Segmentation

Lecture 12

Many slides from: S. Lazebnik, K. Grauman and P. Kumar

Image Segmentation

Image segmentation

The goals of segmentation

- Group together similar-looking pixels for efficiency of further processing
 - "Bottom-up" process
 - Unsupervised

"superpixels"

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003. Slide credit: S. Lazebnik

The goals of segmentation

- Separate image into coherent "objects"
 - "Bottom-up" or "top-down" process?
 - Supervised or unsupervised?

image

human segmentation

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ Slide credit: S. Lazebnik

Emergence

http://en.wikipedia.org/wiki/Gestalt_psychology

Overview

- Bottom-up segmentation
 - Clustering
 - Mean shift
 - Graph-based
- Combining object recognition & segmentation
 - OBJCUT
 - Other methods

Overview

- Bottom-up segmentation
 - Clustering
 - Mean shift
 - Graph-based
- Combining object recognition & segmentation
 - OBJCUT
 - Other methods

• Cluster similar pixels (features) together

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don't have to be spatially coherent

Image

Intensity-based clusters

Color-based clusters

• Cluster similar pixels (features) together

 Clustering based on (r,g,b,x,y) values enforces more spatial coherence

Slide credit: S. Lazebnik

K-Means for segmentation

- Pros
 - Very simple method
 - Converges to a local minimum of the error function
- Cons
 - Memory-intensive
 - Need to pick K
 - Sensitive to initialization
 - Sensitive to outliers
 - Only finds "spherical" clusters

Slide credit: S. Lazebnik

Overview

Bottom-up segmentation

- Clustering
- Mean shift
- Graph-based

Combining object recognition & segmentation

- OBJCUT
- Other methods

Mean shift clustering and segmentation

 An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature</u> <u>Space Analysis</u>, PAMI 2002.

Mean shift algorithm

• The mean shift algorithm seeks *modes* or local maxima of density in the feature space

Feature space (L*u*v* color values)

image

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

More results

More results

Mean shift pros and cons

- Pros
 - Does not assume spherical clusters
 - Just a single parameter (window size)
 - Finds variable number of modes
 - Robust to outliers
- Cons
 - Output depends on window size
 - Computationally expensive
 - Does not scale well with dimension of feature space

Overview

Bottom-up segmentation

- Clustering
- Mean shift
- Graph-based

Combining object recognition & segmentation

- OBJCUT
- Other methods

Images as graphs

- Node for every pixel
- Edge between every pair of pixels (or every pair of "sufficiently close" pixels)
- Each edge is weighted by the *affinity* or similarity of the two nodes

Segmentation by graph partitioning

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Measuring affinity

- Suppose we represent each pixel by a feature vector x, and define a distance function appropriate for this feature representation
- Then we can convert the distance between two feature vectors into an affinity with the help of a generalized Gaussian kernel:

$$\exp\left(-\frac{1}{2\sigma^2}\operatorname{dist}(\mathbf{x}_i,\mathbf{x}_j)^2\right)$$

Slide credit: S. Lazebnik

Scale affects affinity

- Small σ : group only nearby points
- Large σ : group far-away points

Slide credit: S. Lazebnik

Graph cut

- Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- A graph cut gives us a segmentation
 - What is a "good" graph cut and how do we find one?

Minimum cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Slide credit: S. Lazebnik
Minimum cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Drawback: minimum cut tends to cut off very small, isolated components

- Drawback: minimum cut tends to cut off very small, isolated components
- This can be fixed by normalizing the cut by the weight of all the edges incident to the segment
- The *normalized cut* cost is:

 $\frac{w(A,B)}{assoc(A,V)} + \frac{w(A,B)}{assoc(B,V)}$

w(A, B) = sum of weights of all edges between A and Bassoc(A, V) = sum of all weights in cluster A + w(A,B)

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

- Finding the exact minimum of the normalized cut cost is NP-complete, but we *relax* to let nodes take on arbitrary values:
- Let *W* be the adjacency matrix of the graph
- Let D be the diagonal matrix with diagonal entries $D(i, i) = \sum_{j} W(i, j)$
- Then the normalized cut cost can be written as

$$\frac{y^T (D - W) y}{y^T D y}$$

where *y* is an indicator vector whose value should be 1 in the *i*th position if the *i*th feature point belongs to A and a negative constant otherwise

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

- We can minimize the relaxed cost by solving the generalized eigenvalue problem $(D W)y = \lambda Dy$
- The solution y is given by the generalized eigenvector corresponding to the second smallest eigenvalue
- Intuitively, the *i*th entry of *y* can be viewed as a "soft" indication of the component membership of the *i*th feature
 - Can use 0 or median value of the entries as the splitting point (threshold), or find threshold that minimizes the Ncut cost

Normalized cut algorithm

- 1. Represent the image as a weighted graph G = (V, E), compute the weight of each edge, and summarize the information in *D* and *W*
- 2. Solve $(D W)y = \lambda Dy$ for the eigenvector with the second smallest eigenvalue
- 3. Use the entries of the eigenvector to bipartition the graph
- To find more than two clusters:
- Recursively bipartition the graph
- Run k-means clustering on values of several eigenvectors

Example result

Challenge

How to segment images that are a "mosaic of textures"?

Using texture features for segmentation

• Convolve image with a bank of filters

J. Malik, S. Belongie, T. Leung and J. Shi. <u>"Contour and Texture Analysis for</u> <u>Image Segmentation</u>". IJCV 43(1),7-27,2001.

Using texture features for segmentation

- Convolve image with a bank of filters
- Find *textons* by clustering vectors of filter bank outputs

J. Malik, S. Belongie, T. Leung and J. Shi. <u>"Contour and Texture Analysis for</u> <u>Image Segmentation"</u>. IJCV 43(1),7-27,2001. Slide credit: S. Lazebnik

Using texture features for segmentation

- Convolve image with a bank of filters
- Find *textons* by clustering vectors of filter bank outputs
- The final texture feature is a texton histogram computed over image windows at some "local scale"

J. Malik, S. Belongie, T. Leung and J. Shi. <u>"Contour and Texture Analysis for</u> <u>Image Segmentation"</u>. IJCV 43(1),7-27,2001. Slide credit: S. Lazebnik

Pitfall of texture features

 Possible solution: check for "intervening contours" when computing connection weights

J. Malik, S. Belongie, T. Leung and J. Shi. <u>"Contour and Texture Analysis for</u> <u>Image Segmentation</u>". IJCV 43(1),7-27,2001.

Example results

Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/

Normalized cuts: Pro and con

- Pros
 - Generic framework, can be used with many different features and affinity formulations
- Cons
 - High storage requirement and time complexity
 - Bias towards partitioning into equal segments

Overview

Bottom-up segmentation

- Clustering
- Mean shift
- Graph-based
- Texton

Combining object recognition & segmentation

- OBJCUT
- Other methods

Aim

• Given an image and object category, to segment the object

Cow Image

Segmented Cow

Segmentation should (ideally) be

- shaped like the object e.g. cow-like
- obtained efficiently in an unsupervised manner
- able to handle self-occlusion

Slide from Kumar '05

Feature-detector view

Examples of bottom-up segmentation

• Using Normalized Cuts, Shi & Malik, 1997

Borenstein and Ullman, ECCV 2002

Jigsaw approach: Borenstein and Ullman, 2002

100

Fragment Bank

Segmentation

Implicit Shape Model - Liebe and Schiele, 2003

Overview

- Bottom-up segmentation
 - Clustering
 - Mean shift
 - Graph-based
- Combining object recognition & segmentation
 OBJCUT
 - Other methods

OBJ CUT

M. Pawan Kumar Philip Torr Andrew Zisserman

Aim

• Given an image, to segment the object

Cow Image

Segmented Cow

Segmentation should (ideally) be

- shaped like the object e.g. cow-like
- obtained efficiently in an unsupervised manner
- able to handle self-occlusion

Challenges

Intra-Class Shape Variability

Intra-Class Appearance Variability

Self Occlusion

Magic Wand

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother et al. SIGGRAPH 04)

Object Seed Pixels

Cow Image

Magic Wand

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother et al. SIGGRAPH 04)

Object Seed Pixels

Background Seed Pixels

Cow Image

Magic Wand

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother et al. SIGGRAPH 04)

Segmented Image

Magic Wand

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Magic Wand

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother et al. SIGGRAPH 04)

Segmented Image

Problem

- Manually intensive
- Segmentation is not guaranteed to be 'object-like'

Non Object-like Segmentation

Our Method

- Combine object detection with segmentation
 - Borenstein and Ullman, ECCV '02
 - Leibe and Schiele, BMVC '03
- Incorporate global shape priors in MRF
- Detection provides
 - Object Localization
 - Global shape priors
- Automatically segments the object
 - Note our method is completely generic
 - Applicable to any object category model

Outline

Problem Formulation

- Form of Shape Prior
- Optimization

Results
Problem

- Labelling m over the set of pixels D
- Shape prior provided by parameter θ

• Energy E (m,
$$\theta$$
) = $\sum \phi_x(\mathbf{D}|m_x) + \phi_x(m_x|\theta) + \sum \phi_{xy}(m_x,m_y) + \phi(\mathbf{D}|m_x,m_y)$
Unary terms Pairwise terms

- Unary terms
 - Likelihood based on colour
 - Unary potential based on distance from $\boldsymbol{\theta}$
- Pairwise terms
 - Prior
 - Contrast term
- Find best labelling $\mathbf{m}^* = \arg \min \sum w_i E(\mathbf{m}, \theta_i)$
 - w_i is the weight for sample θ_i

Markov Random Field (MRF)

Probability for a labelling consists of

- Likelihood
 - Unary potential based on colour of pixel
- Prior which favours same labels for neighbours (pairwise potentials)

Cow Image

Likelihood Ratio (Colour)

Background Seed Pixels

Object Seed Pixels

Prior Slide credit: P. Kumar

Cow Image

Likelihood Ratio (Colour)

Background Seed Pixels Object Seed Pixels

Prior Slide credit: P. Kumar

Contrast-Dependent MRF

Probability of labelling in addition has

• Contrast term which favours boundaries to lie on image edges

Cow Image

Background Seed Pixels

Object Seed Pixels

Likelihood Ratio (Colour)

Prior + Contrast Slide credit: P. Kumar

Cow Image

Likelihood Ratio (Colour)

Background Seed Pixels Object Seed Pixels

Prior + Contrast Slide credit: P. Kumar

Our Model

Probability of labelling in addition has

• Unary potential which depend on distance from θ (shape parameter)

Prior + Contrast Slide credit: P. Kumar

Outline

- Problem Formulation
 - Energy E (m, θ) = $\sum \phi_x(\mathbf{D}|m_x) + \phi_x(m_x|\theta) + \sum \phi_{xy}(m_x,m_y) + \phi(\mathbf{D}|m_x,m_y)$
- Form of Shape Prior

Optimization

Results

- Generative model
- Composition of parts + spatial layout

Parts in Layer 2 can occlude parts in Layer 1

Outline

Problem Formulation

- Form of Shape Prior
- Optimization

Results

Optimization

- Given image D, find best labelling as
 m* = arg max p(m|D)
- Treat LPS parameter θ as a latent (hidden) variable
- EM framework
 - E : sample the distribution over $\boldsymbol{\theta}$
 - M : obtain the labelling m

Results of E-Step

- Different samples *localize* different parts well.
- We cannot use only the MAP estimate of the LPS.

M-Step

• Given samples from $p(\theta | \mathbf{m}', \mathbf{D})$, get new labelling \mathbf{m}_{new}

- Sample θ_i provides
 - Object localization to learn RGB distributions of object and background
 - Shape prior for segmentation
- Problem
 - Maximize expected log likelihood using all samples
 - To efficiently obtain the new labelling

M-Step

Cow Image

Shape θ_1

 $w_1 = P(\theta_1 | \mathbf{m}', \mathbf{D})$

M-Step

 $W_1 = P(\theta_1 | \mathbf{m}', \mathbf{D})$

Best labelling found efficiently using a Single Graph Cut

Segmentation using Graph Cuts

Segmentation using Graph Cuts

M-Step

Cow Image

Shape θ_2

 $W_2 = P(\theta_2 | \mathbf{m}', \mathbf{D})$

M-Step

Best labelling found efficiently using a Single Graph Cut

M-Step

 $\mathbf{m}^* = \arg \min \sum w_i \in (\mathbf{m}, \theta_i)$

Best labelling found efficiently using a Single Graph Cut

Outline

Problem Formulation

• Form of Shape Prior

Optimization

Results

Using LPS Model for Cow

Image

Segmentation

Using LPS Model for Cow

In the absence of a clear boundary between object and background

Image

Segmentation

Using LPS Model for Cow

Image

Segmentation

Using LPS Model for Cow

Image

Segmentation

Using LPS Model for Horse

Image

Segmentation

Using LPS Model for Horse

Image

Segmentation

Our Method

Leibe and Schiele

Image

Without $\phi_x(\mathbf{D}|m_x)$

Without $\phi_x(m_x|\theta)$
Overview

- Bottom-up segmentation
 - Clustering
 - Mean shift
 - Graph-based
- Combining object recognition & segmentation
 - OBJCUT
 - Other methods

Layout Consistent Random Field

Winn and Shotton 2006

- Decision forest classifier
- Features are differences of pixel intensities

[Lepetit et al. CVPR 2005]

Layout consistency

Winn and Shotton 2006

Layout Consistent Random Field

Winn and Shotton 2006

$$P(\mathbf{h} \mid \mathbf{I}; \boldsymbol{\theta}) \propto \prod_{i} \phi_{i}(h_{i}, \mathbf{I}; \boldsymbol{\theta}) \prod_{(i,j) \in E} \psi_{ij}(h_{i}, h_{j}, \mathbf{I}; \boldsymbol{\theta}')$$
Part detector Layout consistency
$$-\log \psi_{ij} = \begin{cases} 0 & \text{Consistent foreground} \\ \beta_{\text{bg}} & \text{Background} \\ \beta_{\text{oe}} \cdot e_{ij} & \text{Object edge} \\ \beta_{\text{co}} \cdot e_{ij} & \text{Object occlusion} \\ \beta_{\text{iif}} & \text{Inconsistent} \end{cases}$$

Stability of part labelling

Part color key

Image parsing: Tu, Zhu and Yuille 2003

Image parsing: Tu, Zhu and Yuille 2003

a. Input image

b. Segmentation

c. Object recognition

d. Synthesized image

