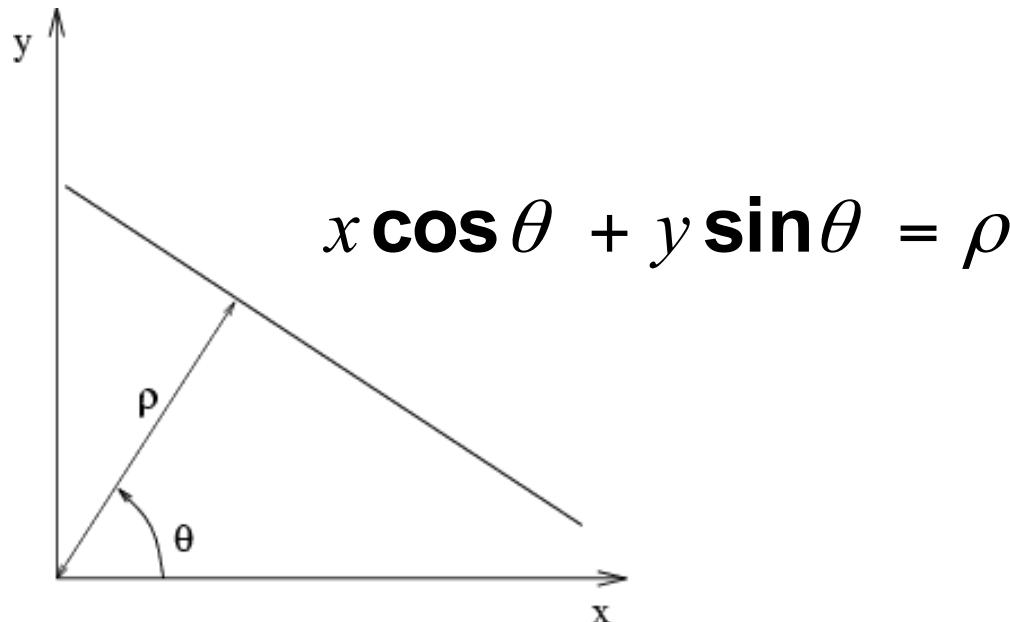


Parameter space representation

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m

Parameter space representation

- Problems with the (m, b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation

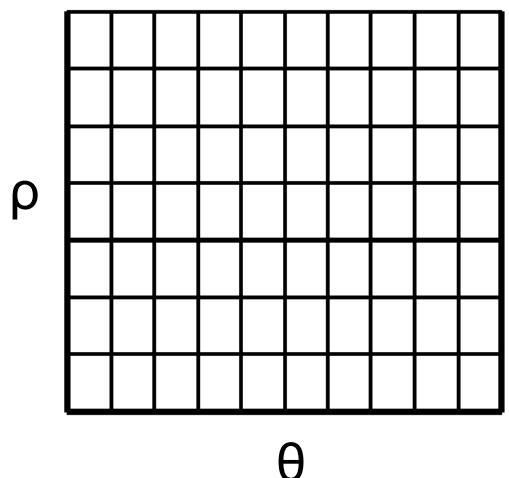


Each point will add a sinusoid in the (θ, ρ) parameter space

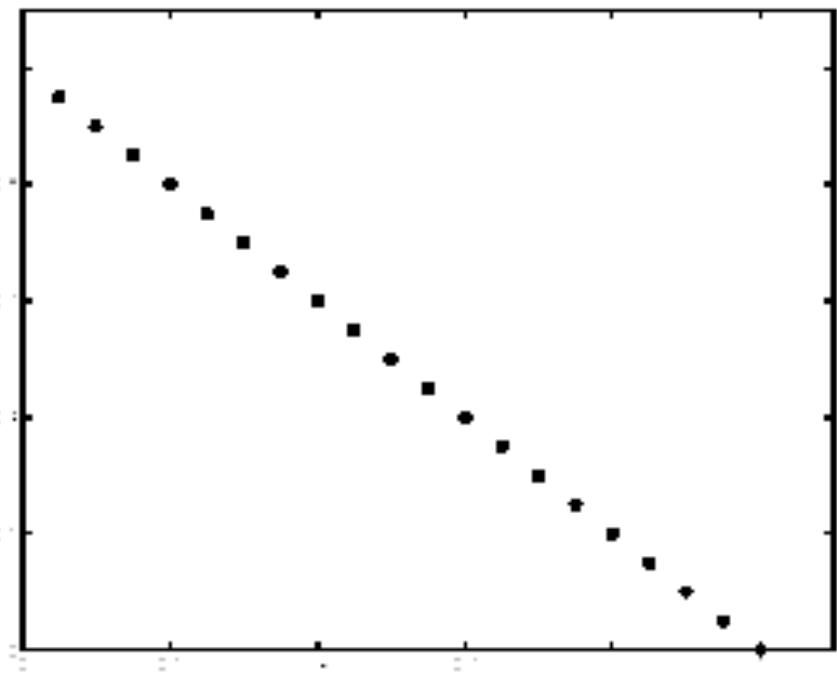
Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x, y) in the image
 - For $\theta = 0$ to 180
 - $\rho = x \cos \theta + y \sin \theta$
 - $H(\theta, \rho) = H(\theta, \rho) + 1$
 - end
 - end
- Find the value(s) of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
 - The detected line in the image is given by
$$\rho = x \cos \theta + y \sin \theta$$

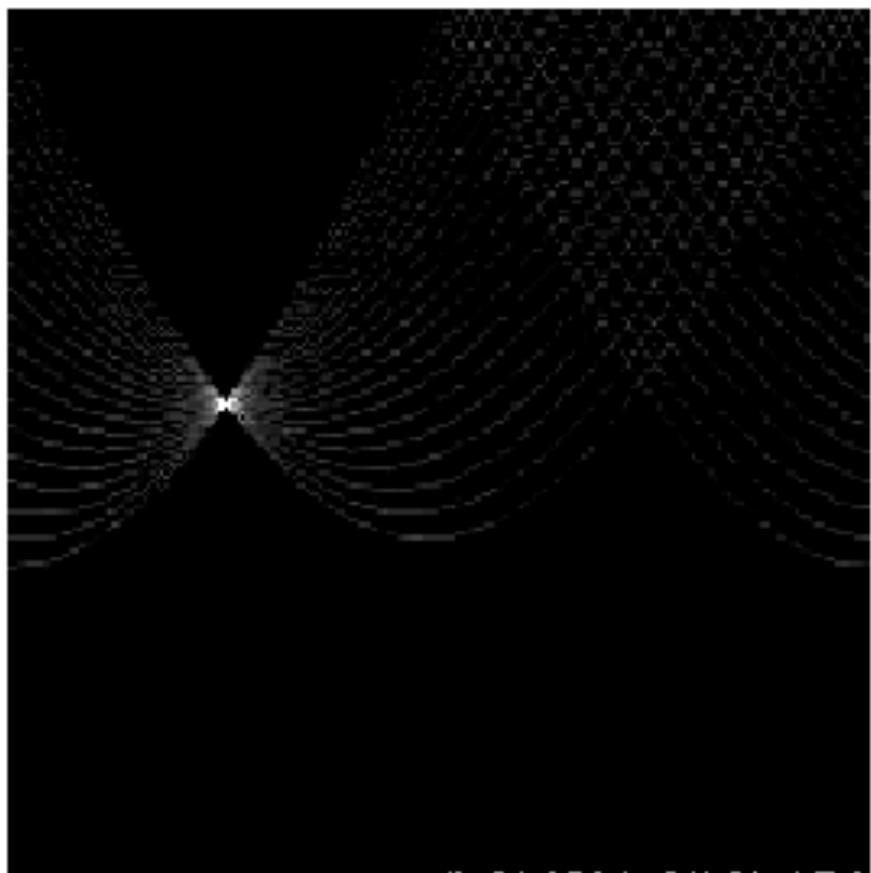
H : accumulator array (votes)



Basic illustration



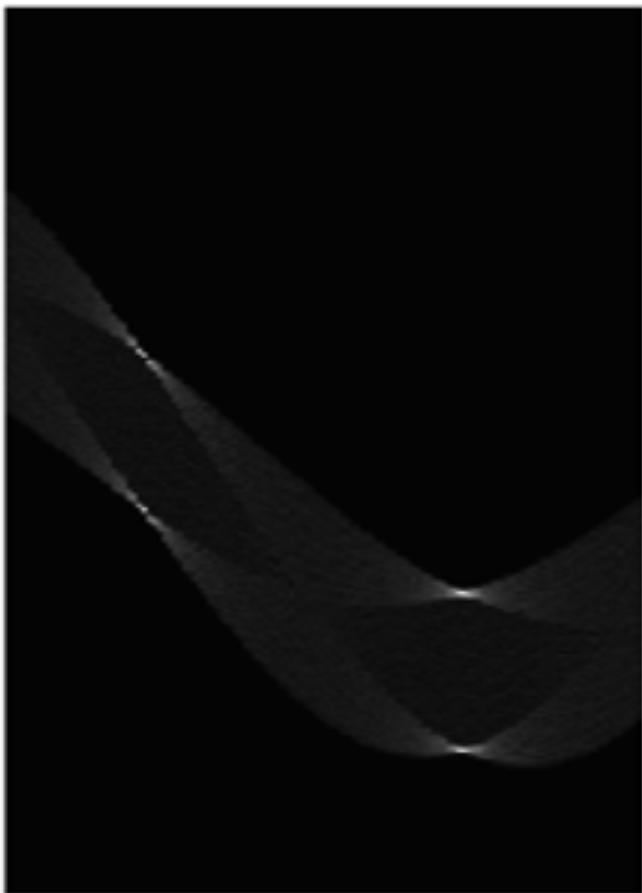
features



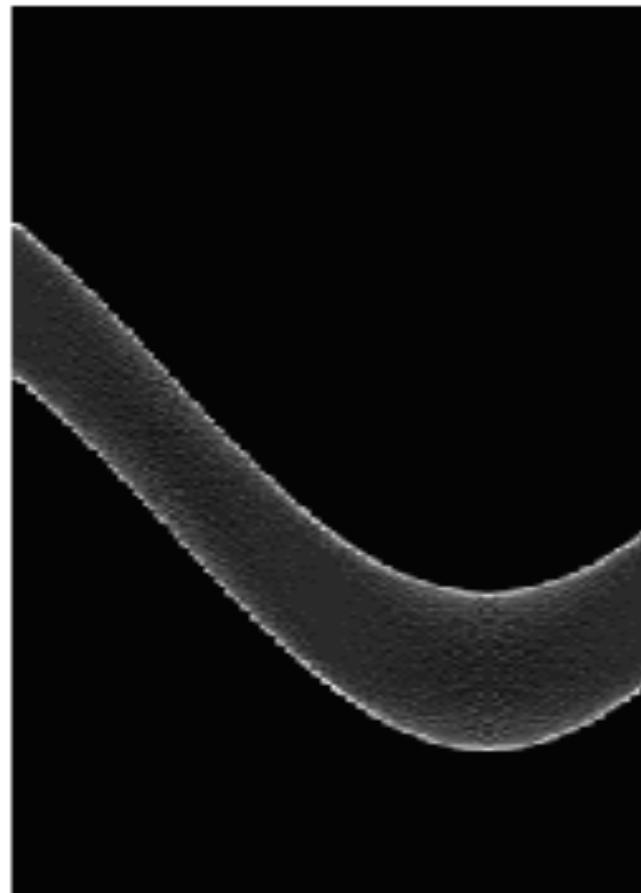
votes

Other shapes

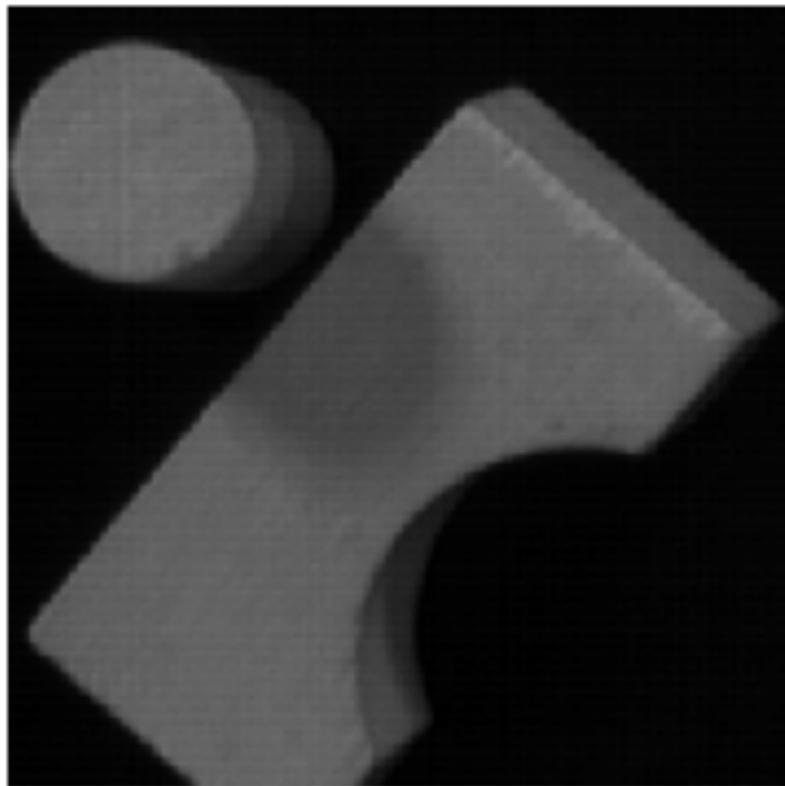
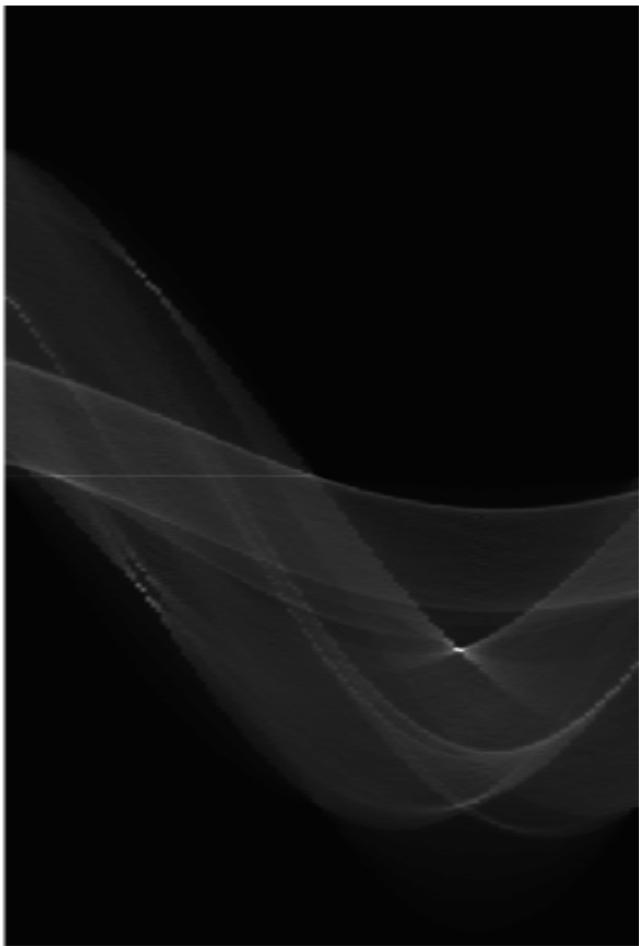
Square



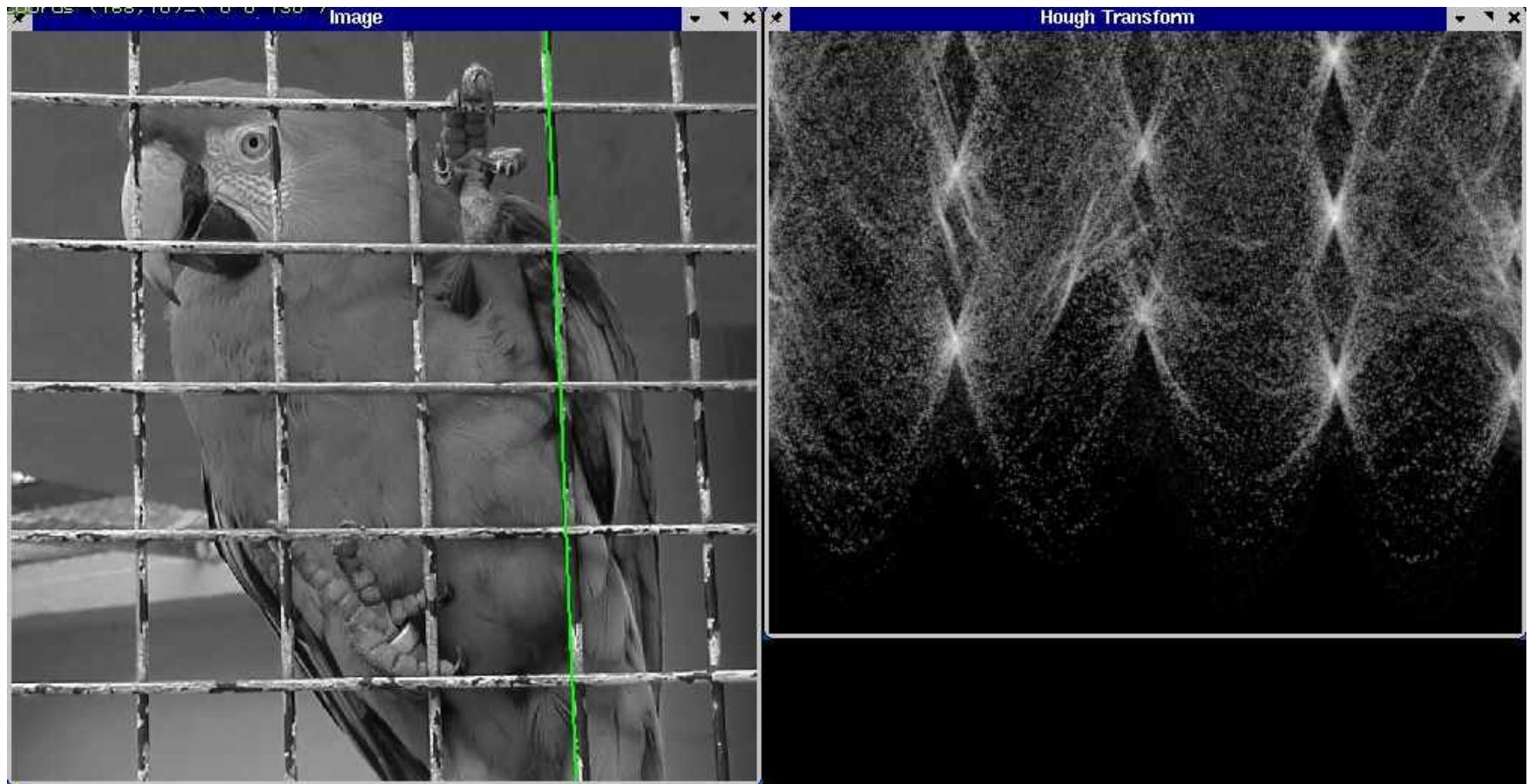
Circle



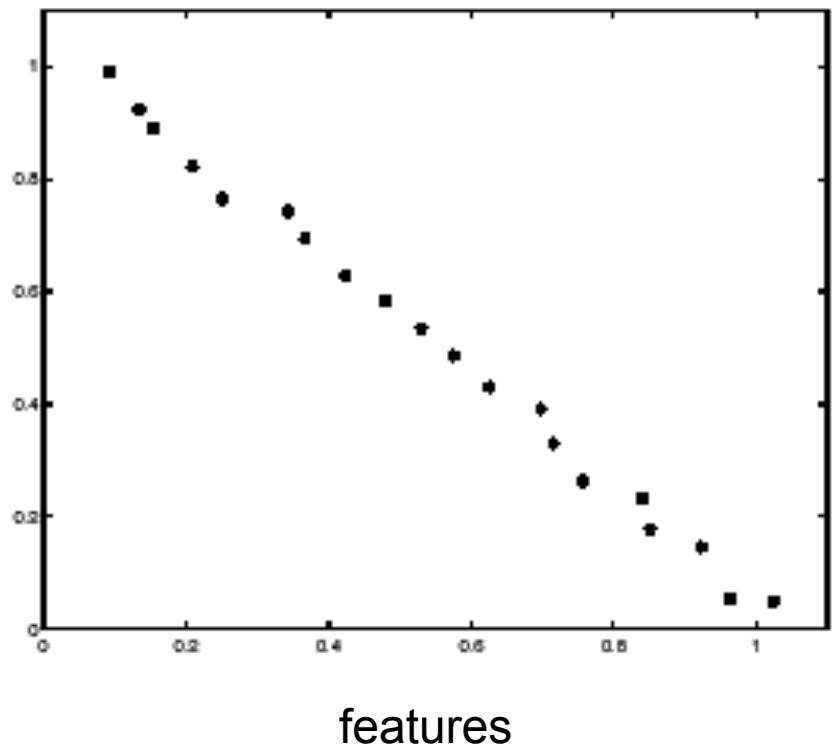
Several lines



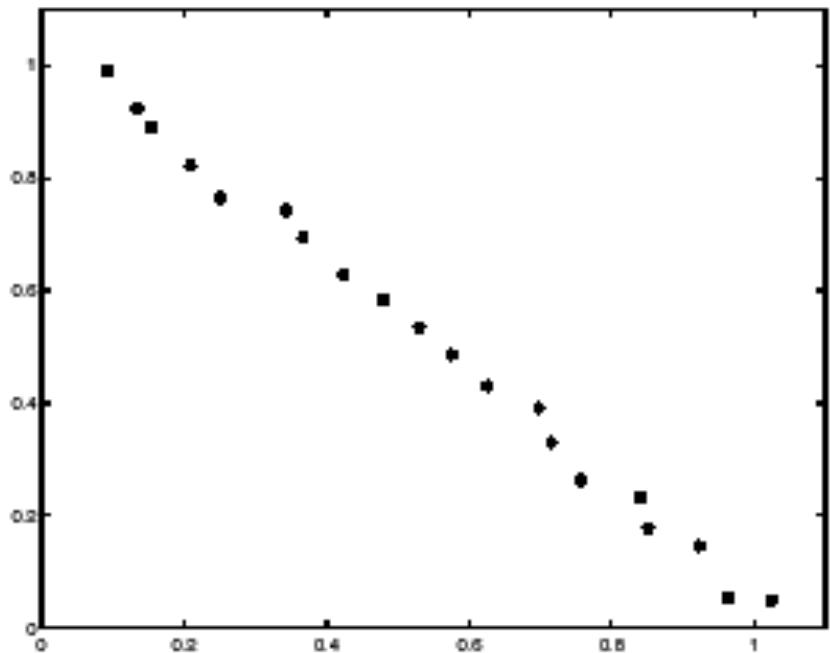
A more complicated image



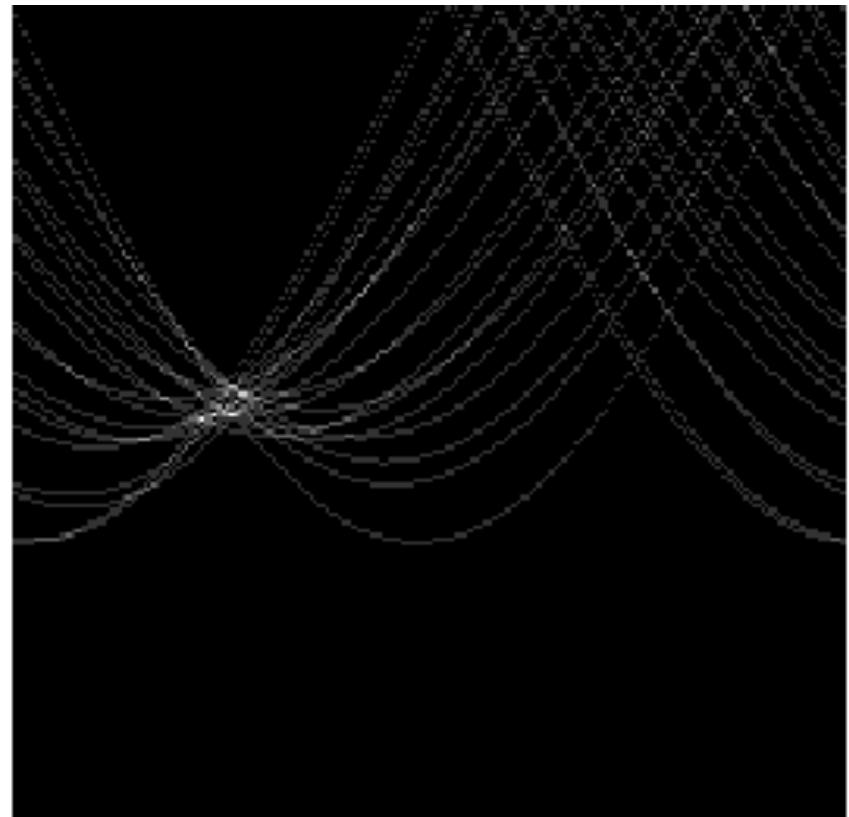
Effect of noise



Effect of noise



features

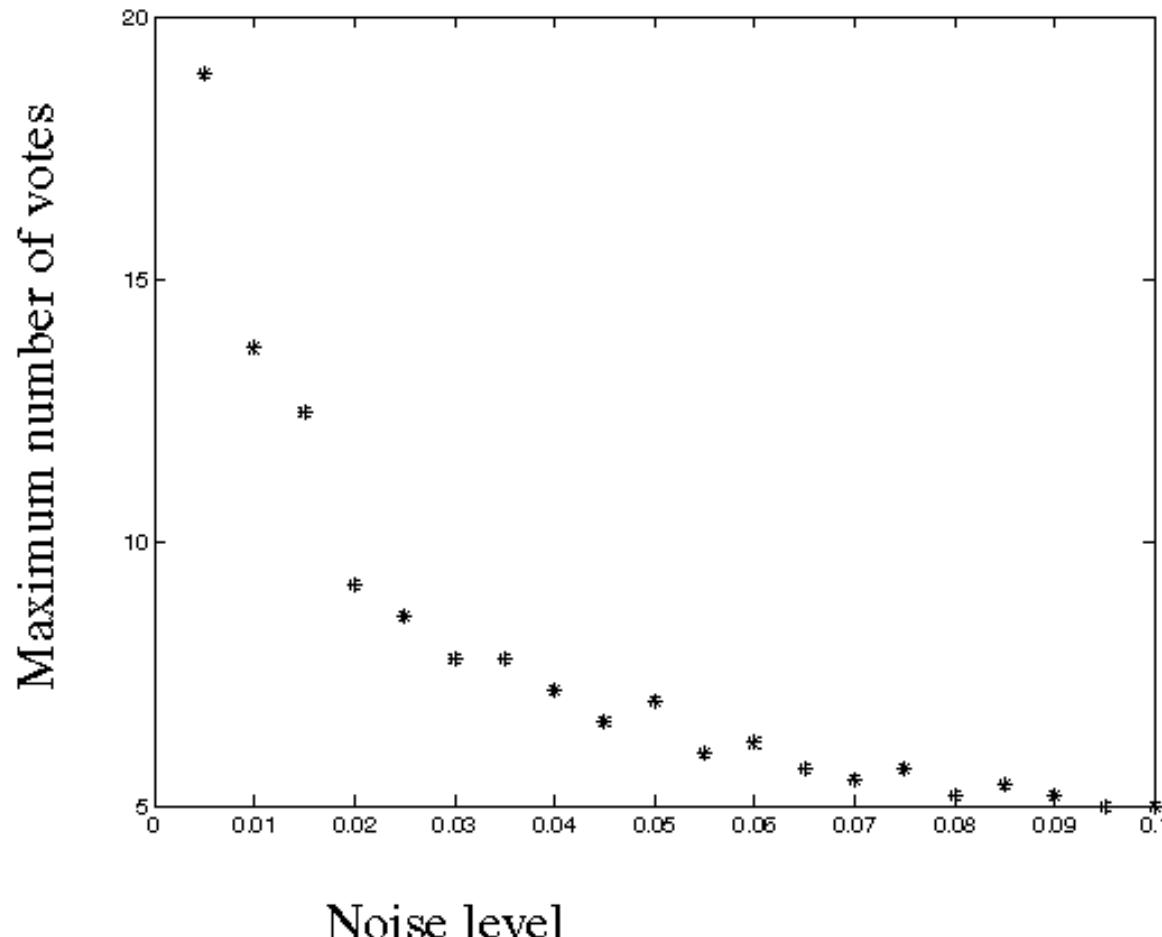


votes

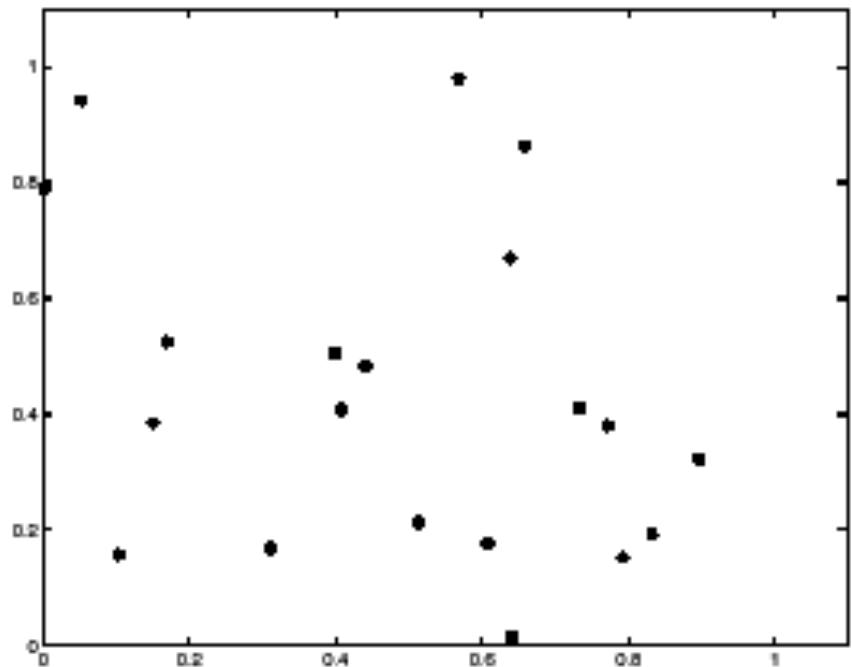
Peak gets fuzzy and hard to locate

Effect of noise

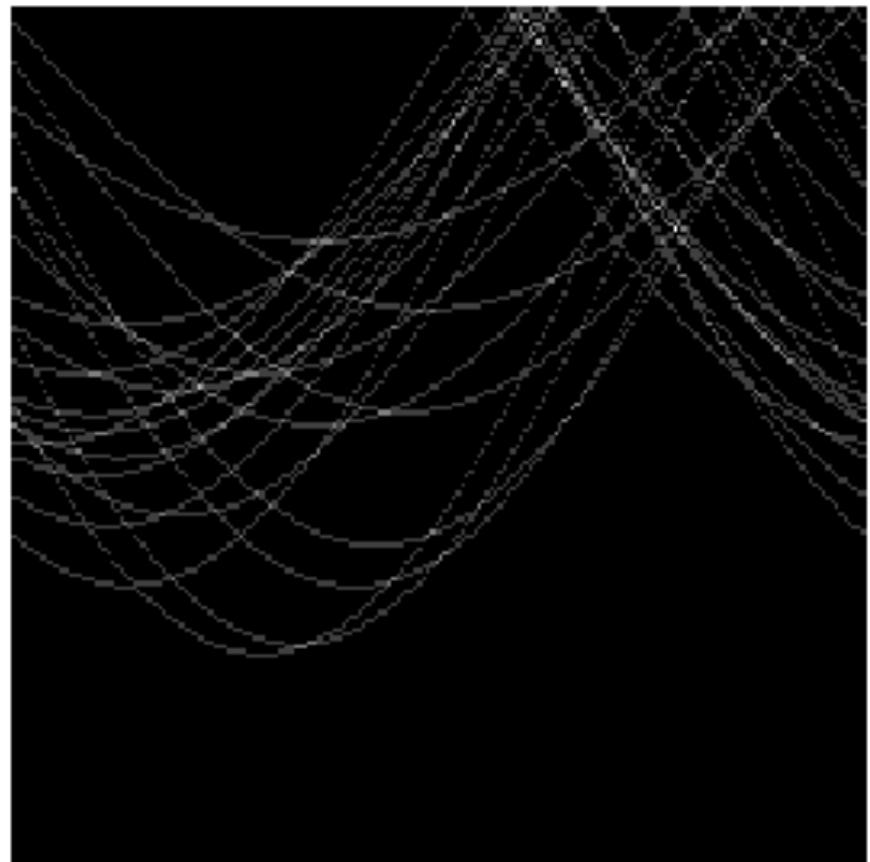
- Number of votes for a line of 20 points with increasing noise:



Random points



features

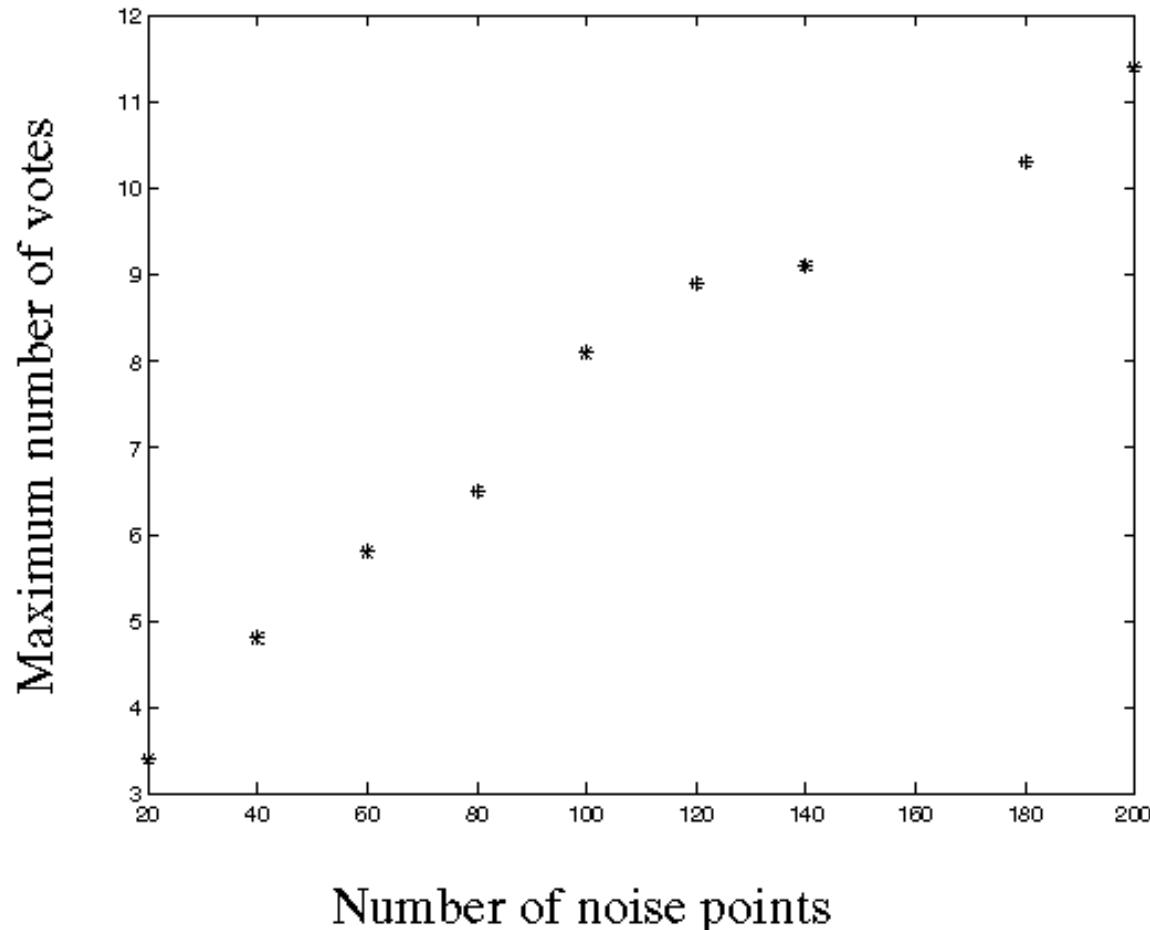


votes

Uniform noise can lead to spurious peaks in the array

Random points

- As the level of uniform noise increases, the maximum number of votes increases too:



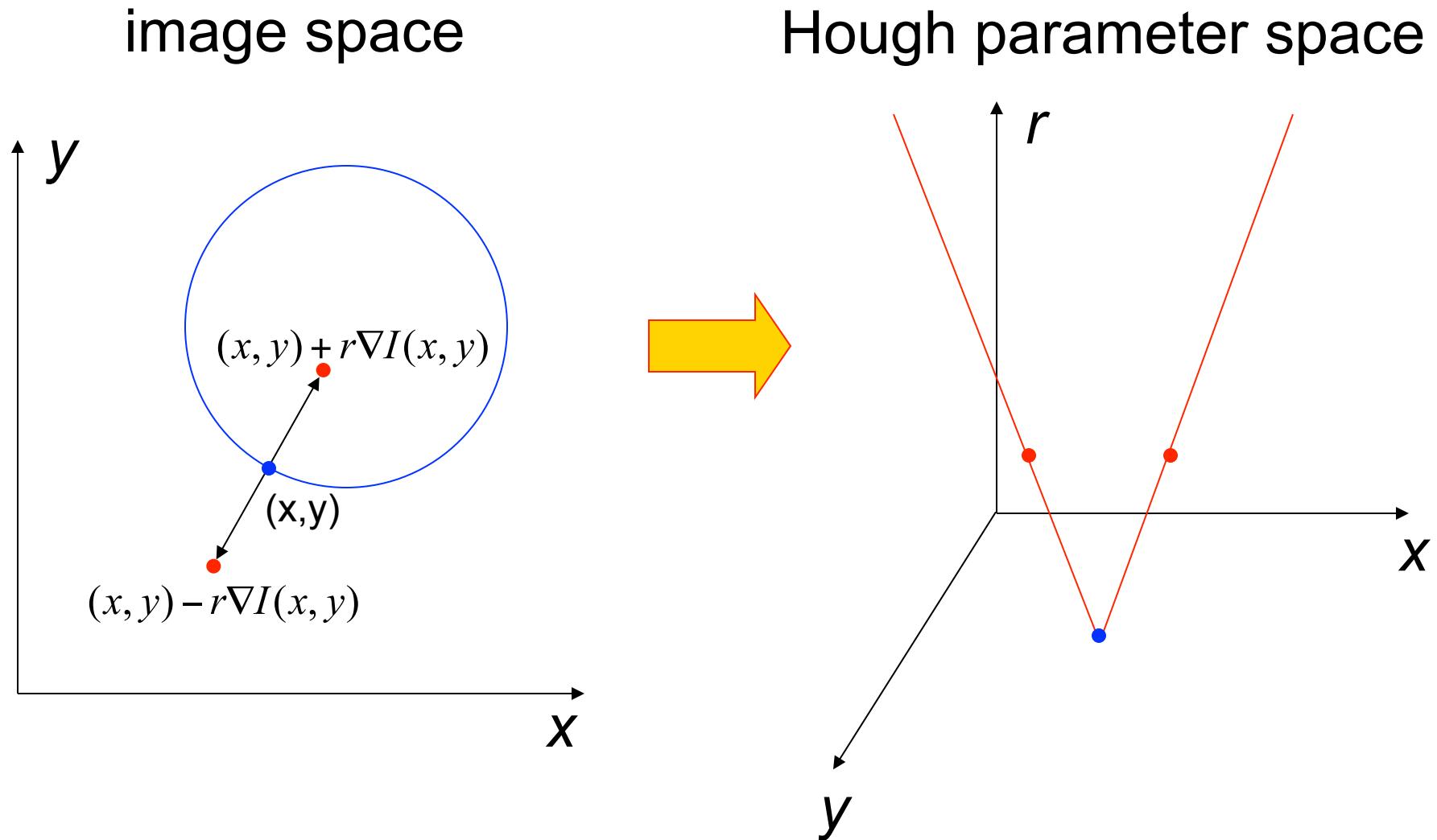
Dealing with noise

- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude

Hough transform for circles

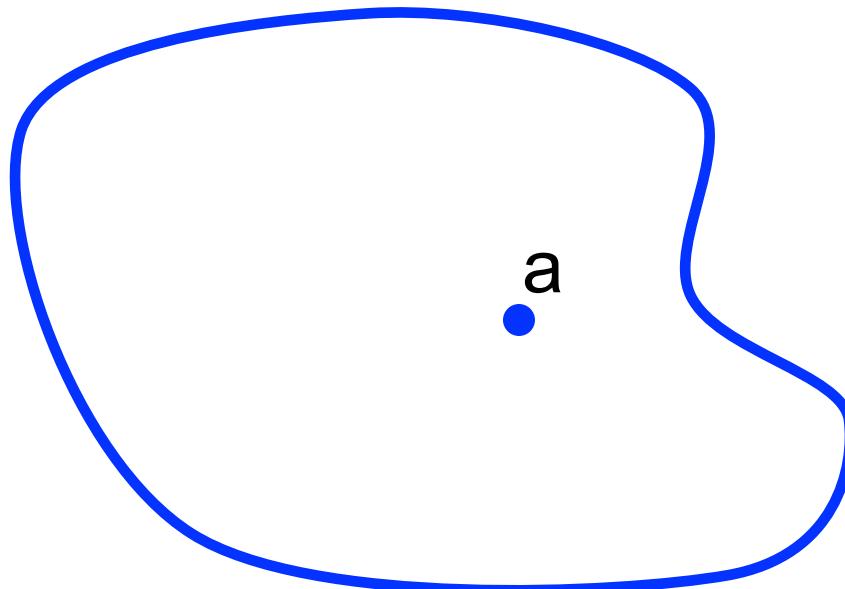
- How many dimensions will the parameter space have?
- Given an oriented edge point, what are all possible bins that it can vote for?

Hough transform for circles



Generalized Hough transform

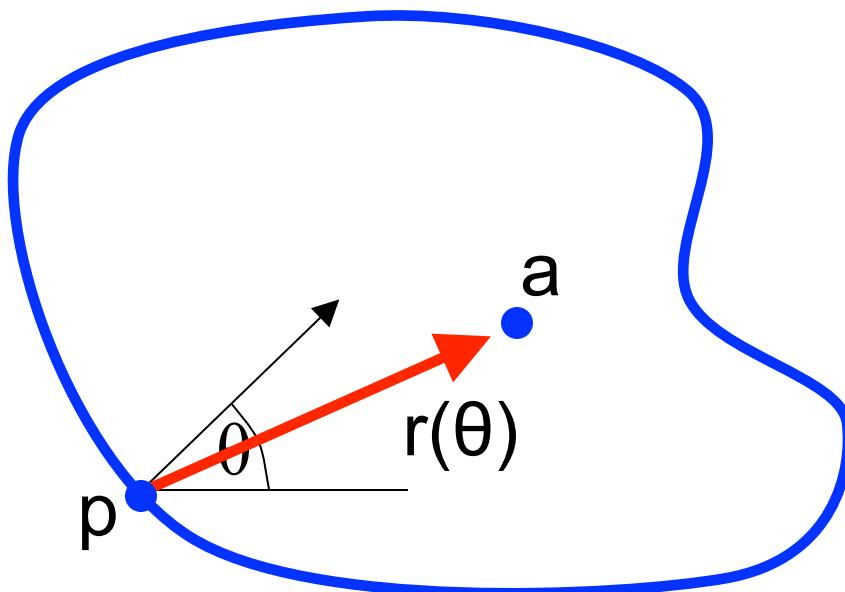
- We want to find a shape defined by its boundary points and a reference point



D. Ballard, [Generalizing the Hough Transform to Detect Arbitrary Shapes](#),
Pattern Recognition 13(2), 1981, pp. 111-122.

Generalized Hough transform

- We want to find a shape defined by its boundary points and a reference point
- For every boundary point p , we can compute the displacement vector $r = a - p$ as a function of gradient orientation θ



D. Ballard, [Generalizing the Hough Transform to Detect Arbitrary Shapes](#),
Pattern Recognition 13(2), 1981, pp. 111-122.

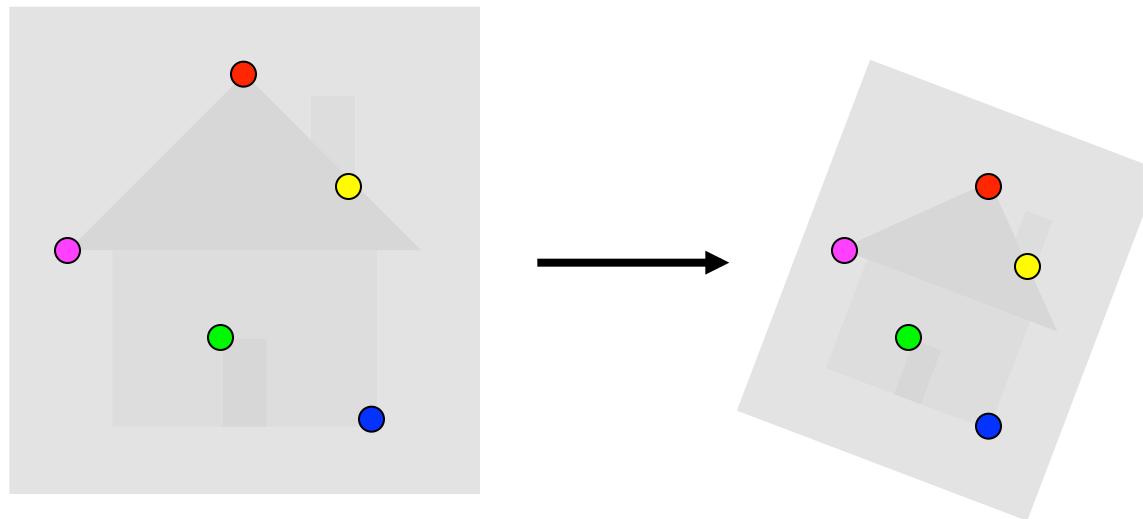
Generalized Hough transform

- For model shape: construct a table indexed by θ storing displacement vectors r as function of gradient direction
- Detection: For each edge point p with gradient orientation θ :
 - Retrieve all r indexed with θ
 - For each $r(\theta)$, put a vote in the Hough space at $p + r(\theta)$
- Peak in this Hough space is reference point with most supporting edges
- Assumption: translation is the only transformation here, i.e., orientation and scale are fixed

Overview

- Fitting techniques
 - Least Squares
 - Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

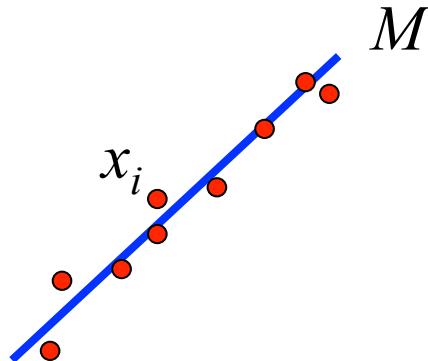
Image alignment



- Two broad approaches:
 - Direct (pixel-based) alignment
 - Search for alignment where most pixels agree
 - Feature-based alignment
 - Search for alignment where *extracted features* agree
 - Can be verified using pixel-based alignment

Alignment as fitting

- Previously: fitting a model to features in one image

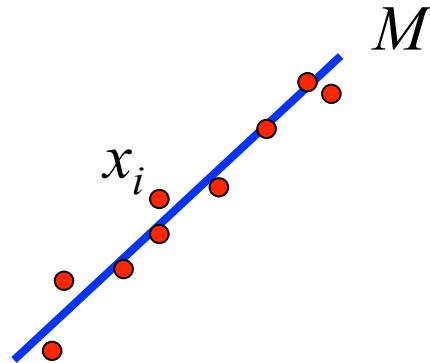


Find model M that minimizes

$$\sum_i \text{residual}(x_i, M)$$

Alignment as fitting

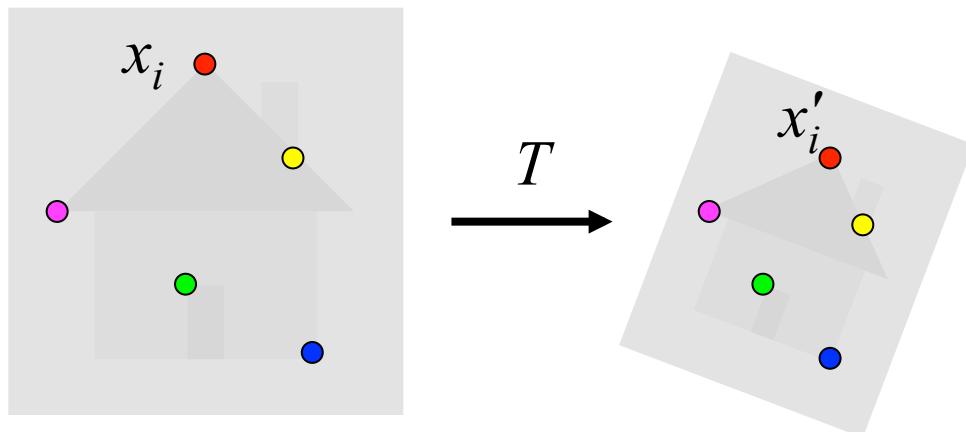
- Previously: fitting a model to features in one image



Find model M that minimizes

$$\sum_i \text{residual}(x_i, M)$$

- Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images

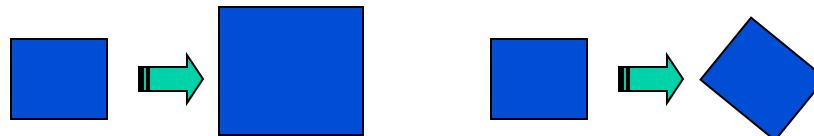


Find transformation T that minimizes

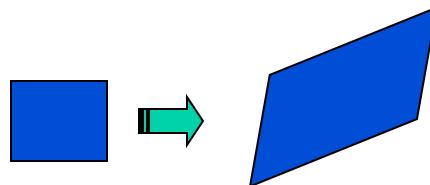
$$\sum_i \text{residual}(T(x_i), x'_i)$$

2D transformation models

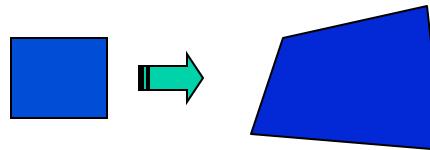
- Similarity
(translation, scale, rotation)



- Affine

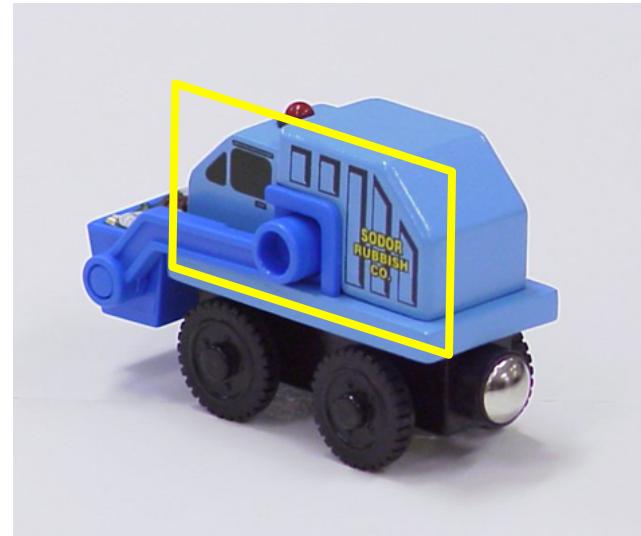


- Projective
(homography)



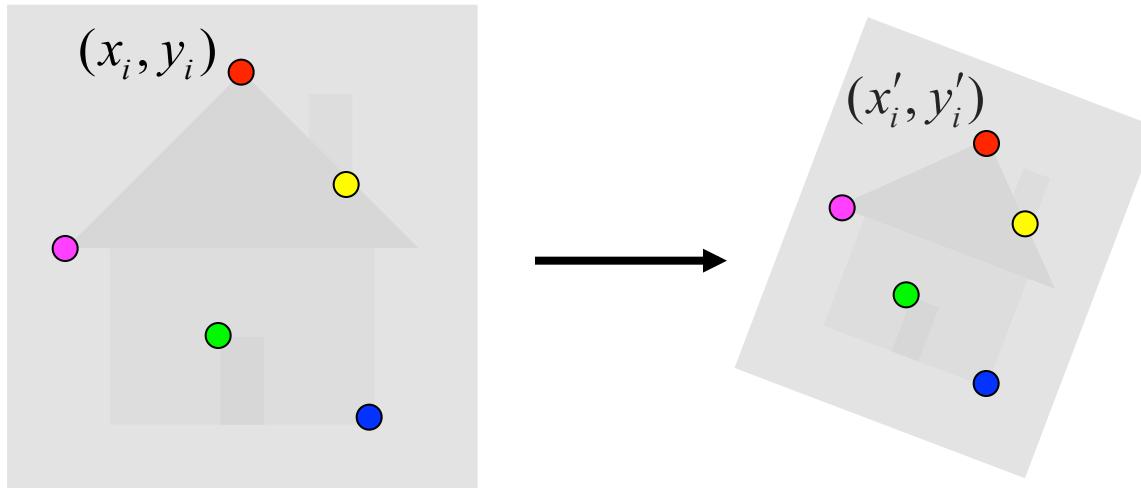
Let's start with affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models



Fitting an affine transformation

- Assume we know the correspondences, how do we get the transformation?



$$\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$
$$\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ \dots & & & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} x'_i \\ y'_i \\ \dots \end{bmatrix}$$

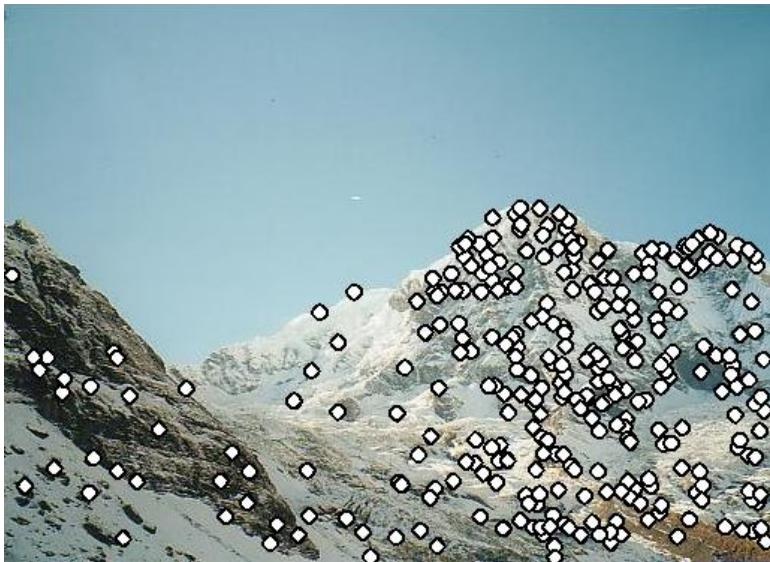
Fitting an affine transformation

$$\begin{bmatrix} & & \cdots & & & \\ x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & \cdots & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_i \\ y'_i \\ \cdots \end{bmatrix}$$

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

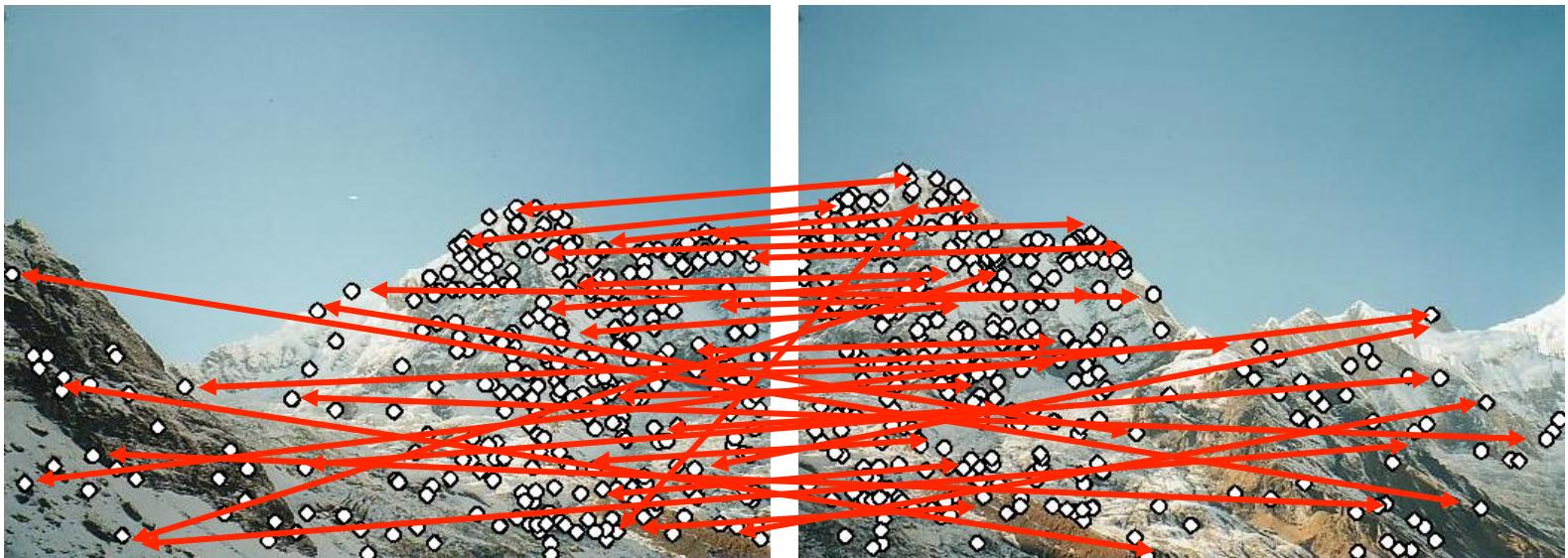
Feature-based alignment outline

Feature-based alignment outline



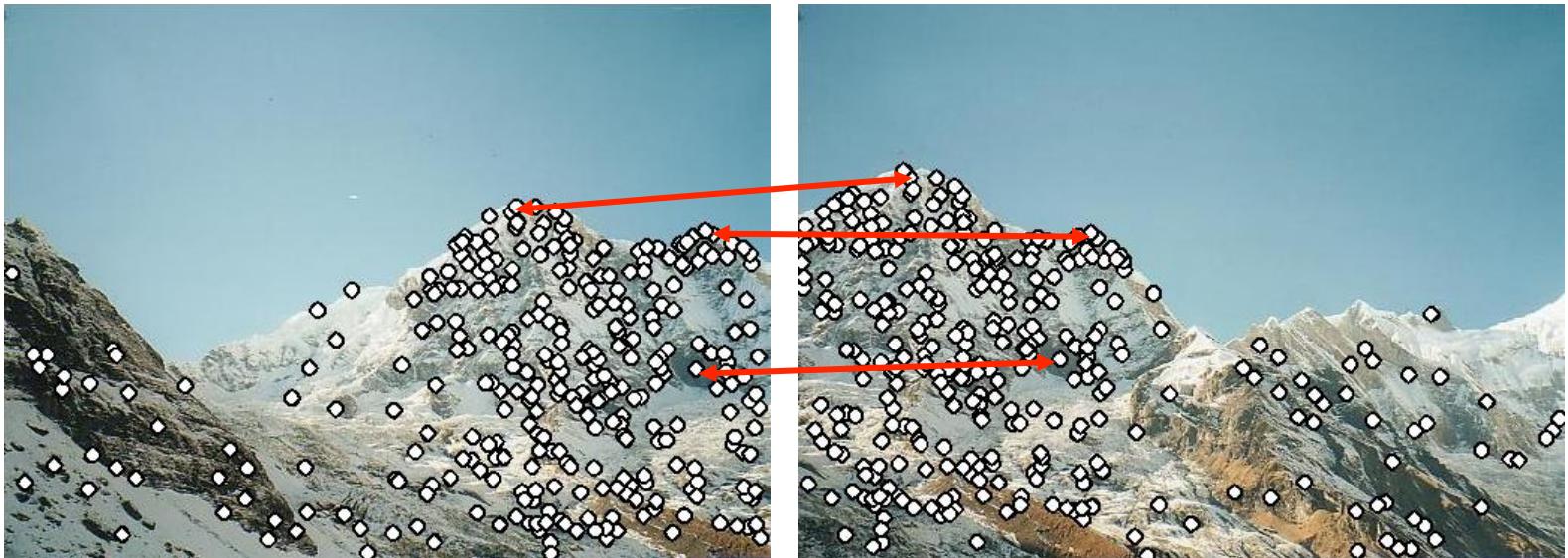
- Extract features

Feature-based alignment outline



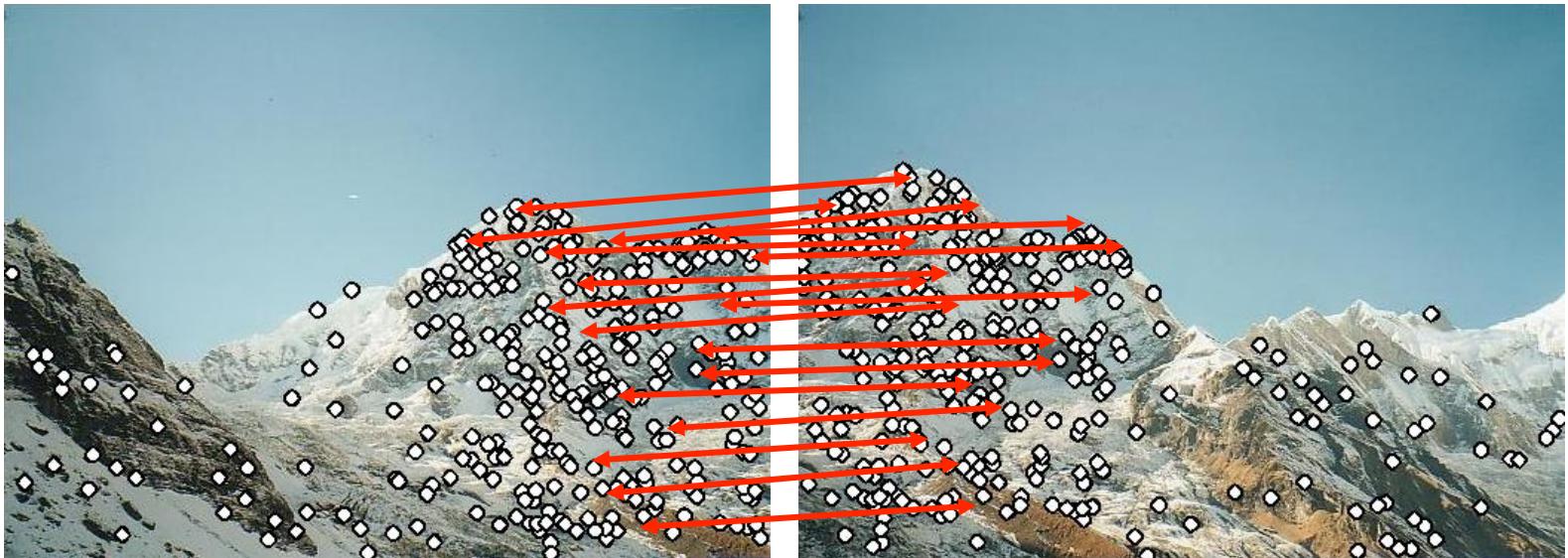
- Extract features
- Compute *putative matches*

Feature-based alignment outline



- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T

Feature-based alignment outline



- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T
 - *Verify* transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T
 - *Verify* transformation (search for other matches consistent with T)

Dealing with outliers

- The set of putative matches contains a very high percentage of outliers
- Geometric fitting strategies:
 - RANSAC
 - Hough transform

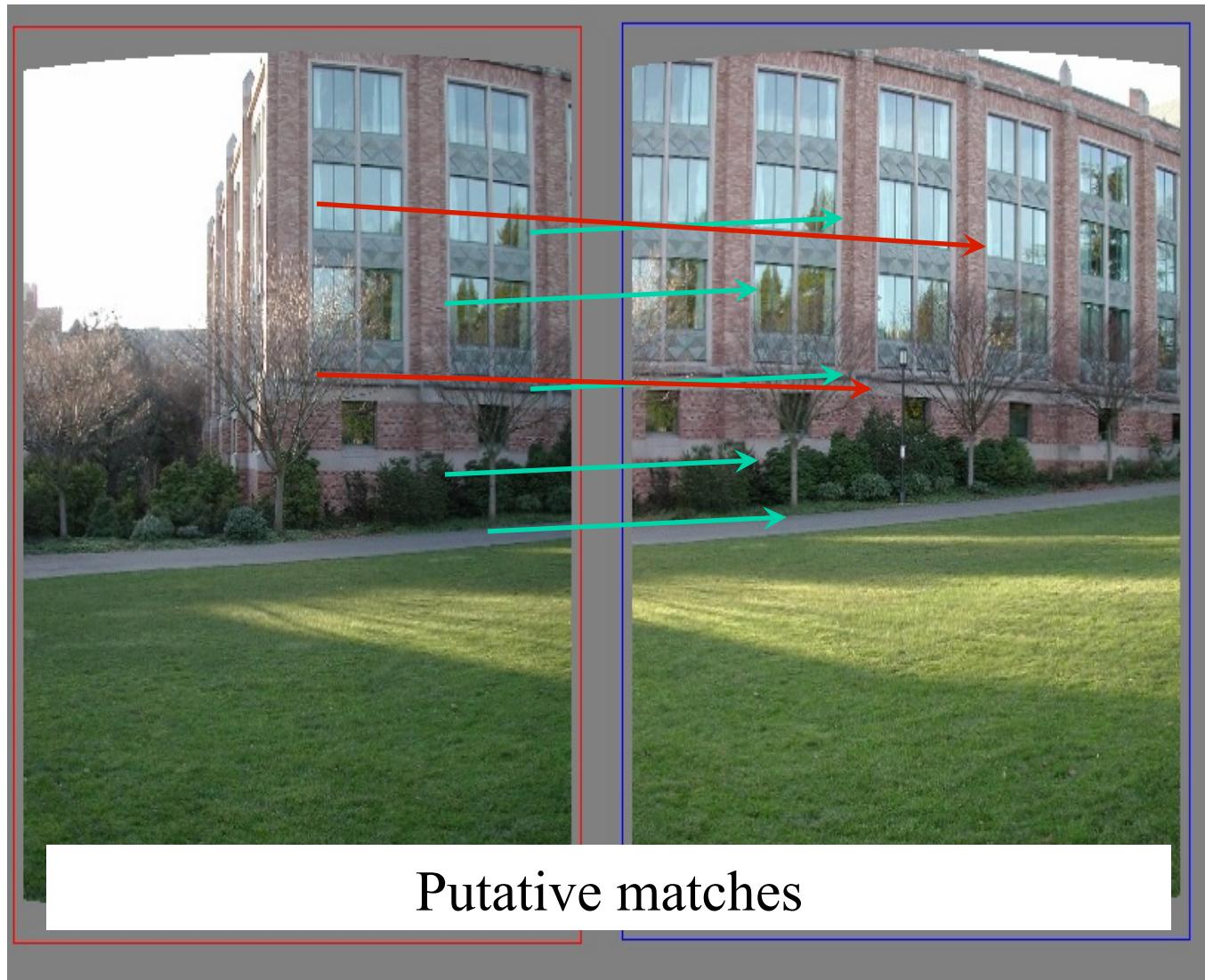
RANSAC

RANSAC loop:

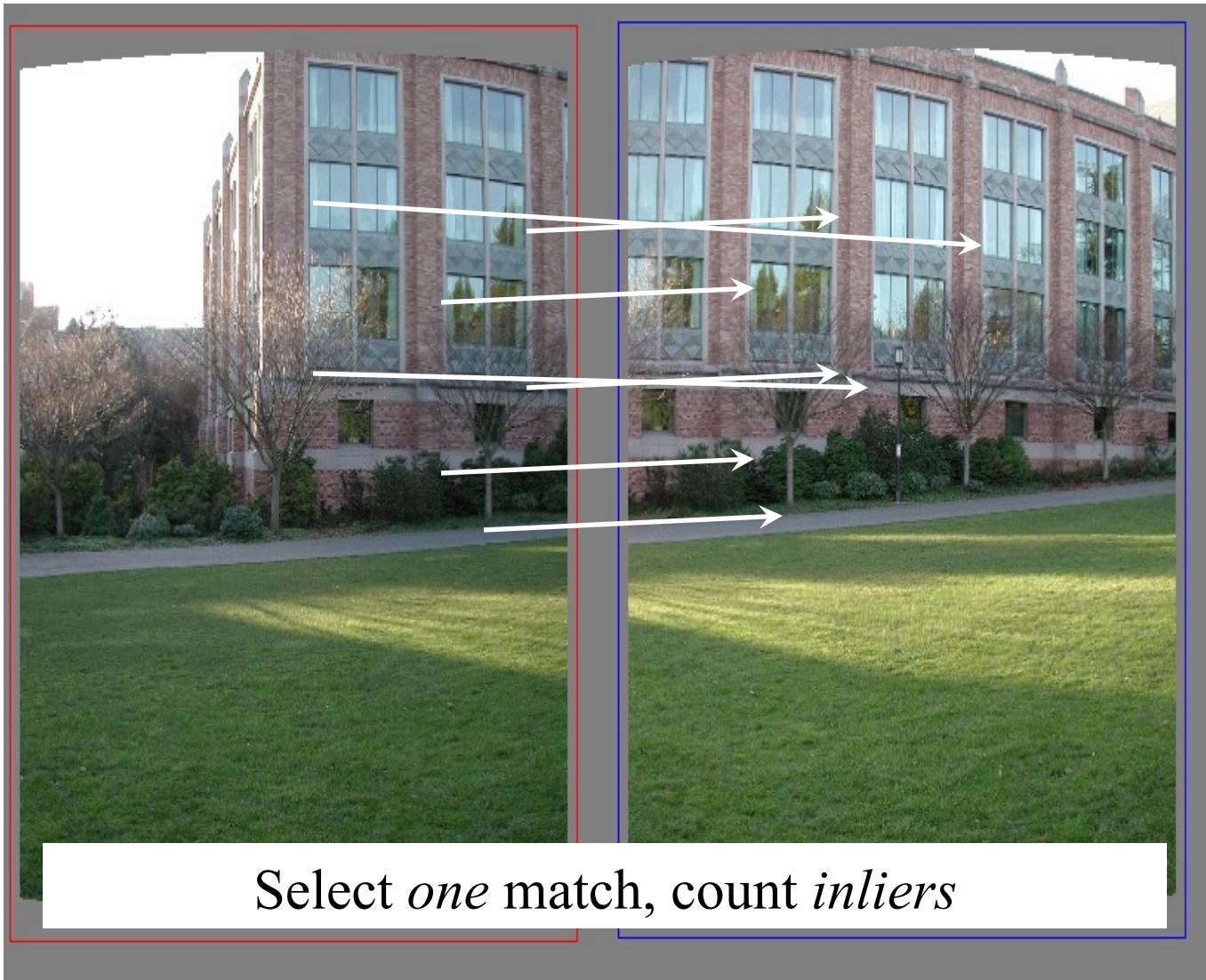
1. Randomly select a *seed group* of matches
2. Compute transformation from seed group
3. Find *inliers* to this transformation
4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

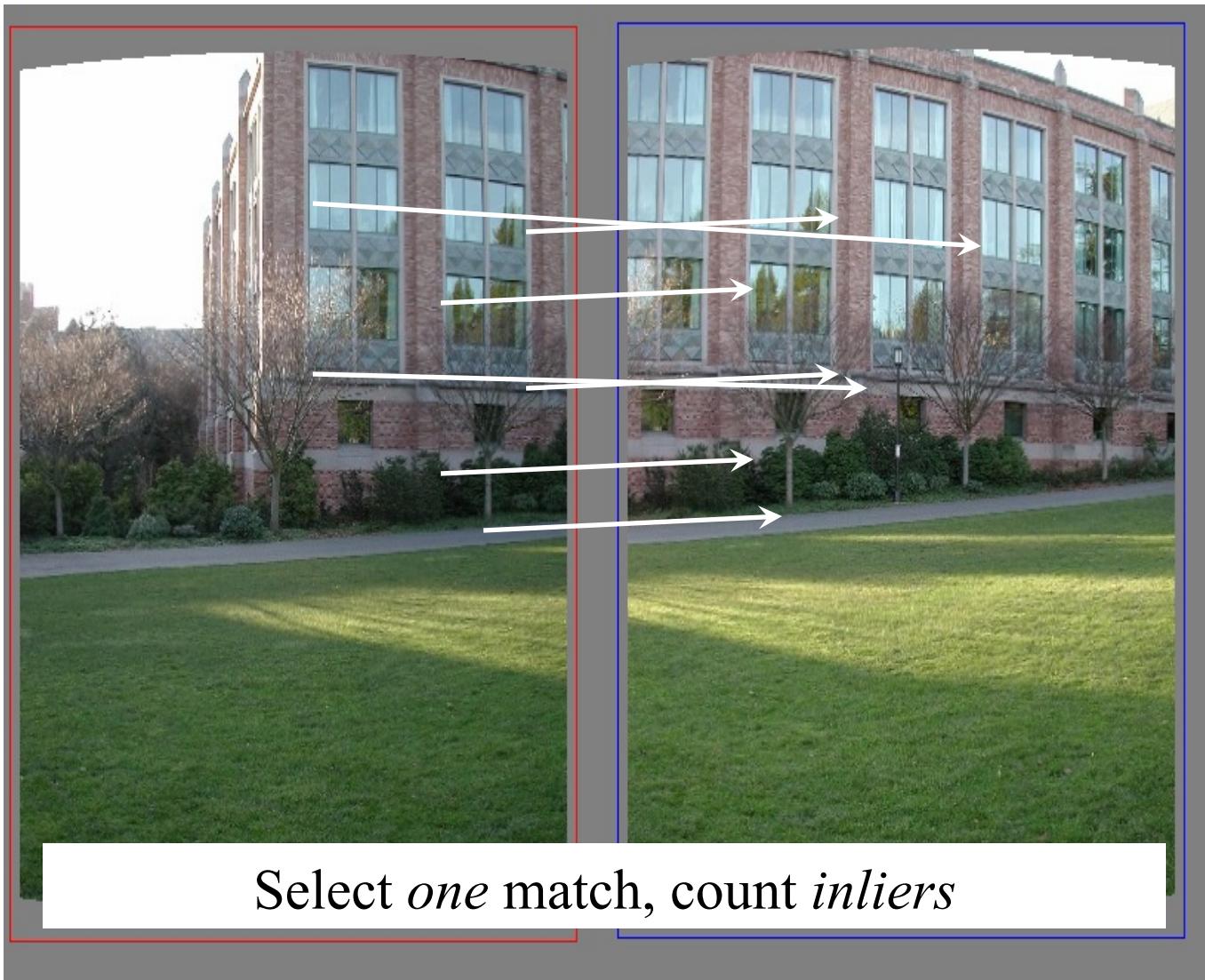
RANSAC example: Translation



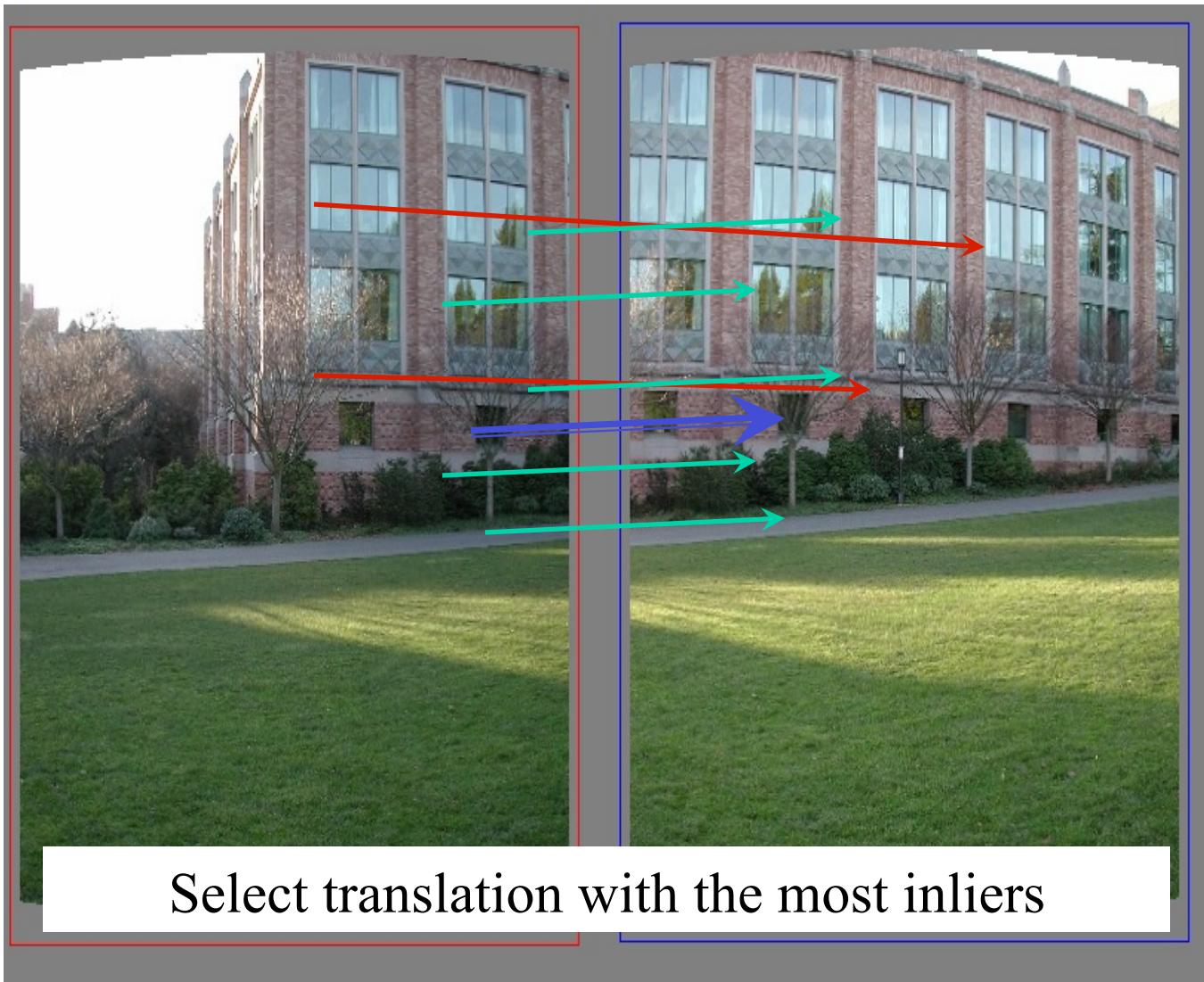
RANSAC example: Translation



RANSAC example: Translation



RANSAC example: Translation

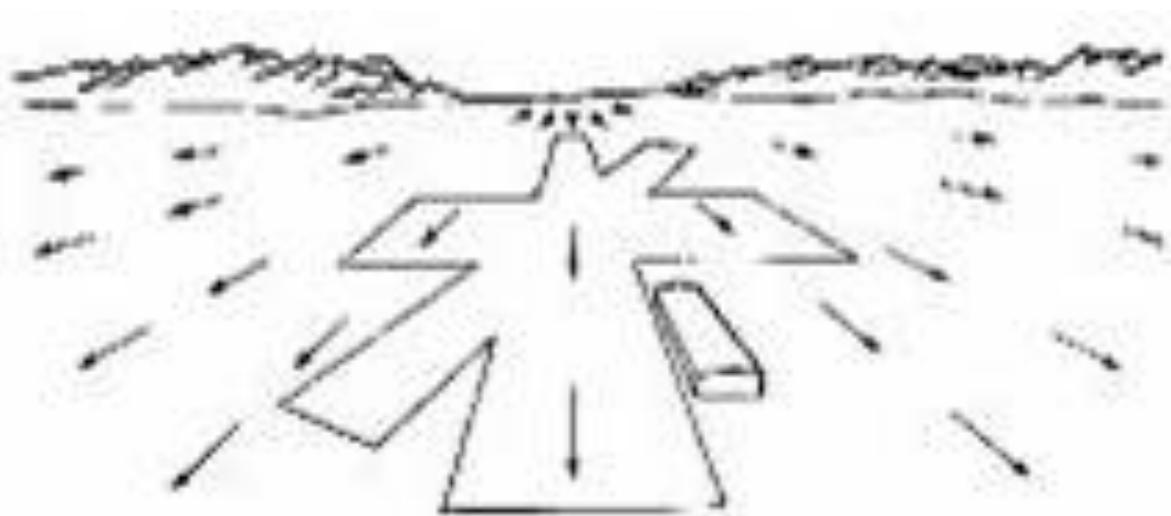


Motion estimation techniques

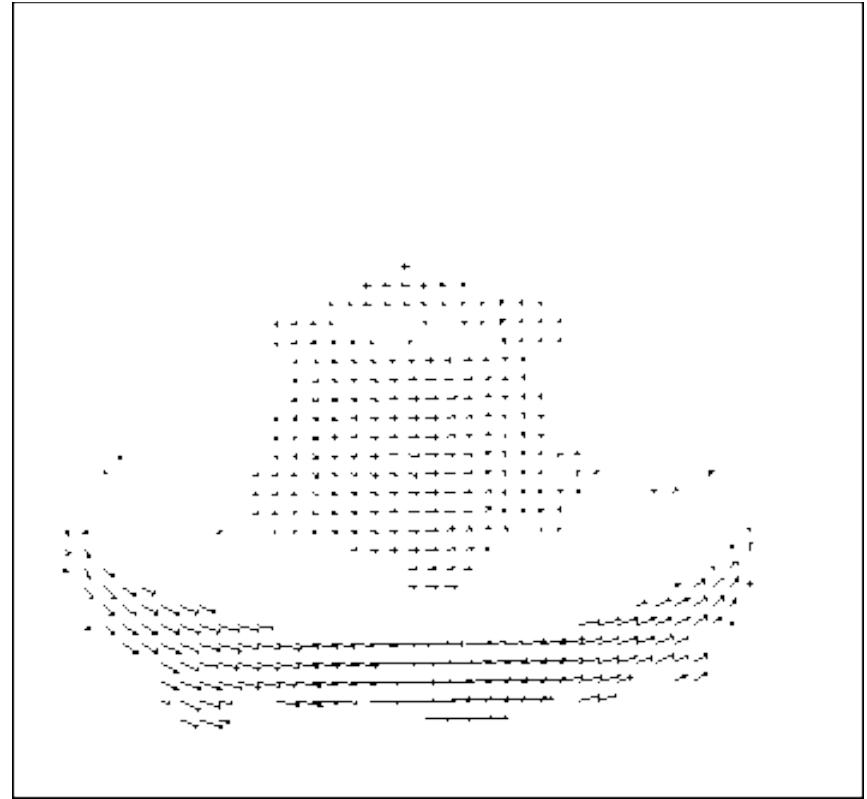
- Feature-based methods
 - Extract visual features (corners, textured areas) and track them over multiple frames
 - Sparse motion fields, but more robust tracking
 - Suitable when image motion is large (10s of pixels)
- Direct methods
 - Directly recover image motion at each pixel from spatio-temporal image brightness variations
 - Dense motion fields, but sensitive to appearance variations
 - Suitable for video and when image motion is small

Optical flow

Combination of slides from Rick Szeliski, Steve Seitz,
Alyosha Efros and Bill Freeman and Fredo Durand



Motion estimation: Optical flow



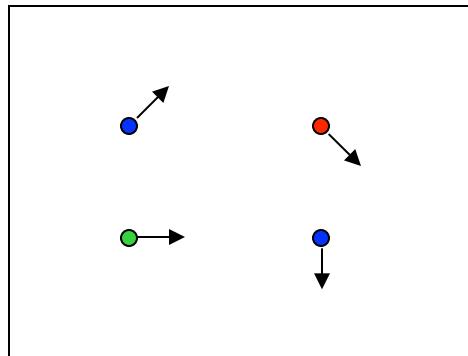
Will start by estimating motion of each pixel separately
Then will consider motion of entire image

Why estimate motion?

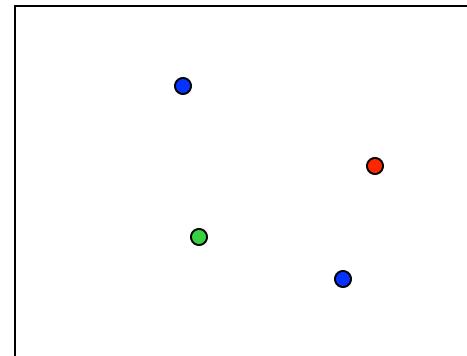
Lots of uses

- Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Special effects

Problem definition: optical flow



$H(x, y)$



$I(x, y)$

How to estimate pixel motion from image H to image I ?

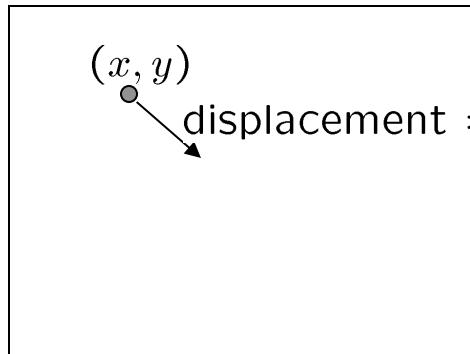
- Solve pixel correspondence problem
 - given a pixel in H , look for **nearby** pixels of the **same color** in I

Key assumptions

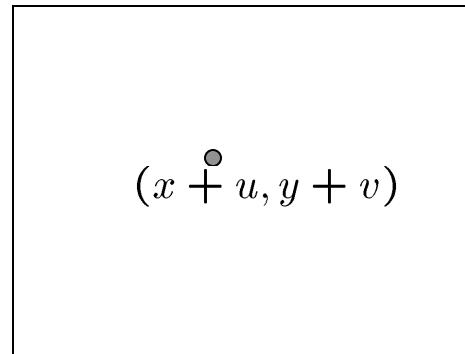
- **color constancy**: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
- **small motion**: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)



$$H(x, y)$$



$$I(x, y)$$

Let's look at these constraints more closely

- brightness constancy: Q: what's the equation?

$$H(x, y) = I(x + u, y + v)$$

- small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I :

$$\begin{aligned} I(x + u, y + v) &= I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms} \\ &\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v \end{aligned}$$

Optical flow equation

Combining these two equations

$$\begin{aligned} 0 &= I(x + u, y + v) - H(x, y) && \text{shorthand: } I_x = \frac{\partial I}{\partial x} \\ &\approx I(x, y) + I_x u + I_y v - H(x, y) \\ &\approx (I(x, y) - H(x, y)) + I_x u + I_y v \\ &\approx I_t + I_x u + I_y v \\ &\approx I_t + \nabla I \cdot [u \ v] \end{aligned}$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \ \frac{\partial y}{\partial t} \right]$$

Optical flow equation

$$0 = I_t + \nabla I \cdot [u \ v]$$

Q: how many unknowns and equations per pixel?

2 unknowns, one equation

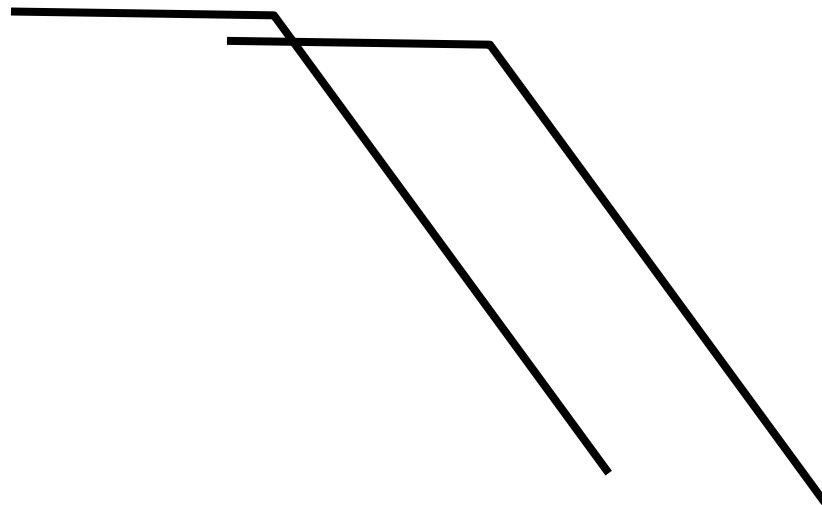
Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

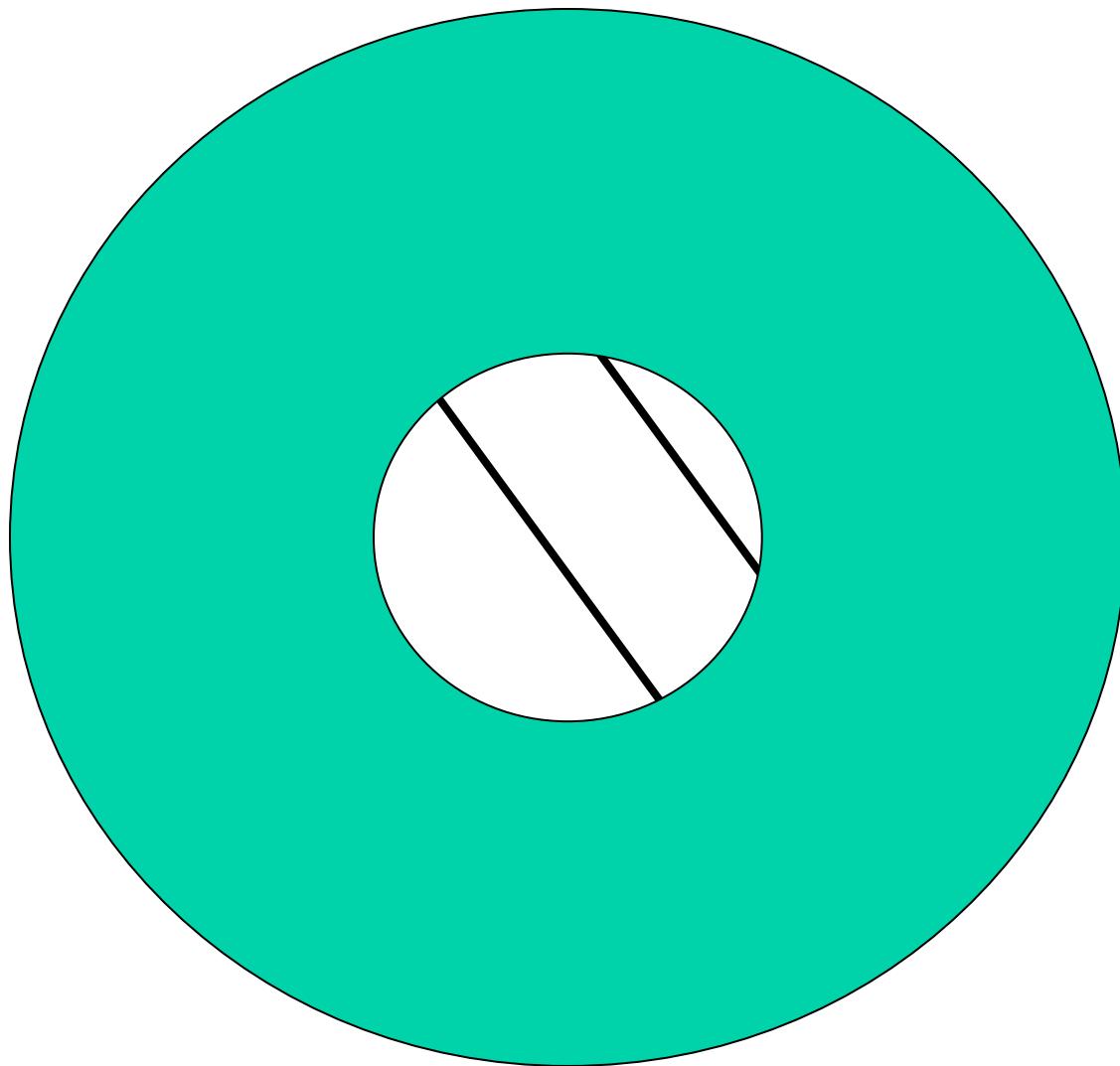
This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.html
<http://www.liv.ac.uk/~marcob/Trieste/barberpole.html>

Aperture problem



Aperture problem



Solving the aperture problem

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p}_i) + \nabla I(\mathbf{p}_i) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$

$$A_{25 \times 2}$$

$$d_{2 \times 1}$$

$$b_{25 \times 1}$$

RGB version

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25*3 equations per pixel!

$$0 = I_t(\mathbf{p}_i)[0, 1, 2] + \nabla I(\mathbf{p}_i)[0, 1, 2] \cdot [u \ v]$$
$$\begin{bmatrix} I_x(\mathbf{p}_1)[0] & I_y(\mathbf{p}_1)[0] \\ I_x(\mathbf{p}_1)[1] & I_y(\mathbf{p}_1)[1] \\ I_x(\mathbf{p}_1)[2] & I_y(\mathbf{p}_1)[2] \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25})[0] & I_y(\mathbf{p}_{25})[0] \\ I_x(\mathbf{p}_{25})[1] & I_y(\mathbf{p}_{25})[1] \\ I_x(\mathbf{p}_{25})[2] & I_y(\mathbf{p}_{25})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p}_1)[0] \\ I_t(\mathbf{p}_1)[1] \\ I_t(\mathbf{p}_1)[2] \\ \vdots \\ I_t(\mathbf{p}_{25})[0] \\ I_t(\mathbf{p}_{25})[1] \\ I_t(\mathbf{p}_{25})[2] \end{bmatrix}$$
$$\begin{matrix} A \\ 75 \times 2 \end{matrix} \quad \begin{matrix} d \\ 2 \times 1 \end{matrix} \quad \begin{matrix} b \\ 75 \times 1 \end{matrix}$$

Note that RGB is not enough to disambiguate
because R, G & B are correlated
Just provides better gradient

Lukas-Kanade flow

Prob: we have more equations than unknowns

$$\begin{matrix} A & d = b \\ 25 \times 2 & 2 \times 1 & 25 \times 1 \end{matrix} \longrightarrow \text{minimize } \|Ad - b\|^2$$

Solution: solve least squares problem

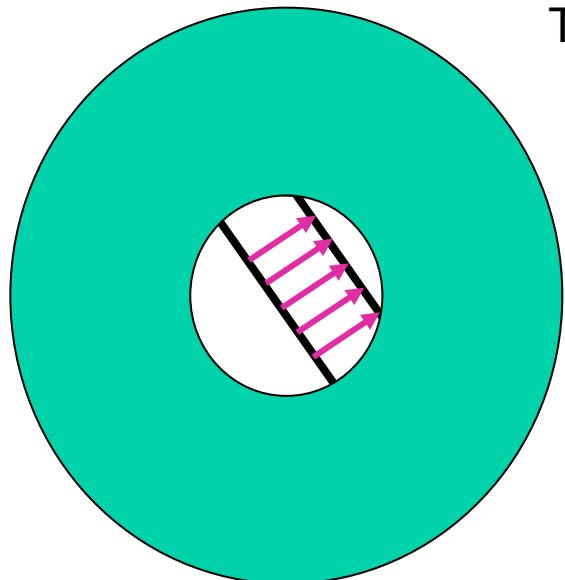
- minimum least squares solution given by solution (in d) of:

$$\begin{matrix} (A^T A) & d = A^T b \\ 2 \times 2 & 2 \times 1 & 2 \times 1 \end{matrix}$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad \qquad A^T b$$

- The summations are over all pixels in the $K \times K$ window
- This technique was first proposed by Lukas & Kanade (1981)

Aperture Problem and Normal Flow



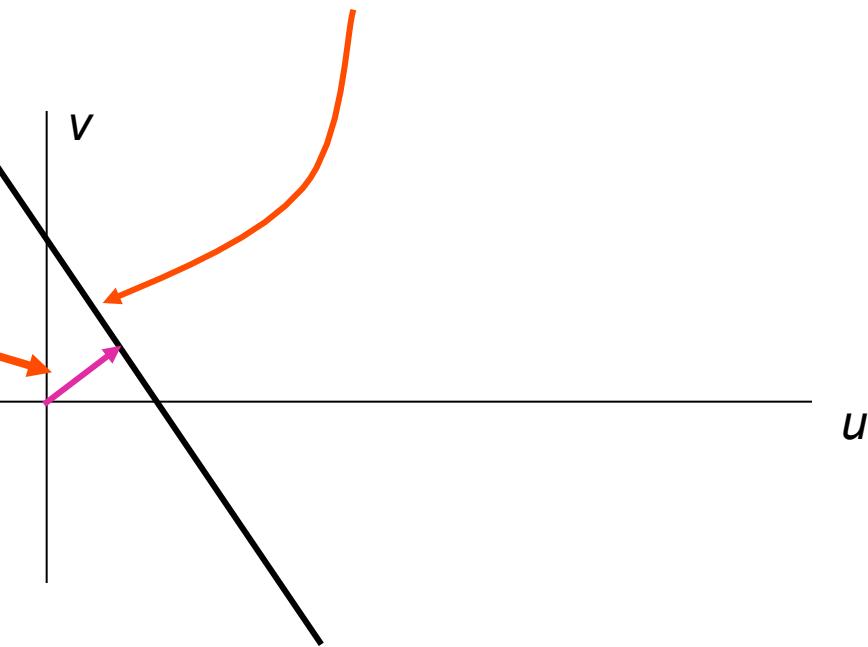
The gradient constraint:

$$\begin{aligned} I_x u + I_y v + I_t &= 0 \\ \nabla I \bullet \vec{U} &= 0 \end{aligned}$$

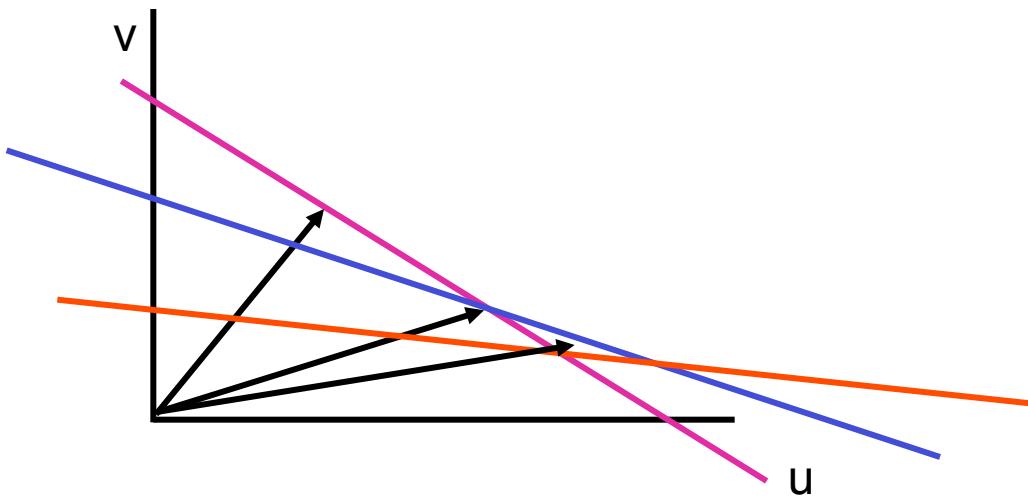
Defines a line in the (u, v) space

Normal Flow:

$$u_{\perp} = -\frac{I_t}{|\nabla I|} \frac{\nabla I}{|\nabla I|}$$



Combining Local Constraints



$$\nabla I^1 \bullet U = -I_t^1$$

$$\nabla I^2 \bullet U = -I_t^2$$

$$\nabla I^3 \bullet U = -I_t^3$$

etc.

Conditions for solvability

- Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \quad \quad \quad A^T b$$

When is This Solvable?

- $A^T A$ should be invertible
- $A^T A$ should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of $A^T A$ should not be too small
- $A^T A$ should be well-conditioned
 - λ_1 / λ_2 should not be too large (λ_1 = larger eigenvalue)

$A^T A$ is solvable when there is no aperture problem

$$A^T A = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y] = \sum \nabla I (\nabla I)^T$$

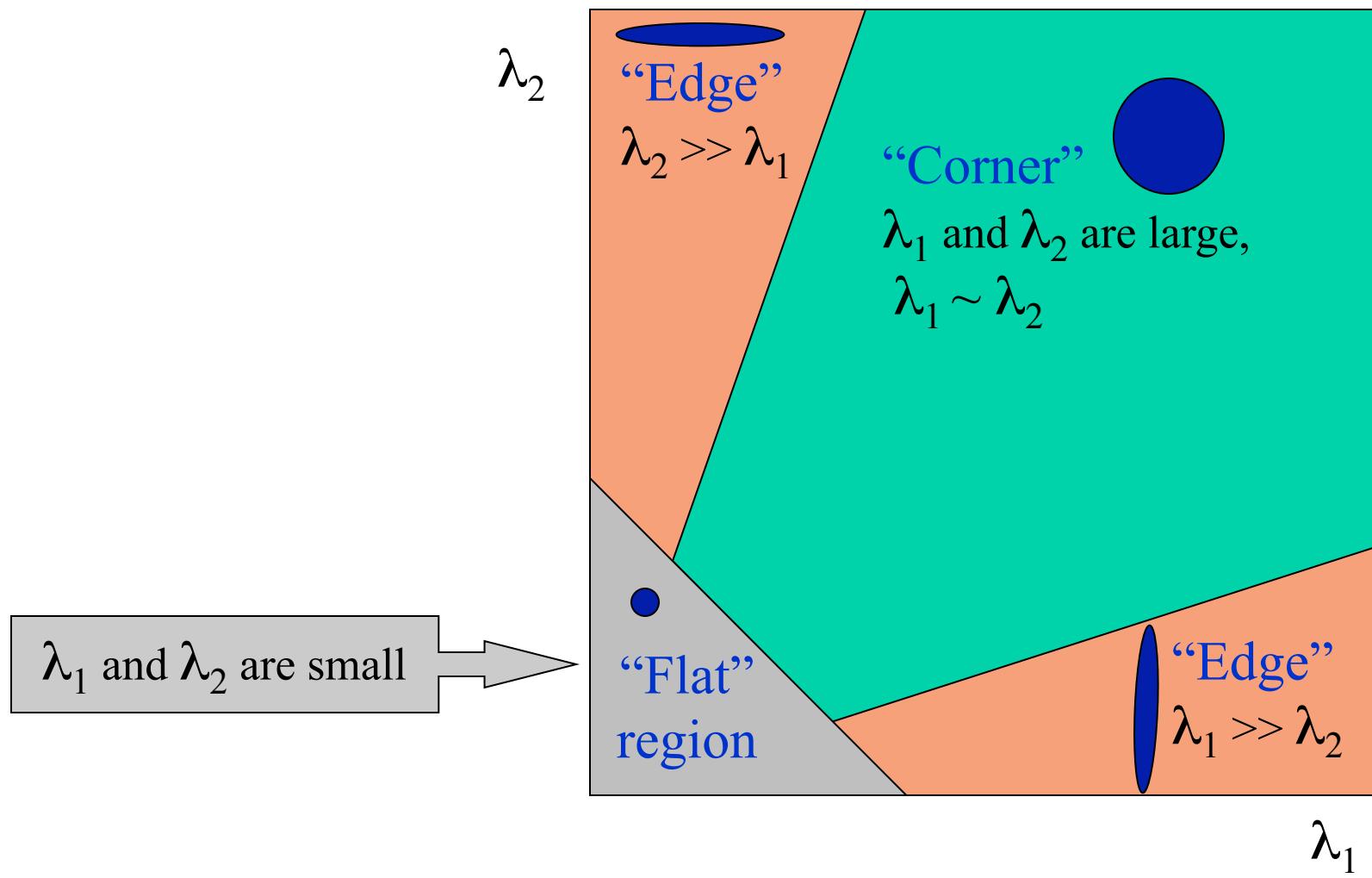
Eigenvectors of $A^T A$

$$A^T A = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y] = \sum \nabla I (\nabla I)^T$$

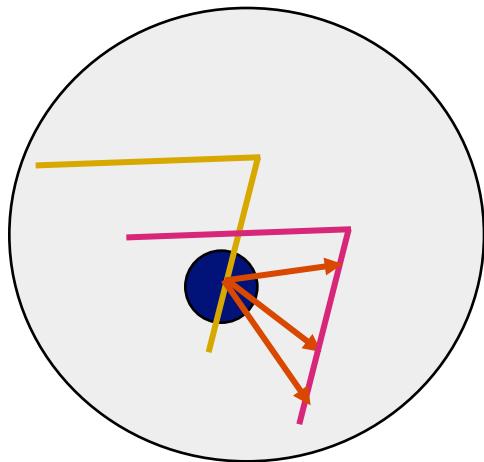
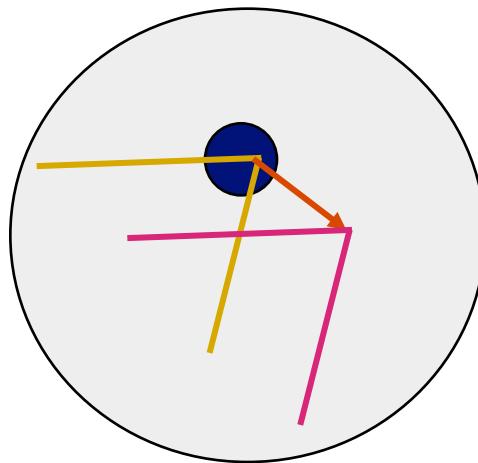
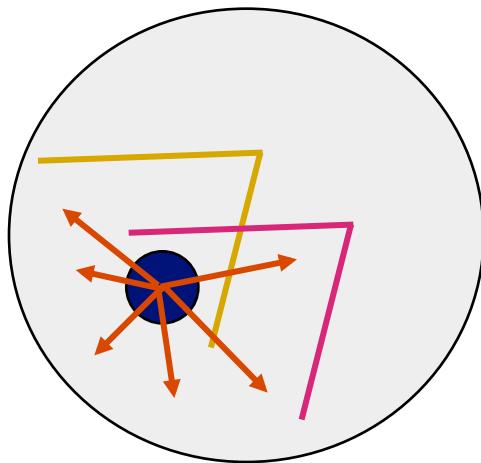
- Recall the Harris corner detector: $M = A^T A$ is the *second moment matrix*
- The eigenvectors and eigenvalues of M relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it

Interpreting the eigenvalues

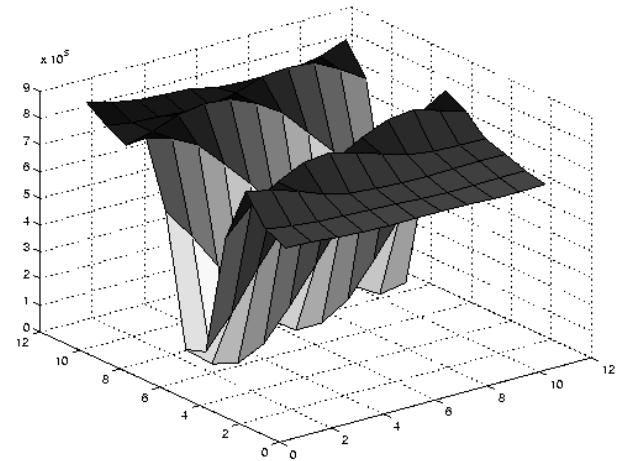
Classification of image points using eigenvalues of the second moment matrix:



Local Patch Analysis



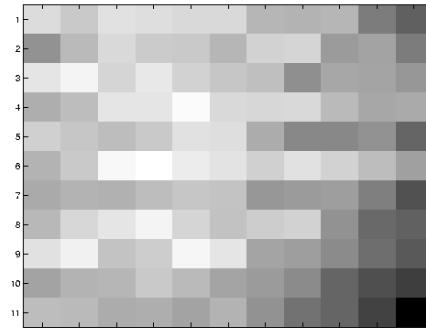
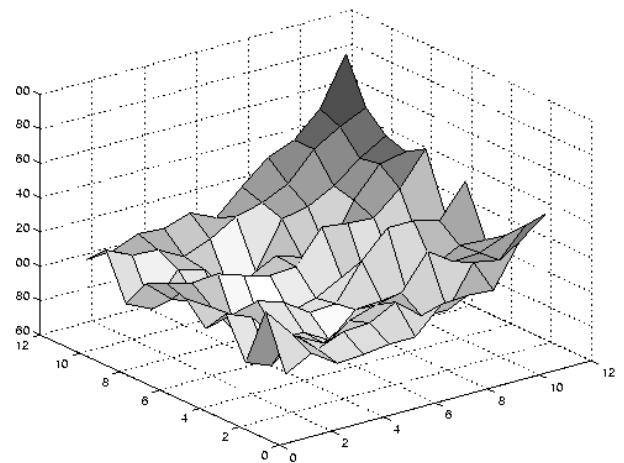
Edge



$$\sum \nabla I (\nabla I)^T$$

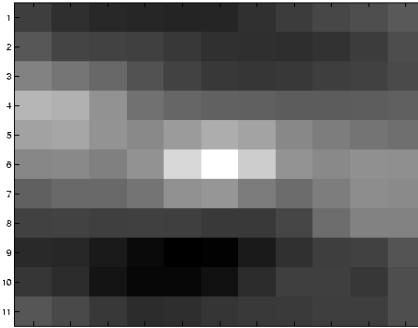
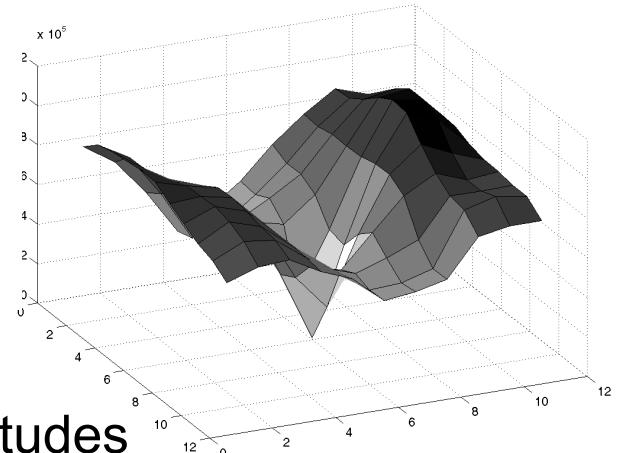
- large gradients, all the same
- large λ_1 , small λ_2

Low texture region


$$\sum \nabla I (\nabla I)^T$$

- gradients have small magnitude
- small λ_1 , small λ_2

High textured region



$$\sum \nabla I (\nabla I)^T$$

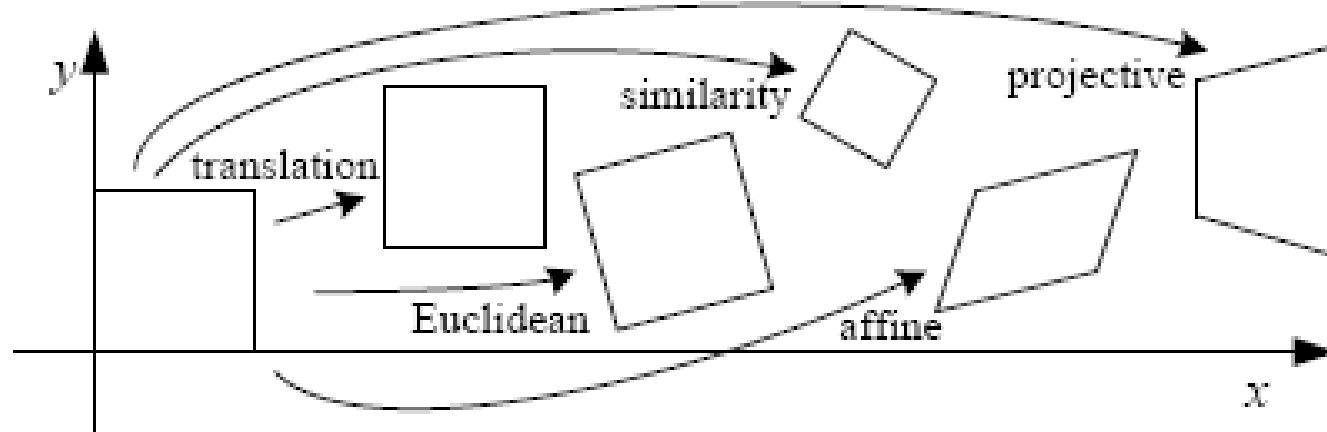
- gradients are different, large magnitudes
- large λ_1 , large λ_2

Observation

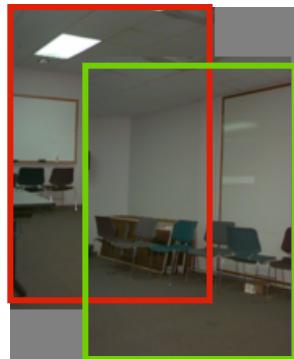
This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Motion models



Translation

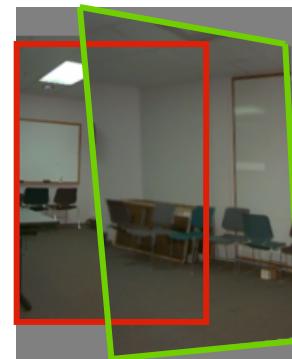


2 unknowns

Affine

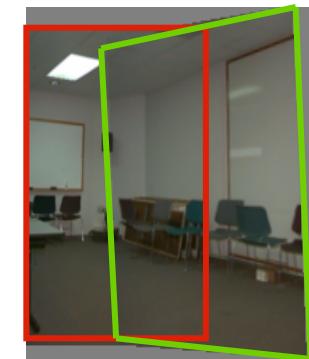
6 unknowns

Perspective



8 unknowns

3D rotation



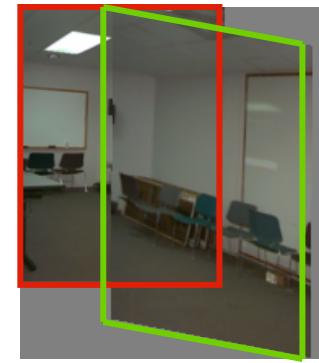
3 unknowns

Affine motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$

$$v(x, y) = a_4 + a_5 x + a_6 y$$

- Substituting into the brightness constancy equation:



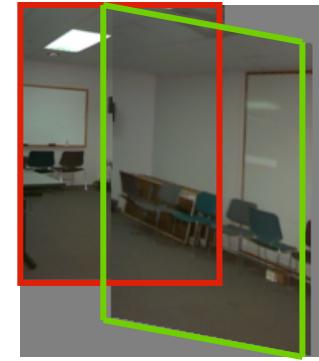
$$I_x \cdot u + I_y \cdot v + I_t \approx 0$$

Affine motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$

$$v(x, y) = a_4 + a_5 x + a_6 y$$

- Substituting into the brightness constancy equation:



$$I_x(a_1 + a_2 x + a_3 y) + I_y(a_4 + a_5 x + a_6 y) + I_t \approx 0$$

- Each pixel provides 1 linear constraint in 6 unknowns
- Least squares minimization:

$$Err(\vec{a}) = \sum \left[I_x(a_1 + a_2 x + a_3 y) + I_y(a_4 + a_5 x + a_6 y) + I_t \right]^2$$

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose $A^T A$ is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

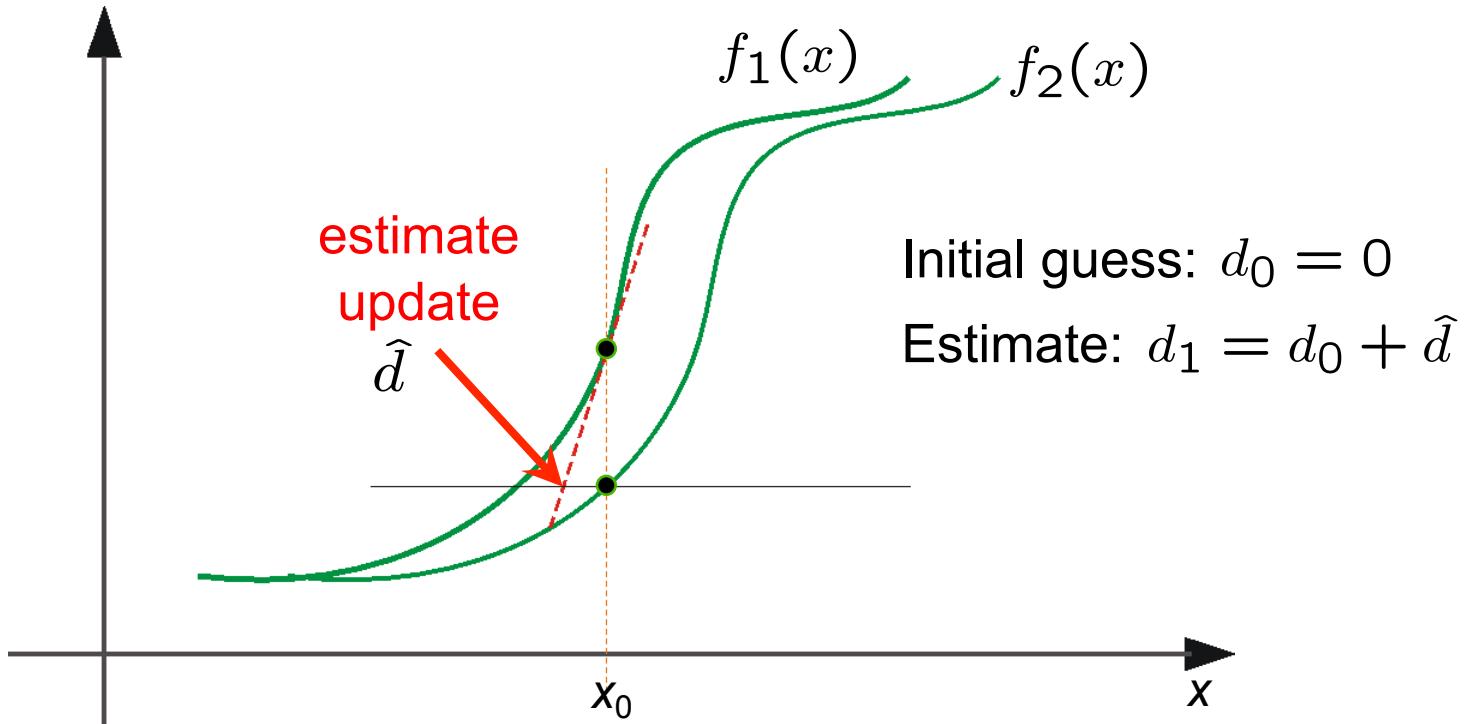
- Brightness constancy is not satisfied
- The motion is not small
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Iterative Refinement

Iterative Lukas-Kanade Algorithm

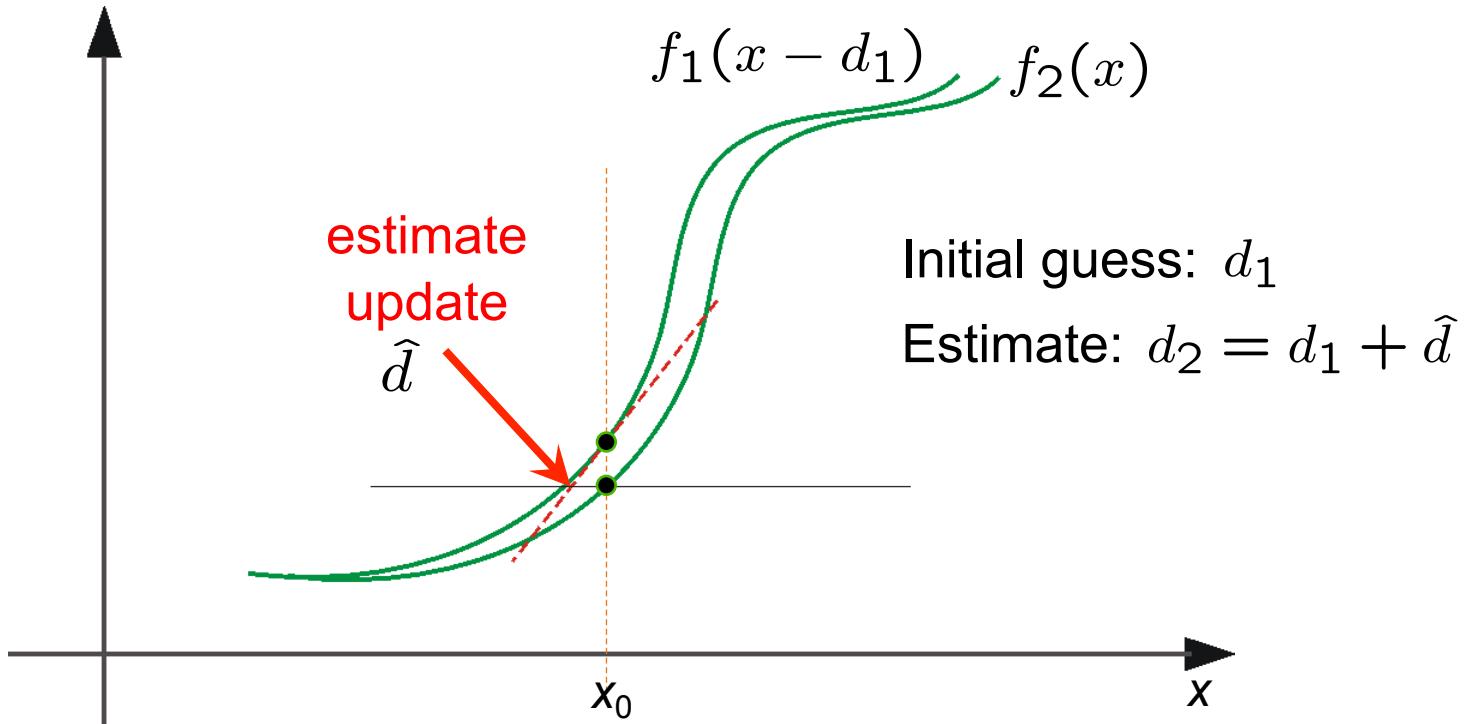
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field
 - use *image warping techniques*
3. Repeat until convergence

Optical Flow: Iterative Estimation

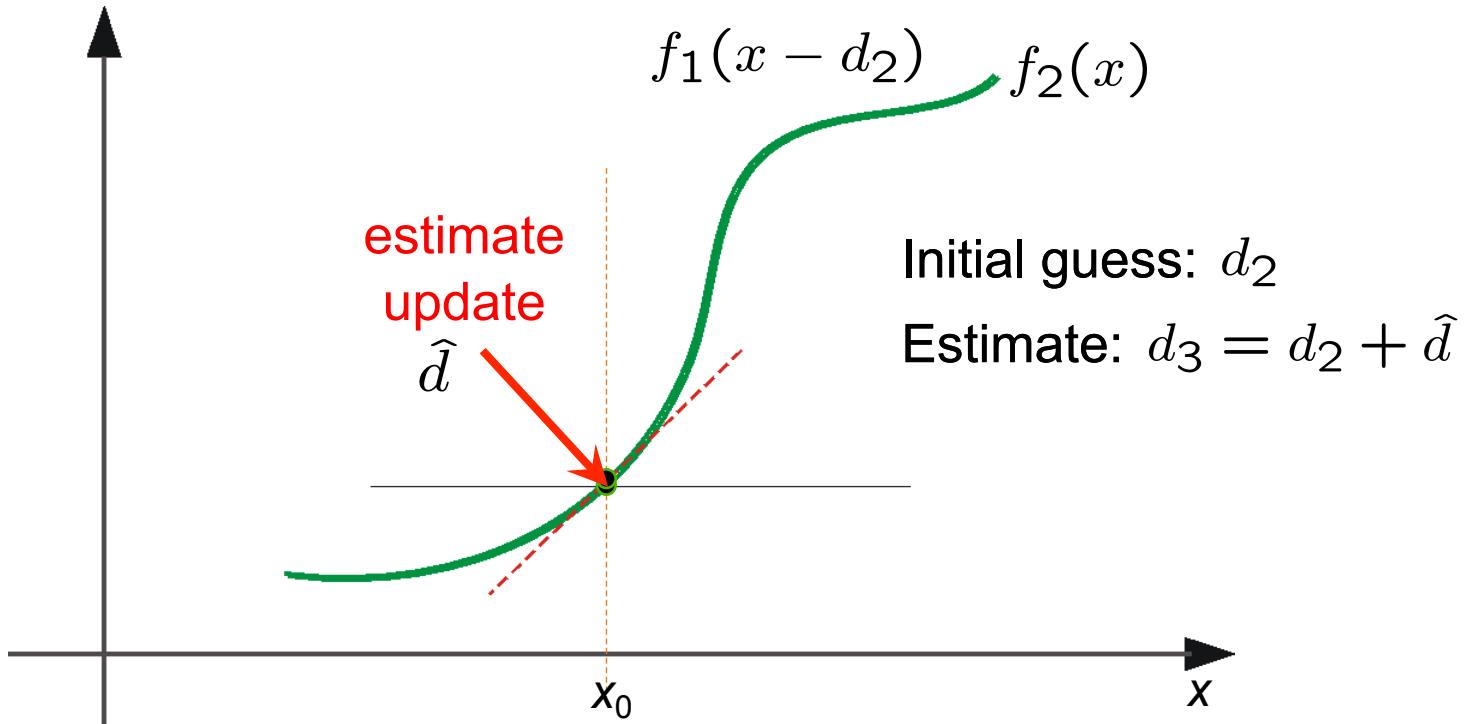


(using d for *displacement* here instead of u)

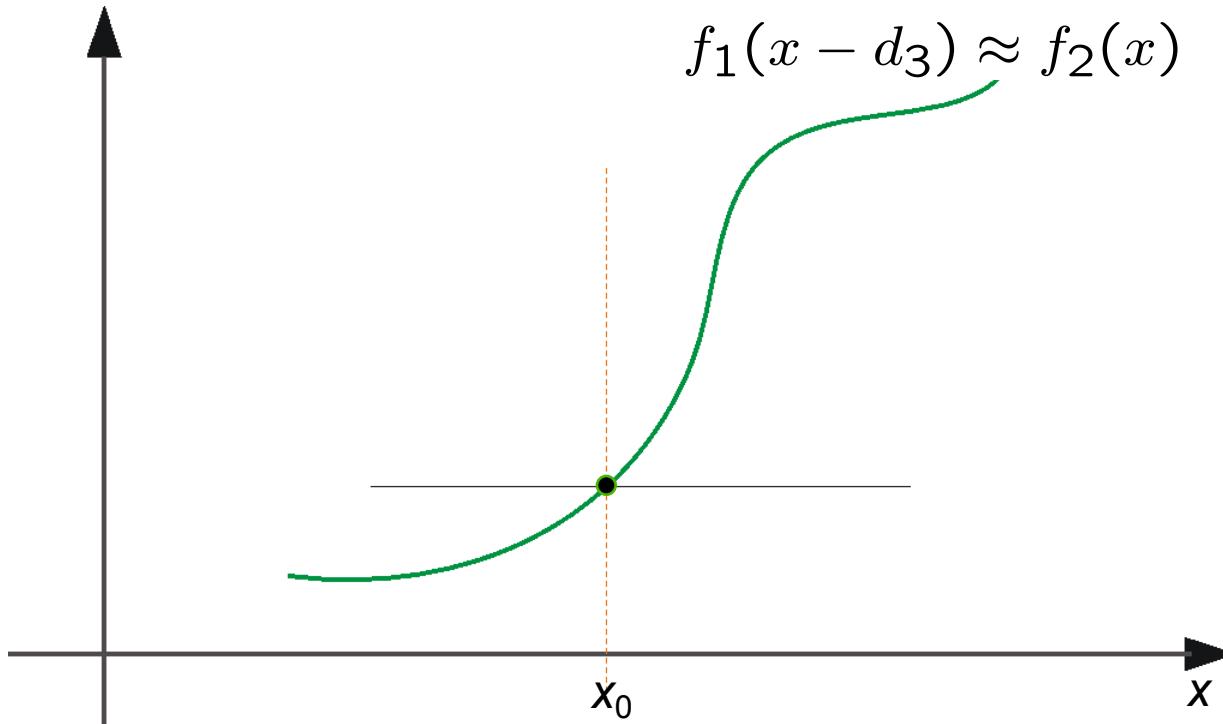
Optical Flow: Iterative Estimation



Optical Flow: Iterative Estimation



Optical Flow: Iterative Estimation



Optical Flow: Iterative Estimation

Some Implementation Issues:

- Warping is not easy (ensure that errors in warping are smaller than the estimate refinement)
- Warp one image, take derivatives of the other so you don't need to re-compute the gradient after each iteration.
- Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity)

Revisiting the small motion assumption

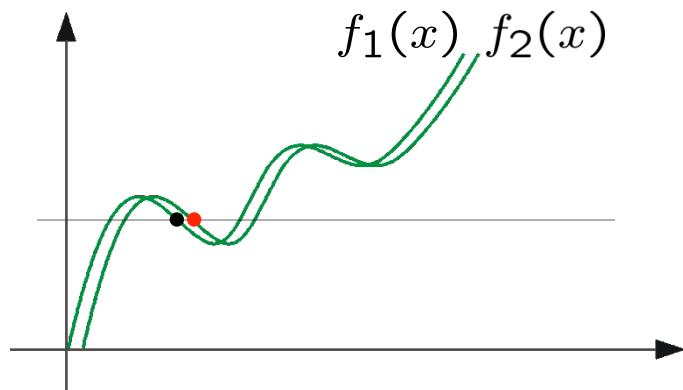
Is this motion small enough?

- Probably not—it's much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

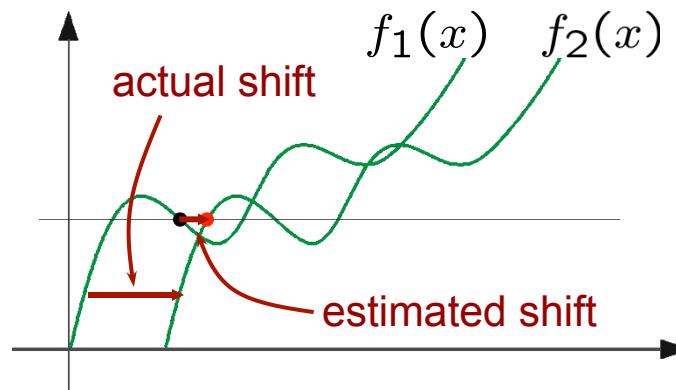
Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct?



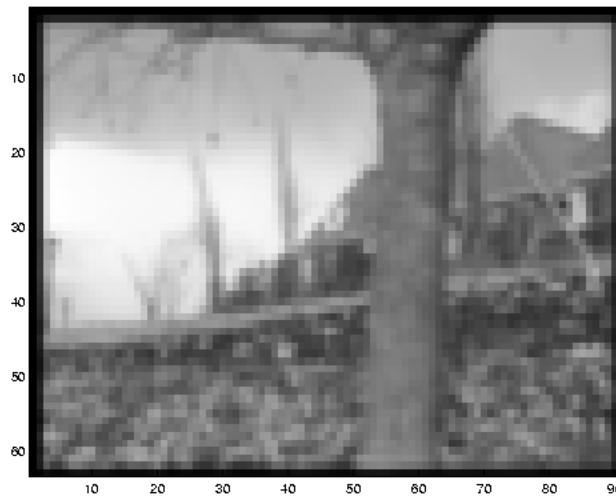
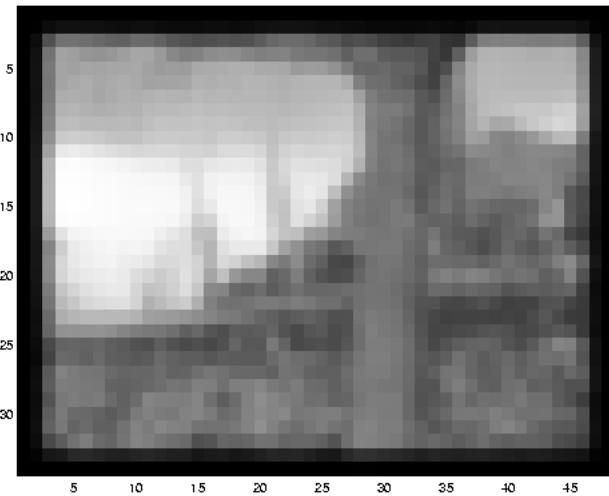
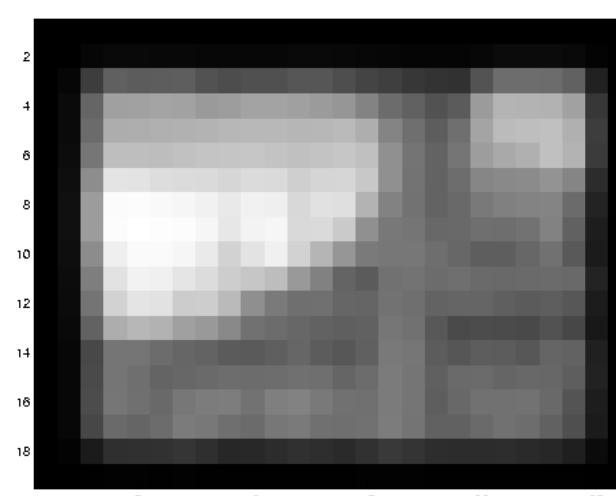
*nearest match is correct
(no aliasing)*



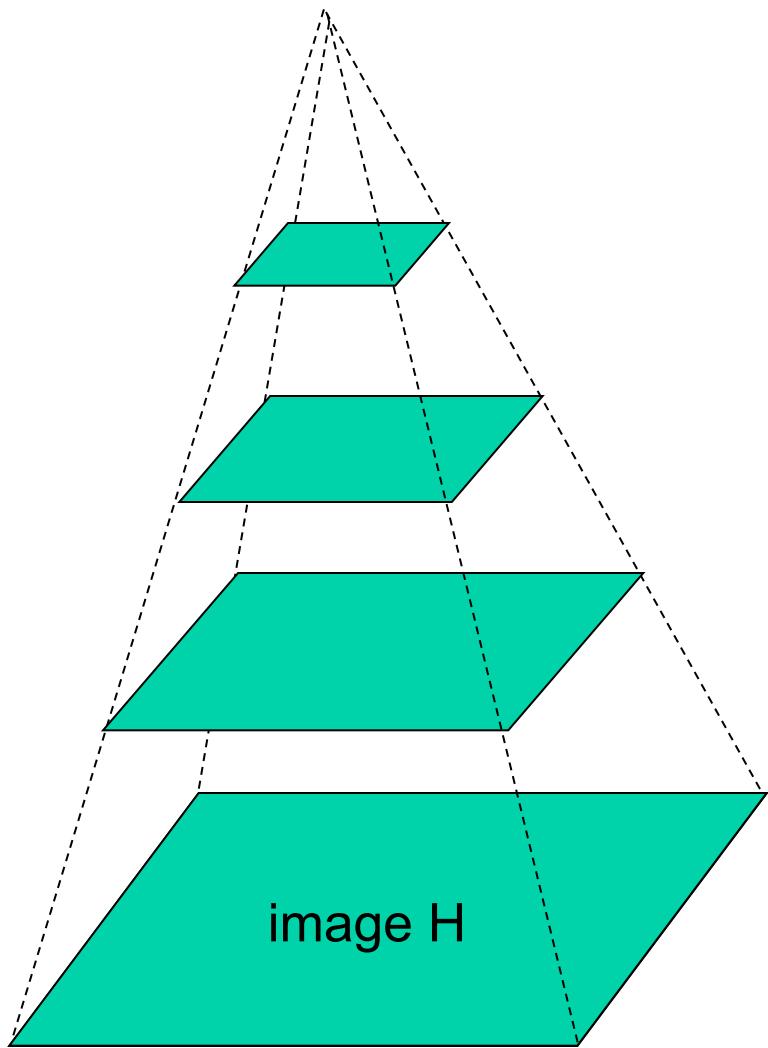
*nearest match is incorrect
(aliasing)*

To overcome aliasing: coarse-to-fine estimation.

Reduce the resolution!

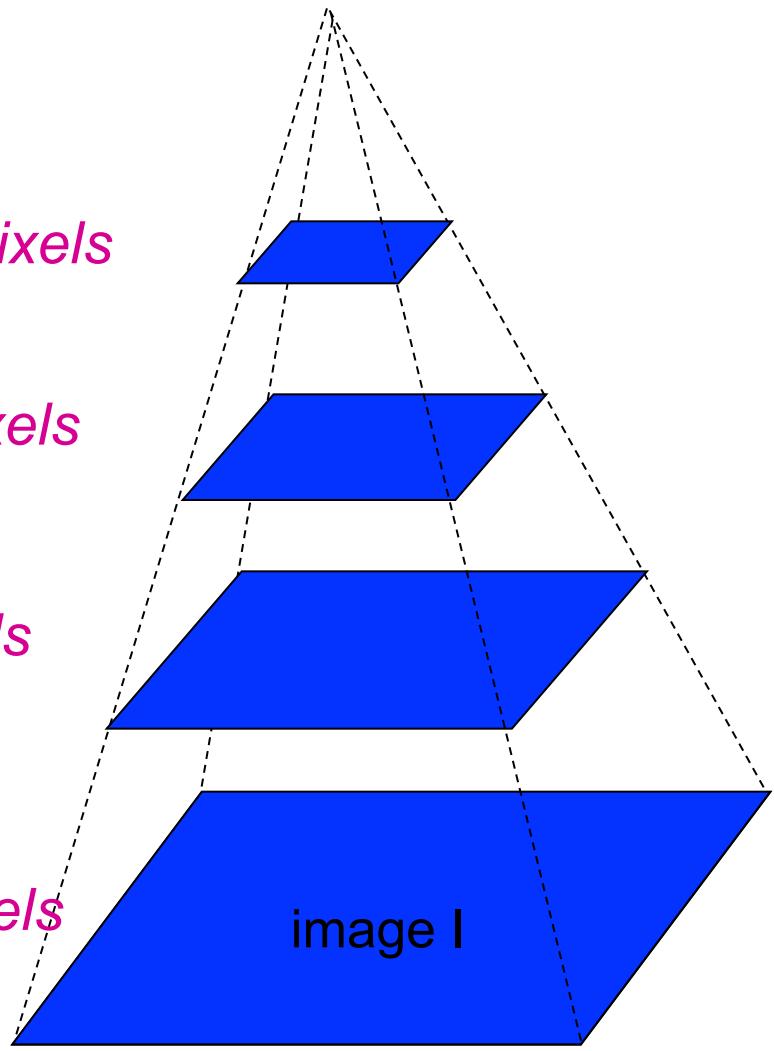


Coarse-to-fine optical flow estimation



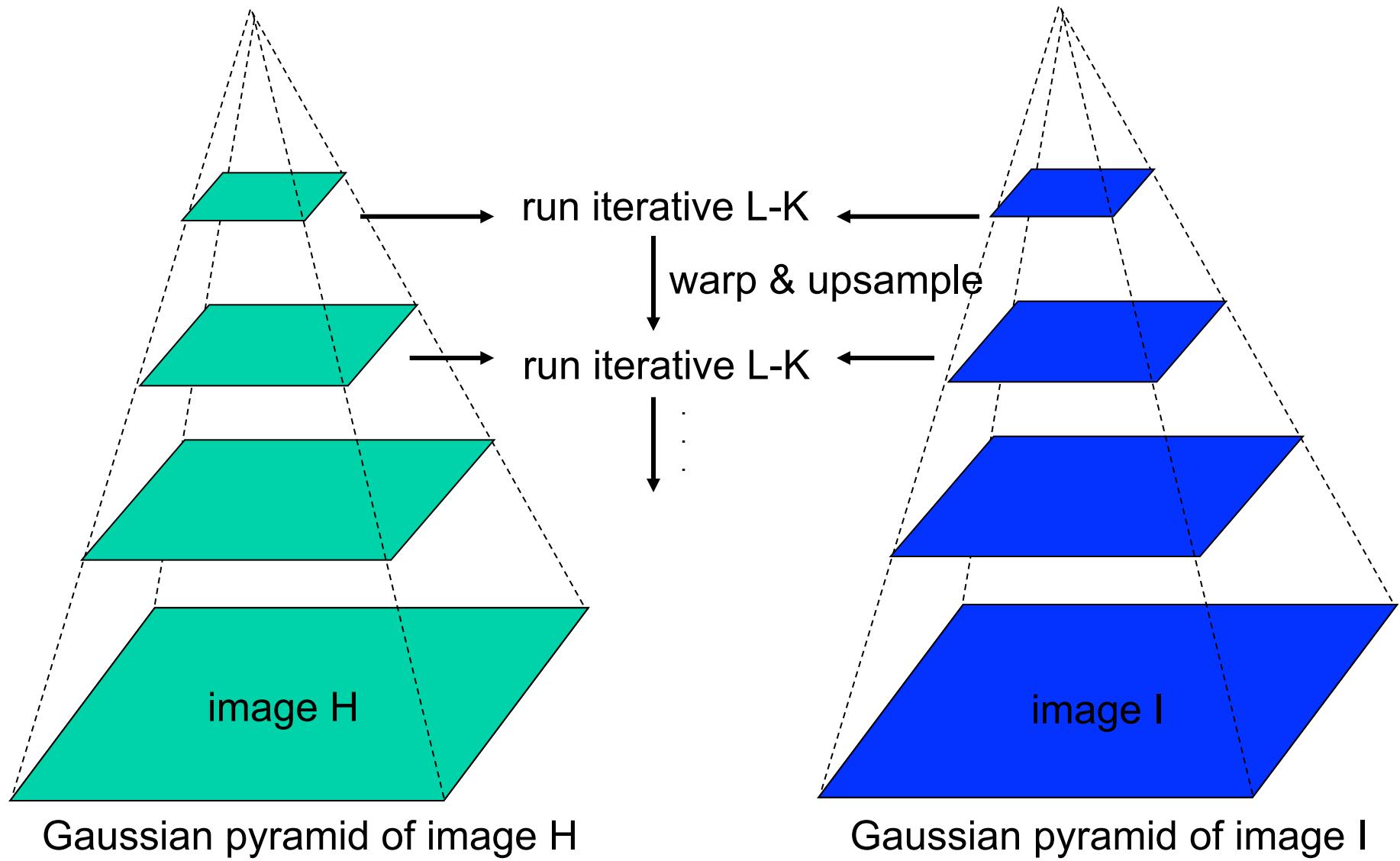
Gaussian pyramid of image H

$u=1.25 \text{ pixels}$
 $u=2.5 \text{ pixels}$
 $u=5 \text{ pixels}$
 $u=10 \text{ pixels}$



Gaussian pyramid of image I

Coarse-to-fine optical flow estimation



Recap: Classes of Techniques

Feature-based methods (e.g. SIFT+Ransac+regression)

- Extract visual features (corners, textured areas) and track them over multiple frames
- Sparse motion fields, but possibly robust tracking
- Suitable especially when image motion is large (10-s of pixels)

Direct-methods (e.g. optical flow)

- Directly recover image motion from spatio-temporal image brightness variations
- Global motion parameters directly recovered without an intermediate feature motion calculation
- Dense motion fields, but more sensitive to appearance variations
- Suitable for video and when image motion is small (< 10 pixels)