Fitting & Matching
Region Representation
Image Alignment, Optical Flow

Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros.



Panoramas

Facebook 360 photos




How do we build panorama?

We need to match (align) images
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Matching with Features

eDetect feature points in both images

eFind corresponding pairs

eUse these pairs to align images




Matching with Features

eDetect feature points in both images

eFind corresponding pairs

eUse these pairs to align images




Recall: Edge detection
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Edge detection, Take 2
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From edges to blobs

« Edge =ripple
« Blob = superposition of two ripples

Original signal
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Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of

the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob



Scale selection

* We want to find the characteristic scale of the
blob by convolving it with Laplacians at several
scales and looking for the maximum response

 However, Laplacian response decays as scale
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Why does this happen?



Scale normalization

* The response of a derivative of Gaussian
filter to a perfect step edge decreases as ¢
Increases
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Scale normalization

* The response of a derivative of Gaussian
filter to a perfect step edge decreases as ¢
Increases

* To keep response the same (scale-invariant),
must multiply Gaussian derivative by o

« Laplacian is the second Gaussian derivative,
so it must be multiplied by 2



Effect of scale normalization

Original signal

Unnormalized Laplacian response
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric
operator for blob detection in 2D

X +y2
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric
operator for blob detection in 2D

Scale-normalized: Viormg ol P = =)




Scale selection

« At what scale does the Laplacian achieve a maximum
response to a binary circle of radius r?

image Laplacian



Scale selection

At what scale does the Laplacian achieve a maximum
response to a binary circle of radius r?

To get maximum response, the zeros of the Laplacian
have to be aligned with the circle

Zeros of Laplacian is given by (up to scale): (1_ x22+ 2yz ) ~0
O

Therefore, the maximum response occurs at g = r/\/i,
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Characteristic scale

* We define the characteristic scale of a blob
as the scale that produces peak of Laplacian
response in the blob center
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characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.




Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

2. Find maxima of squared Laplacian response
In scale-space




Scale-space blob detector: Example




Scale-space blob detector: Example

sigma = 11.9912



Scale-space blob detector: Example
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Matching with Features

eDetect feature points in both images

eFind corresponding pairs

eUse these pairs to align images




Scale Invariant Feature Transform

Basic idea: David Lowe IJCV 2004

« Take 16x16 square window around detected feature

« Compute edge orientation (angle of the gradient - 90°) for each pixel
» Throw out weak edges (threshold gradient magnitude)

» Create histogram of surviving edge orientations

S

0 27

angle histogram

Image gradients

Adapted from slide by David Lowe M

Prof. Ken Perlin’ s advisor




Orientation Histogram

4x4 spatial bins (16 bins total)
Gaussian center-weighting

8-bin orientation histogram per bin
8 x 16 = 128 dimensions total
Normalized to unit norm
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reature StaDlllty 10 alfine

* Match features after ran lg nge in image scale &
orientation, with 2% i 1mage noise, and affine distortion

 Find nearest neighbor in database of 30,000 features
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Distinctiveness of features

* Vary size of database of features, with 30 degree affine
change, 2% image noise

* Measure % correct for single nearest neighbor match
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SIFT — Scale Invariant Feature Transform!

» Empirically found? to show very good performance,
invariant to image rotation, scale, intensity change, and

to moderate affine transformations
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SIFT Invariances

Spatial binning gives tolerance to small
shifts in location and scale

Explicit orientation normalization

Photometric normalization by making all
vectors unit norm

Orientation histogram gives robustness to
small local deformations



Summary of SIFT

Extraordinarily robust matching technique
« Can handle changes in viewpoint
— Up to about 60 degree out of plane rotation
« Can handle significant changes in illumination
— Sometimes even day vs. night (below)
« Fast and efficient—can run in real time

* Lots of code available
— http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known implementations of SIFT




Matching with Features

eDetect feature points in both images

eFind corresponding pairs

eUse these pairs to align images




Overview

Fitting techniques
— Least Squares
— Total Least Squares

RANSAC
Hough Voting

Alignment as a fitting problem



Fitting

* Choose a parametric model to represent a set
of features

simple model: lines simple model: circles

complicated model: car

Source: K. Grauman



Fitting: Issues

=
= =

Noise in the measured feature locations

- Extraneous data: clutter (outliers), multiple lines
 Missing data: occlusions

Slide: S. Lazebnik



Fitting: Issues

* |If we know which points belong to the line,
now do we find the “optimal” line

narameters?
» Least squares

« \What if there are outliers?
» Robust fitting, RANSAC

* What if there are many lines?
* Voting methods: RANSAC, Hough transform

 \What if we’ re not even sure it’ s a line?
* Model selection

Slide: S. Lazebnik



Overview

Fitting techniques
— Least Squares
— Total Least Squares

RANSAC
Hough Voting

Alignment as a fitting problem



Least squares line fitting

Data: (x, ), ..., (x,, ¥,) t

Line equation: y, =mx; + b [ y=mx+b
Find (m, b) to minimize .

n o) l (xi’ yl)
E=Ei=1(yi_mxi_b) .

Slide: S. Lazebnik



Least squares line fitting

Data: (x;, y), ..., (x,, ¥,)
Line equation: y, =mx, + b
Find (m, b) to minimize

L= E; (yi —mx, _b)2
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Normal equations: least squares solution to

Slide: S. Lazebnik



Matlab Demo

%%%% let's make some points
n=10;

true_grad = 2;

true_intercept = 3;

noise_level = 0.04;

x = rand(1,n);
y = true_grad*x + true_intercept + randn(1,n)*noise_level;

figure; plot(x,y,'rx");
hold on;

% %% make matrix for linear system
X = [x(:) ones(n,1)];

%%% Solve system of equations

p = inv(X"*X)*X"™y(:); % Pseudo-inverse
p = pinv(X) * y(:); % Pseduo-inverse

p = X \y(:); % Matlab's \ operator

est_grad = p(1);
est_intercept = p(2);

plot(x,est_grad*x+est_intercept,'b-');

fprintf('True gradient: %f, estimated gradient: %f\n',true_grad,est_grad);
fprintf('True intercept: %f, estimated intercept: %f\n',true_intercept,est_intercept);



Problem with “vertical” least squares

* Not rotation-invariant
 Fails completely for vertical lines

Slide: S. Lazebnik



Overview

Fitting techniques
— Least Squares
— Total Least Squares

RANSAC
Hough Voting

Alignment as a fitting problem



Total least squares

Distance between point (x;, y;) and
line ax+by=d (a*+b*=1): |ax, + by, — d

ax+by=d

. Unit normal:
(5, y) N=(@ D)

-

Slide: S. Lazebnik



Total least squares

Distance between point (x;, y;) and
line ax+by=d (a*+b*=1): |ax, + by, — d

Find (a, b, d) to minimize the sum of
squared perpendicular distances

ax+by=d

. Unit normal:
(5, y) N=(@ D)

E = E; (ax, +by. —d)’ -




Total least squares

Distance between point (x;, y;) and
line ax+by=d (a*+b*=1): |ax, + by, —

d|

Find (a, b, d) to minimize the sum of

squared perpendicular distances

E = E; (ax, +by, —d)’
E;—Z(axi +by. —-d)=0

okF
ad

E = E;(a(xi _f) +b(yi _)_/))2 =

9k _ 2U'U)N =0
dN

Xy

ax+by=d

. Unit normal:
(5, y) N=(@ D)

d =

— X

— X

Solution to (UTU)N = 0, subject to ||N]|*=
associated with the smallest eigenvalue (least squares solution

to homogeneous linear system UN = 0)

-

a

;Ell X +— E x,=ax+by
_ 2
=Y
. |[a r
; [b] =(UN)" (UN)
Yo=Y

1: eigenvector of U'U

Slide: S. Lazebnik



Total least squares
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second moment matrix

Slide: S. Lazebnik



Total least squares

X=X -7 S5 S -0 -7)
U=| : | U'U= 5 5
X -% y -7 DE=D0i-7) Y-
| Tn n 1 | =1 i=1
y second moment matrix
° N=(a, b)
g_o ’ (xi_)_cayi_.)_/)
A (,7) NN s
~ X

Slide: S. Lazebnik



Least squares: Robustness to noise

Least squares fit to the red points:

Slide: S. Lazebnik



Least squares: Robustness to noise

Least squares fit with an outlier:

-10+

-12+

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

Problem: squared error heavily penalizes outliers
Slide: S. Lazebnik



Robust estimators
« General approach: minimize E ,0(7”,- (xl‘ae); U)

r:(x;, 0) — residual of ith point w.r.t. model parameters 6
p — robust function with scale parameter ¢

The robust function
p behaves like
squared distance for
small values of the
residual u but
saturates for larger
values of u

Slide: S. Lazebnik



Choosing the scale: Just right

-10+

-12+

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

The effect of the outlier is minimized

Slide: S. Lazebnik



Choosing the scale: Too small

-10+

-12+

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

The error value is almost the same for every
point and the fit is very poor

Slide: S. Lazebnik



Choosing the scale: Too large

-10+

-12+

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

Behaves much the same as least squares



Overview

Fitting techniques
— Least Squares
— Total Least Squares

RANSAC
Hough Voting

Alignment as a fitting problem



RANSAC

* Robust fitting can deal with a few outliers —
what if we have very many?

 Random sample consensus (RANSAC):
Very general framework for model fitting in
the presence of outliers

* Qutline
* Choose a small subset of points uniformly at random

 Fit a model to that subset

 Find all remaining points that are “close” to the model and
reject the rest as outliers

* Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.
Random Sample Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp

381-395, 1981.

Slide: S. Lazebnik



RANSAC for line fitting

Repeat N times:

Draw s points uniformly at random
Fit line to these s points

Find inliers to this line among the remaining
points (i.e., points whose distance from the
line is less than ¢)

If there are d or more inliers, accept the line
and refit using all inliers

Source: M. Pollefeys



Choosing the parameters

* Initial number of points s
» Typically minimum number needed to fit the model

 Distance threshold t

» Choose t so probability for inlier is p (e.g. 0.95)
« Zero-mean Gaussian noise with std. dev. o: t2=3.8402

 Number of samples N

» Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys



Choosing the parameters

* Initial number of points s
» Typically minimum number needed to fit the model

 Distance threshold t

» Choose t so probability for inlier is p (e.g. 0.95)
« Zero-mean Gaussian noise with std. dev. o: t2=3.8402

 Number of samples N

» Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

i-(-e)) =1-p

N =log(1- p)/log(1-(1-e))

proportion of outliers e
5% 10% 20% 25% 30% 40% 50%
3 ) 6 7 11 17
4 4 9 11 19 35
) 9 13 17 34 72
6 12 17 26 o7 146
4
8
9

16 24 37 97 293
20 33 54 163 588
26 44 78 272 177

Source: M. Pollefeys
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Choosing the parameters

* Initial number of points s
» Typically minimum number needed to fit the model

* Distance threshold ¢
» Choose t so probability for inlier is p (e.g. 0.95)

 Zero-mean Gaussian noise with std. dev. o: 12=3.8402
 Number of samples N

» Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

1200

1000r

(1-(1-e)8)”=1-p

600+

N =log(1- p)/logll - (1-e) ) y

7

| — e 1
%) 0.2 0.4 0.6 0.8 1

Source: M. Pollefeys



Choosing the parameters

* Initial number of points s
» Typically minimum number needed to fit the model

 Distance threshold t

» Choose t so probability for inlier is p (e.g. 0.95)
« Zero-mean Gaussian noise with std. dev. o: t2=3.8402

 Number of samples N

» Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

« Consensus set size d
« Should match expected inlier ratio

Source: M. Pollefeys



Adaptively determining the number of samples

* |nlier ratio e is often unknown a priori, so pick
worst case, e.g. 50%, and adapt if more
inliers are found, e.g. 80% would yield e=0.2

« Adaptive procedure:
« N=«, sample count =0
 While N >sample count
— Choose a sample and count the number of inliers
— Set e = 1 — (number of inliers)/(total number of points)
— Recompute N from e:

N =log(l- p)/IOg(l ~(1- e>s)

— Increment the sample count by 1

Source: M. Pollefeys



RANSAC pros and cons

* Pros
« Simple and general
» Applicable to many different problems
» Often works well in practice

e Cons

» Lots of parameters to tune

« Can’t always get a good initialization of the model based on
the minimum number of samples

* Sometimes too many iterations are required
« Can fail for extremely low inlier ratios
« We can often do better than brute-force sampling

Source: M. Pollefeys



Voting schemes

 Let each feature vote for all the models that
are compatible with it

* Hopefully the noise features will not vote
consistently for any single model

« Missing data doesn’ t matter as long as there
are enough features remaining to agree on a
good model



Overview

Fitting techniques
— Least Squares
— Total Least Squares

RANSAC
Hough Voting

Alignment as a fitting problem



Hough transform

* An early type of voting scheme

* General outline:
* Discretize parameter space into bins

* For each feature point in the image, put a vote in every bin in
the parameter space that could have generated this point

 Find bins that have the most votes

| -

Image space Hough parameter space

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.
Int. Conf. High Energy Accelerators and Instrumentation, 1959



Parameter space representation

* Aline in the image corresponds to a point in
Hough space

Image space Hough parameter space

y = mox + bg

Source: S. Seitz



Parameter space representation

« What does a point (X,, y,) in the image space
map to in the Hough space?

Image space Hough parameter space
y A b A

Yo

Source: S. Seitz



Parameter space representation

« What does a point (X,, y,) in the image space
map to in the Hough space?

» Answer: the solutions of b = —x,m + y,
 This is aline in Hough space

Image space Hough parameter space
y A b A
o b= —xzom + yo
ﬁ
Yo
Xo X m

Source: S. Seitz



Parameter space representation

* Where is the line that contains both (x,, y,) and
(X1, ¥1)7?

Image space Hough parameter space

y A b A
o (X1, V1)

(Xos Yo) ——
Yo

Source: S. Seitz



Parameter space representation

* Where is the line that contains both (x,, y,) and
(X1, ¥1)7?

* ltis the intersection of the lines b = —x;m + y,and
b =—x;m+y,

Image space Hough parameter space
y A b A
o (X1, V1)
o b= —xzom =+ yo
(X0 Yo) —
Yo b=-xym+y,
Xo X m

Source: S. Seitz



Parameter space representation

* Problems with the (m,b) space:

« Unbounded parameter domain
« Vertical lines require infinite m



Parameter space representation

* Problems with the (m,b) space:

« Unbounded parameter domain
« Vertical lines require infinite m

» Alternative: polar representation

y\

xXCO0Sf +ysinf = p

X

Each point will add a sinusoid in the (8,p) parameter space



Algorithm outline

o Initialize accumulator H H: accumulator array (votes)
to all zeros

 For each edge point (x,y)
In the iImage
For 8 =0 to 180
p=XcosO+ysinO
H(B, p) =H(B, p) + 1 °
end
end

« Find the value(s) of (8, p) where H(O, p) is a
local maximum

 The detected line in the image is given by
p=xcosO+ysinB




Basic illustration

features votes



Other shapes

Square Circle




Several lines




A more complicated image

= "Image [ 4 Hough Transform

http://ostatic.com/files/images/ss_hough.jpg



Effect of noise

features




Effect of noise

features votes

Peak gets fuzzy and hard to locate



Effect of noise

* Number of votes for a line of 20 points with
Increasing noise:

20

151

10

Maximum number of votes

1 1 1 ] 1 ] S
0 oo 0.02 0.0z 0.04 0.05 0.06 0.07 0.0s ong 0.1

Noisge level



Random points

features

Uniform noise can lead to spurious peaks in the array

votes



Random points

* As the level of uniform noise increases, the
maximum number of votes increases too:
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Dealing with noise

« Choose a good grid / discretization

» Too coarse: large votes obtained when too many different
lines correspond to a single bucket

* Too fine: miss lines because some points that are not
exactly collinear cast votes for different buckets

* Increment neighboring bins (smoothing in
accumulator array)

* Try to get rid of irrelevant features
« Take only edge points with significant gradient magnitude



Hough transform for circles

 How many dimensions will the parameter
space have?

« Given an oriented edge point, what are all
possible bins that it can vote for?



Hough transform for circles

Image space Hough parameter space
[r

)
(X,y) \\

o X
(x,y)=rVI(x,y)




Generalized Hough transform

We want to find a shape defined by its boundary
points and a reference point

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes,
Pattern Recognition 13(2), 1981, pp. 111-122.




Generalized Hough transform

We want to find a shape defined by its boundary
points and a reference point

For every boundary point p, we can compute the
displacement vector r = a — p as a function of
gradient orientation 0

P
Y

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes,
Pattern Recognition 13(2), 1981, pp. 111-122.




Generalized Hough transform

 For model shape: construct a table indexed
by 6 storing displacement vectors r as
function of gradient direction

» Detection: For each edge point p with

gradient orientation 6:

* Retrieve all rindexed with 6
* For each r(6), put a vote in the Hough space at p + r(6)

* Peak in this Hough space is reference point
with most supporting edges

« Assumption: translation is the only
transformation here, i.e., orientation and scale

are fixed

Source: K. Grauman



Overview

Fitting techniques
— Least Squares
— Total Least Squares
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Hough Voting

Alignment as a fitting problem



Image alignment

 Two broad approaches:
» Direct (pixel-based) alignment
— Search for alignment where most pixels agree
* Feature-based alignment

— Search for alignment where extracted features agree
— Can be verified using pixel-based alignment

Source: S. Lazebnik



Alignment as fitting

* Previously: fitting a model to features in one image
M

Find model M that minimizes
E residual(x;, M)

l

Source: S. Lazebnik



Alignment as fitting

* Previously: fitting a model to features in one image
M

Find model M that minimizes
E residual(x;, M)

l

« Alignment: fitting a model to a transformation between
pairs of features (matches) in two images

o Find transformation T
o T ‘e that minimizes
o — o O
. o E residual(7'(x,),x))
® o i

Source: S. Lazebnik



2D transformation models

e Similarity

(translation, ] -}. ] -}’

scale, rotation)

. Affine B ’

« Projective - ) -
(homography)

Source: S. Lazebnik



Let’ s start with affine transformations

« Simple fitting procedure (linear least squares)

« Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

« Can be used to initialize fitting for more complex
models

Source: S. Lazebnik



Fitting an affine transformation

 Assume we know the correspondences, how do we
get the transformation?

(x,7:) @ o
CN)
(O}
O
@)
0 - R
@)
@)
o
@
-ml_
m
!/
xl._mlmle._l_t1 x, y, 0 0 1 0f|m,
yz( ms My ||, L, 0O 0 x y 0 1l{m,
4
Source: S. Lazebnik i tz




Fitting an affine transformation

x, ¥y, 0 0 1 0flmy| |x

1

0 0 x y 0 1||m, y:

* Linear system with six unknowns

« Each match gives us two linearly independent
equations: need at least three to solve for the
transformation parameters

Source: S. Lazebnik



Feature-based alignment outline




Feature-based alignment outline

Extract features



Feature-based alignment outline

« Extract features
« Compute putative matches



Feature-based alignment outline

« Extract features
« Compute putative matches

 Loop:

* Hypothesize transformation T



Feature-based alignment outline

« Extract features
« Compute putative matches

 Loop:
* Hypothesize transformation T

» Verify transformation (search for other matches consistent
with T)



Feature-based alignment outline

« Extract features
« Compute putative matches
 Loop:

* Hypothesize transformation T

» Verify transformation (search for other matches consistent
with T)



Dealing with outliers

« The set of putative matches contains a very high
percentage of outliers
« Geometric fitting strategies:

« RANSAC
* Hough transform



RANSAC

RANSAC loop:

1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4

If the number of inliers is sufficiently large, re-compute
least-squares estimate of transformation on all of the
inliers

Keep the transformation with the largest number of inliers



RANSAC example: Translation
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Putative matches

Source: A. Efros



RANSAC example: Translation

Select one match, count inliers

Source: A. Efros



RANSAC example: Translation

Select one match, count inliers

Source: A. Efros



RANSAC example: Translation

l.ux
ry I&
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Select translation with the most inliers

Source: A. Efros



Motion estimation techniques

 Feature-based methods

« Extract visual features (corners, textured areas) and track them
over multiple frames

« Sparse motion fields, but more robust tracking
« Suitable when image motion is large (10s of pixels)

 Direct methods

« Directly recover image motion at each pixel from spatio-temporal
image brightness variations

» Dense motion fields, but sensitive to appearance variations
« Suitable for video and when image motion is small



Optical flow

Combination of slides from Rick Szeliski, Steve Seitz,
Alyosha Efros and Bill Freeman and Fredo Durand
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Motion estimation: Optical flow
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Will start by estimating motion of each pixel separately
Then will consider motion of entire image



Why estimate motion?

Lots of uses
« Track object behavior
» Correct for camera jitter (stabilization)
« Align images (mosaics)
« 3D shape reconstruction
» Special effects




Problem definition: optical flow

./ Q °

4 o
o—r I @) .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image |?

» Solve pixel correspondence problem
— given a pixel in H, look for{nearby|pixels of the|same colof in |

Key assumptions
« color constancy: a point in H looks the same in |
— For grayscale images, this is brightness constancy
« small motion: points do not move very far
This is called the optical flow problem



Optical flow constraints (grayscale images)

(z,9)
\Sllsplacement = (u,v)

@]
(z 4+ u,y + v)

H(z,y) I(z,y)

Let’s look at these constraints more closely

» brightness constancy: Q: what's the equation?
H(x,y)=l(x+u, y+v)

« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(x+u,y+v) = I(x, y)—l— fU—I—h|gher order terms
~ I(x,y) + 92 —I—



Optical flow equation

Combining these two equations
O=I(zx+uy+v)— H(x,y)
~ [(z,y) + Iyu+ Iyv — H(z,y)
~ ([(z,y) — H(z,y)) + Ipu + Iyv
~ I + Iyu + Iy
~ I+ VI-[|u v]

shorthand: I, = %

In the limit as u and v go to zero, this becomes exact

O:It—FV[-[% %]



Optical flow equation

O=1I1+ VI [u v]

Q: how many unknowns and equations per pixel?
2 unknowns, one equation
Intuitively, what does this constraint mean?

« The component of the flow in the gradient direction is determined
 The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/Barberpole_lllusion.ht
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

http://en.wikipedia.org/wiki/Barber's_pol



Aperture problem




Aperture problem




Solving the aperture problem

How to get more equations for a pixel?

« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0 = Ii(p;) + VI(p;) - [u 7]

- I:(p1)  Iy(p1) | - Ii(p1) |
I+(p2)  Iy(p2) [ u ] — _ | Li(p2)
i Ix(f)25) [y(1£)25) | i It(ﬁ25) |

A d b

25%x2 2x1 25x%x1



RGB version

How to get more equations for a pixel?

« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0 = Ii(pp[0, 1,2] + VI(p)[0, 1,2] - [u o]

- I(p1)[0]  Iy(p1)IO] - 1:(p1)[O]
I:(p1)[1]  Iy(p1)[1. It(p1)[1]
I:(p1)[2]  Iy(p1)[2 [ . ] It(p1)|2]
I:(p25)[0] Iy(p2s)[0] | L° I;(p25)[0]
I:(p25)[1] Iy(p2s5)[1] It(p2s5)[1.

| Le(p2s)[2] Iy(p2s)[2] | 1i(p2s) (2] |

A d b
(5X2 2x1 75Xx1

Note that RGB is not enough to disambiguate
because R, G & B are correlated
Just provides better gradient



Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad — b||?
25x2 2x1 25x1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(ATA) d= ATp

2X2 2x1 2x1

[2198130 zlxly] [u] _ [ zfxft]
Sy SLI, || v | ™ | S

AT A Alp

« The summations are over all pixels in the K x K window
» This technique was first proposed by Lukas & Kanade (1981)



Aperture Problem and Normal Flow

Normal Flow: \

U,

The gradient constraint:

lu+l v+, =0

VieU=0

Defines a line in the (u,v) space

1}\

i v

\




Combining Local Constraints

N VI'eU =-]
T VI*eU = -1’
- VIPeU=-1

U etc.



Conditions for solvability

» Optimal (u, v) satisfies Lucas-Kanade equation

Do dxdy ) Ixly wo| | ey
> Ixly > Iyly v | > Iyly

AT A Al

When is This Solvable?
« ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
« ATA should be well-conditioned

— M/ A, should not be too large (A, = larger eigenvalue)
ATA is solvable when there is no aperture problem

Lly Y Il I,
ATA = [%ley %Iy[z] =2 [ I, ] [l I,] = Y- vI(vD)"



Eigenvectors of ATA

Iply S I.I I
ATA = [%ley %Iylz] = [ I, ] [l Iy] =Y vI(vD'

e Recall the Harris corner detector: M =A’A is
the second moment matrix

* The eigenvectors and eigenvalues of M relate

to edge direction and magnitude

* The eigenvector associated with the larger eigenvalue points
in the direction of fastest intensity change

* The other eigenvector is orthogonal to it



Interpreting the eigenvalues

Classification of image points using eigenvalues
of the second moment matrix:

A

A\, and A, are small }I:>




Local Patch Analysis




S vi(vn?!
— large gradients, all the same
— large A, small A,

No =« m @& k& o ®m oW
n iy i n




Low texture region

— gradients have small magnitude
—small A,, small A,



High textured region

12

200

100

50

— gradients are different, large magnitudes " .-

— large A4, large A,

S vi(vn?!



Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!

« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...



Motion models

JI‘ / _t-;lilﬂi ity pm]ecm =
nau51

Elll.'.‘lid-E":'-lﬂ ﬂﬂ"me

Translation Affine Perspective 3D rotation

2 unknowns 6 unknowns 8 unknowns 3 unknowns




Affine motion

u(x,y)=a, +a,x+a,y

v(x,y)=a, +ax+a.y

Substituting into the brightness constancy

equation:

[.ou+l v+, =0




Affine motion

u(x,y)=a, +a,x+a,y

v(x,y)=a, +ax+a.y

Substituting into the brightness constancy
equation:

[ (a,+a,x+ay)+1 (a, +asx+agy)+1, =0

« Each pixel provides 1 linear constraint in
6 unknowns

« Least squares minimization:

Err(a) = z[lx(a1 +ayx+a,y)+1 (a, +a5x+aéy)+[t:| 2




Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
« Suppose ATA is easily invertible
» Suppose there is not much noise in the image

When our assumptions are violated
« Brightness constancy is not satisfied
 The motion is not small
« A point does not move like its neighbors

— window size is too large
— what is the ideal window size?



lterative Refinement

lterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence



Optical Flow: lterative Estimation

A f1(z) fo(x)

estimate

Initial guess: dg = 0
update

Estimate: dy =dp+d

<V

Xo

(using d for displacement here instead of u)



Optical Flow: lterative Estimation

& file —d1) f5(2)

estimate

Initial guess: d;
update

Estimate: do =dy +d

<V



Optical Flow: lterative Estimation

A file —d2) | f5(2)

estimate

Initial guess: do
update

Estimate: dz3 =do + d

<V



Optical Flow: lterative Estimation

A fi1(x — d3) = fo(w)

<V



Optical Flow: lterative Estimation

Some Implementation Issues:

« Warping is not easy (ensure that errors in warping are
smaller than the estimate refinement)

« Warp one image, take derivatives of the other so you don’t
need to re-compute the gradient after each iteration.

» Often useful to low-pass filter the images before motion
estimation (for better derivative estimation, and linear
approximations to image intensity)



Revisiting the small motion assumption

BF 55

Is this motion small enough?
« Probably not—it's much larger than one pixel (2"9 order terms dominate)
* How might we solve this problem?



Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
images can have many pixels with the same intensity.

l.e., how do we know which ‘correspondence’ is correct?

A fi(z) fo(x) A fi(z) fo(x)
/\/ actual shift
. . N
estimated shift
- |
nearest match is correct nearest match is incorrect
(no aliasing) (aliasing)

To overcome aliasing: coarse-to-fine estimation.



Reduce the resolution!




Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Gaussian pyramid of image H Gaussian pyramid of image |



Coarse-to-fine optical flow estimation

1
1

1

—— run iterative L-K «———
warp & upsamplga"

A 4

—— run iterative L-K +—/

Gaussian pyramid of image |

Gaussian pyramid of image H



Recap: Classes of Techniques

Feature-based methods (e.g. SIFT+Ransac+regression)

« Extract visual features (corners, textured areas) and track them over
multiple frames

» Sparse motion fields, but possibly robust tracking
« Suitable especially when image motion is large (10-s of pixels)

Direct-methods (e.g. optical flow)

» Directly recover image motion from spatio-temporal image brightness
variations

» Global motion parameters directly recovered without an intermediate feature
motion calculation

» Dense motion fields, but more sensitive to appearance variations
« Suitable for video and when image motion is small (< 10 pixels)



