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The goals of segmentation

• Group together similar-looking pixels for 

efficiency of further processing
• “Bottom-up” process

• Unsupervised

X. Ren and J. Malik. Learning a classification model for segmentation.

ICCV 2003.

“superpixels”

Slide credit: S. Lazebnik

http://ttic.uchicago.edu/~xren/research/iccv2003/


The goals of segmentation

• Separate image into coherent “objects”
• “Bottom-up” or “top-down” process?

• Supervised or unsupervised?

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation

Slide credit: S. Lazebnik

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


Emergence

http://en.wikipedia.org/wiki/Gestalt_psychology

http://en.wikipedia.org/wiki/Gestalt_psychology


Overview

• Bottom-up segmentation

– Clustering

– Mean shift

– Graph-based

• Combining object recognition & segmentation

– OBJCUT

– Other methods
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Segmentation as clustering

Source: K. Grauman



Image Intensity-based clusters Color-based clusters

Segmentation as clustering

• K-means clustering based on intensity or 

color is essentially vector quantization of the 

image attributes
• Clusters don‟t have to be spatially coherent

Slide credit: S. Lazebnik



Segmentation as clustering

Source: K. Grauman



Segmentation as clustering

• Clustering based on (r,g,b,x,y) values 

enforces more spatial coherence

Slide credit: S. Lazebnik



K-Means for segmentation

• Pros
• Very simple method

• Converges to a local minimum of the error function

• Cons
• Memory-intensive

• Need to pick K

• Sensitive to initialization

• Sensitive to outliers

• Only finds “spherical” 

clusters

Slide credit: S. Lazebnik



Overview
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• Other methods



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift clustering and segmentation

• An advanced and versatile technique for 

clustering-based segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature 

Space Analysis, PAMI 2002. 

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf


• The mean shift algorithm seeks modes or local 

maxima of density in the feature space

Mean shift algorithm

image
Feature space 

(L*u*v* color values)
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• Cluster: all data points in the attraction basin 

of a mode

• Attraction basin: the region for which all 

trajectories lead to the same mode

Mean shift clustering

Slide by Y. Ukrainitz & B. Sarel



• Find features (color, gradients, texture, etc)

• Initialize windows at individual feature points

• Perform mean shift for each window until convergence

• Merge windows that end up near the same “peak” or mode

Mean shift clustering/segmentation



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results



More results



More results



Mean shift pros and cons

• Pros
• Does not assume spherical clusters

• Just a single parameter (window size) 

• Finds variable number of modes

• Robust to outliers

• Cons
• Output depends on window size

• Computationally expensive

• Does not scale well with dimension of feature space

Slide credit: S. Lazebnik



Overview

Bottom-up segmentation
• Clustering

• Mean shift

• Graph-based

Combining object recognition & segmentation
• OBJCUT

• Other methods



Images as graphs

• Node for every pixel

• Edge between every pair of pixels (or every pair 

of “sufficiently close” pixels)

• Each edge is weighted by the affinity or 

similarity of the two nodes

wij

i

j

Source: S. Seitz



Segmentation by graph partitioning

• Break Graph into Segments
• Delete links that cross between segments

• Easiest to break links that have low affinity

– similar pixels should be in the same segments

– dissimilar pixels should be in different segments

A B C

Source: S. Seitz

wij

i

j



Measuring affinity

• Suppose we represent each pixel by a 

feature vector x, and define a distance 

function appropriate for this feature 

representation

• Then we can convert the distance between 

two feature vectors into an affinity with the 

help of a generalized Gaussian kernel:

2

2
),(dist

2

1
exp ji xx

Slide credit: S. Lazebnik



Scale affects affinity

• Small σ: group only nearby points

• Large σ: group far-away points

Slide credit: S. Lazebnik



Graph cut

• Set of edges whose removal makes a graph 

disconnected

• Cost of a cut: sum of weights of cut edges

• A graph cut gives us a segmentation
• What is a “good” graph cut and how do we find one?

A
B

Source: S. Seitz



Minimum cut

• We can do segmentation by finding the 

minimum cut in a graph
• Efficient algorithms exist for doing this

Minimum cut example

Slide credit: S. Lazebnik
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Normalized cut

• Drawback: minimum cut tends to cut off very 

small, isolated components

Ideal Cut

Cuts with 

lesser weight

than the 

ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Normalized cut

• Drawback: minimum cut tends to cut off very 

small, isolated components

• This can be fixed by normalizing the cut by 

the weight of all the edges incident to the 

segment

• The normalized cut cost is:

w(A, B) = sum of weights of all edges between A and B

assoc(A,V)  = sum of all weights in cluster A + w(A,B)
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J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf


Normalized cut

• Finding the exact minimum of the normalized cut cost is 

NP-complete, but we relax to let nodes take on arbitrary 

values:

• Let W be the adjacency matrix of the graph

• Let D be the diagonal matrix with diagonal entries D(i, i) = 

Σj W(i, j) 

• Then the normalized cut cost can be written as

where y is an indicator vector whose value should be 1 in 

the ith position if the ith feature point belongs to A and a 

negative constant otherwise

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000
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http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf


Normalized cut

• We can minimize the relaxed cost by solving the 

generalized eigenvalue problem (D − W)y = λDy

• The solution y is given by the generalized 

eigenvector corresponding to the second smallest 

eigenvalue

• Intutitively, the ith entry of y can be viewed as a 

“soft” indication of the component membership of 

the ith feature
• Can use 0 or median value of the entries as the splitting point 

(threshold), or find threshold that minimizes the Ncut cost



Normalized cut algorithm

1. Represent the image as a weighted graph 

G = (V,E), compute the weight of each edge, 

and summarize the information in D and W

2. Solve (D − W)y = λDy for the eigenvector 

with the second smallest eigenvalue

3. Use the entries of the eigenvector to 

bipartition the graph

To find more than two clusters:

• Recursively bipartition the graph

• Run k-means clustering on values of 

several eigenvectors



Example result



Challenge

• How to segment images that are a “mosaic of 

textures”?



Using texture features for segmentation

• Convolve image with a bank of filters

J. Malik, S. Belongie, T. Leung and J. Shi. "Contour and Texture Analysis for 

Image Segmentation". IJCV 43(1),7-27,2001.

http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf


Using texture features for segmentation

• Convolve image with a bank of filters

• Find textons by clustering vectors of filter bank 

outputs

J. Malik, S. Belongie, T. Leung and J. Shi. "Contour and Texture Analysis for 

Image Segmentation". IJCV 43(1),7-27,2001.

Texton mapImage

Slide credit: S. Lazebnik

http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf


Using texture features for segmentation

• Convolve image with a bank of filters

• Find textons by clustering vectors of filter bank 

outputs

• The final texture feature is a texton histogram 

computed over image windows at some “local 

scale”

J. Malik, S. Belongie, T. Leung and J. Shi. "Contour and Texture Analysis for 

Image Segmentation". IJCV 43(1),7-27,2001. Slide credit: S. Lazebnik

http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf


Pitfall of texture features

• Possible solution: check for “intervening 

contours” when computing connection weights

J. Malik, S. Belongie, T. Leung and J. Shi. "Contour and Texture Analysis for 

Image Segmentation". IJCV 43(1),7-27,2001.

http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf
http://www.cs.berkeley.edu/~malik/papers/MalikBLS.pdf


Example results



Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/

http://www.cs.berkeley.edu/~fowlkes/BSE/


• Pros
• Generic framework, can be used with many different 

features and affinity formulations

• Cons
• High storage requirement and time complexity

• Bias towards partitioning into equal segments

Normalized cuts: Pro and con

Slide credit: S. Lazebnik
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• Mean shift
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Aim
• Given an image and object category, to segment the object

Segmentation should (ideally) be

• shaped like the object e.g. cow-like

• obtained efficiently in an unsupervised manner

• able to handle self-occlusion

Segmentation

Object

Category 

Model

Cow Image Segmented Cow

Slide from Kumar „05



Feature-detector view









Examples of bottom-up segmentation

• Using Normalized Cuts, Shi & Malik, 1997

Borenstein and Ullman, ECCV 2002



Jigsaw approach: Borenstein and Ullman, 2002
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Probabilistic 
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Voting Space

(continuous)

Backprojection
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Segmentation
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(uniform sampling)

Liebe and Schiele, 2003, 2005
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OBJ CUT

M. Pawan Kumar

Philip Torr

Andrew Zisserman

UNIVERSITY

OF

OXFORD



Aim

• Given an image, to segment the object

Segmentation should (ideally) be

• shaped like the object e.g. cow-like

• obtained efficiently in an unsupervised manner

• able to handle self-occlusion

Segmentation

Object

Category 

Model

Cow Image Segmented Cow



Challenges

Self Occlusion

Intra-Class Shape Variability

Intra-Class Appearance Variability



Motivation
Magic Wand

Current methods require user intervention

• Object and background seed pixels (Boykov and Jolly, ICCV 01)

• Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Object Seed Pixels

Slide credit: P. Kumar
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Motivation
Magic Wand

Current methods require user intervention

• Object and background seed pixels (Boykov and Jolly, ICCV 01)

• Bounding Box of object (Rother et al. SIGGRAPH 04)

Segmented Image

Slide credit: P. Kumar



Problem
• Manually intensive

• Segmentation is not guaranteed to be ‘object-like’

Non Object-like Segmentation

Motivation

Slide credit: P. Kumar



Our Method

• Combine object detection with segmentation
– Borenstein and Ullman, ECCV ‟02

– Leibe and Schiele, BMVC ‟03

• Incorporate global shape priors in MRF

• Detection provides
– Object Localization

– Global shape priors

• Automatically segments the object
– Note our method is completely generic

– Applicable to any object category model

Slide credit: P. Kumar



Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Slide credit: P. Kumar



Problem

• Labelling m over the set of pixels D

• Shape prior provided by parameter 

• Energy E (m, ) = ∑ x(D|mx)+ x(mx| ) + ∑ xy(mx,my)+ (D|mx,my)

• Unary terms
– Likelihood based on colour

– Unary potential based on distance from 

• Pairwise terms
– Prior

– Contrast term

• Find best labelling m* = arg min ∑ wi E (m, i)

– wi is the weight for sample i

Unary terms Pairwise terms

Slide credit: P. Kumar



Markov Random Field (MRF)

Probability for a labelling consists of

• Likelihood 

• Unary potential based on colour of pixel

• Prior which favours same labels for neighbours (pairwise potentials)

D (pixels)

m (labels)

Image Plane

x

y

mx

my Unary Potential

x(D|mx)

Pairwise Potential

xy(mx, my)

Slide credit: P. Kumar



Example

Cow Image Object Seed

Pixels
Background Seed

Pixels

Prior

x …

y …

…

…

x …

y …

…

…

x(D|obj)

x(D|bkg)
xy(mx,my)

Likelihood Ratio (Colour)
Slide credit: P. Kumar



Example

Cow Image Object Seed

Pixels
Background Seed

Pixels

PriorLikelihood Ratio (Colour)
Slide credit: P. Kumar



Contrast-Dependent MRF

Probability of labelling in addition has

• Contrast term which favours boundaries to lie on image edges

D (pixels)

m (labels)

Image Plane

Contrast Term 

(D|mx,my)

x

y

mx

my

Slide credit: P. Kumar



Example

Cow Image Object Seed

Pixels
Background Seed

Pixels

Prior + Contrast

x …

y …

…

…

x …

y …

…

…

Likelihood Ratio (Colour)

x(D|obj)

x(D|bkg)
xy(mx,my)+

xy(D|mx,my)

Slide credit: P. Kumar



Example

Cow Image Object Seed

Pixels
Background Seed

Pixels

Prior + ContrastLikelihood Ratio (Colour)
Slide credit: P. Kumar



Our Model

Probability of labelling in addition has

• Unary potential which depend on distance from (shape parameter)

D (pixels)

m (labels)

(shape parameter)

Image Plane

Object Category

Specific MRFx

y

mx

my

Unary Potential

x(mx| )

Slide credit: P. Kumar



Example

Cow Image Object Seed

Pixels
Background Seed

Pixels

Prior + ContrastDistance from 

Shape Prior

Slide credit: P. Kumar



Example

Cow Image Object Seed

Pixels
Background Seed

Pixels

Prior + ContrastLikelihood + Distance from 

Shape Prior

Slide credit: P. Kumar



Example

Cow Image Object Seed

Pixels
Background Seed

Pixels

Prior + ContrastLikelihood + Distance from 

Shape Prior

Slide credit: P. Kumar



Outline

• Problem Formulation
– Energy E (m, ) = ∑ x(D|mx)+ x(mx| ) + ∑ xy(mx,my)+ 

(D|mx,my)

• Form of Shape Prior

• Optimization

• Results

Slide credit: P. Kumar



Layered Pictorial Structures (LPS)
• Generative model

• Composition of parts + spatial layout

Layer 2

Layer 1

Parts in Layer 2 can occlude parts in Layer 1

Spatial Layout

(Pairwise Configuration)

Slide credit: P. Kumar



Layer 2

Layer 1

Transformations

1

P( 1) = 0.9

Cow Instance

Layered Pictorial Structures (LPS)

Slide credit: P. Kumar



Layer 2

Layer 1

Transformations

2

P( 2) = 0.8

Cow Instance

Layered Pictorial Structures (LPS)

Slide credit: P. Kumar



Layer 2

Layer 1

Transformations

3

P( 3) = 0.01

Unlikely Instance

Layered Pictorial Structures (LPS)

Slide credit: P. Kumar



Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Slide credit: P. Kumar



Optimization

• Given image D, find best labelling as                     

m* = arg max p(m|D)

• Treat LPS parameter as a latent (hidden) variable

• EM framework

– E : sample the distribution over 

– M : obtain the labelling m

Slide credit: P. Kumar



Results of E-Step

• Different samples localize different parts well.

• We cannot use only the MAP estimate of the LPS.

Slide credit: P. Kumar



M-Step

• Given samples from p( |m’,D), get new labelling mnew

• Sample i provides
– Object localization to learn RGB distributions of object and background

– Shape prior for segmentation

• Problem

– Maximize expected log likelihood using all samples

– To efficiently obtain the new labelling

Slide credit: P. Kumar



M-Step

Cow Image Shape 1

w1 = P( 1|m‟,D)

RGB Histogram for Object RGB Histogram for Background



Cow Image

M-Step

1

Image Plane
D (pixels)

m (labels)

• Best labelling found efficiently using a Single Graph Cut

Shape 1

w1 = P( 1|m‟,D)



Segmentation using Graph Cuts

x …

y … … …

z … …

Obj

Bkg

Cut
x(D|bkg) + x(bkg| )

m

z(D|obj) + z(obj| )

xy(mx,my)+

xy(D|mx,my)

Slide credit: P. Kumar



Segmentation using Graph Cuts

x …

y … … …

z … …

Obj

Bkg

m

Slide credit: P. Kumar



M-Step

Cow Image

RGB Histogram for BackgroundRGB Histogram for Object

Shape 2

w2 = P( 2|m‟,D)



M-Step

Cow Image

2

Image Plane
D (pixels)

m (labels)

• Best labelling found efficiently using a Single Graph Cut

Shape 2

w2 = P( 2|m‟,D)



M-Step

2

Image Plane

1

Image Plane

w1 +   w2 + …. 

• Best labelling found efficiently using a Single Graph Cut

m* = arg min ∑ wi E (m, i)



Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results



SegmentationImage

Results
Using LPS Model for Cow

Slide credit: P. Kumar



In the absence of a clear boundary between object and background

SegmentationImage

Results
Using LPS Model for Cow

Slide credit: P. Kumar



SegmentationImage

Results
Using LPS Model for Cow

Slide credit: P. Kumar



SegmentationImage

Results
Using LPS Model for Cow



SegmentationImage

Results
Using LPS Model for Horse



SegmentationImage

Results
Using LPS Model for Horse



Our Method Leibe and SchieleImage

Results



AppearanceShape Shape+Appearance

Results

Without x(D|mx) Without x(mx| )



Overview

• Bottom-up segmentation

– Clustering

– Mean shift

– Graph-based

• Combining object recognition & 

segmentation

– OBJCUT

– Other methods



[Lepetit et al. CVPR 2005]

• Decision forest 

classifier

• Features are 

differences of 

pixel intensities

Classifier

Winn and Shotton 2006

Layout Consistent Random Field



Layout consistency

(8,3) (9,3)(7,3)

(8,2) (9,2)(7,2)

(8,4) (9,4)(7,4)

Neighboring pixels

(p,q)

? (p,q+1)(p,q) (p+1,q+1)(p-1,q+1)

Layout

consistent

Winn and Shotton 2006



Layout Consistent Random Field

Layout consistencyPart detector

Winn and Shotton 2006



Stability of part labelling

Part color key



Image parsing: Tu, Zhu and Yuille 2003



Image parsing: Tu, Zhu and Yuille 2003



LOCUS model

Deformation field D

Position & size T

Class shape π Class edge 

sprite μo,σo

Edge image  e

Image

Object 

appearance λ1

Background 

appearance λ0

Mask   m

Shared 

between 

images

Different 

for each 

image

Kannan, Jojic and Frey 2004

Winn and Jojic, 2005


