Computer Vision — Lecture 1

Prof. Rob Fergus



What is Computer Vision?

* Vision is about discovering from images
what is present in the scene and where it is.

* In Computer Vision a camera (or several
cameras) is linked to a computer. The
computer interprets images of a real scene
to obtain information useful for tasks such
as navigation, manipulation and
recognition.



The goal of computer vision
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What is Computer Vision NOT?

* Image processing: image enhancement,
image restoration, image compression. Take
an image and process it to produce a new
image which is, in some way, more desirable.

* Computational Photography: extending the
capabilities of digital cameras through the
use of computation to enable the capture of
enhanced or entirely novel images of the
world. (See my other course)



Why study it?

* Replicate human vision to allow a machine to
see:

— Central to that problem of Artificial Intelligence
— Many industrial applications

 Gain insight into how we see

— Vision is explored extensively by neuroscientists to
gain an understanding of how the brain operates
(e.g. the Center for Neural Science at NYU)



Applications

Until ~6-7 years ago, mainly niche
applications

,, Tﬁngsbn
filament

Now huge number of uses

— Huge number of startups & companies, e.g.
240 @ CVPR2017 conference

Key perceptual input for
Ar%,if?cial ntelligence

Industrial robotics / inspection

e.g. light bulbs, electronic circuits
Self driving cars

Security
e.g. facial recognition in airports

Mission critical for Internet Companies
— Google, Facebook, etc.




Convolutional Neural Network

Developed by Yann LeCun (NYU faculty)
Neural network with specialized connectivity
structure.

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
32x32 6@26x28 S2: f. maps

| FuIIconrlection Gaussian connections
Subsampling Convolutions  Subsampling Full connection

Convolutions

Early 1990’s: Handwritten Digit recognition, License plate recognition.
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At the time, 1/3 of all checks written in US were read by this system



Convolutional Neural Network

* Developed by Yann LeCun (NYU faculty)
* Neural network with specialized connectivity ‘ .
structure.




| The Return of] Convolutional Neural
Networks

* Huge revival in 2012: Krizhevsky et al. NIPS 2012

* Still pretty much LeCun et al. 1989, just
bigger models and larger training sets

e GPUs: nVidia Pascal 10 million times
faster than 1980’s Sun workstation
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Object Recognition

* Image Classification
— Pixels = Class Label

abacus

Polaroid camera| | typewriter keyboard zucchini
pencil sharpener space bar ground beetle cocker spaniel

switch computer keyboard common newt partridge
combination lock accordion water snake English setter

[ Krizhevsky et al. NIPS 2012]



ImageNet Classification (2010 — 2015)
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Object Detection Progress
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Face Detection (find faces)

e Real-time face detection on most
phones/cameras now

* Use to set exposure
* Also input for face recognition system



Face Recognition (distinguish
individuals)

» Used by Facebook, Google etc.

 Tag people’s faces in photos 1 ”
* Need to distinguish a person’s ' .
face from many others
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Advanced Photo Search

* Text-based image search
— (that actually looks at image
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Self-Driving Cars

p» manufacturer products consumer products «-

Our Vision. Your Safety:

rear I : forward
looking - i) - + Jooking
camera | : /' camerd

side looking camera

[ - . - .
- EyeQ gigiﬁig on -Vision Applications
| Road, Vehicle, e
Pedestrian Protection : |
- and more +
»

« Mobileye: Vision systems
in high-end BMW, GM,
Volvo models

* Very stringent accuracy
requirements (not yet met)

Source: A. Shashua


http://www.mobileye.com/

Self-Driving Cars

* Many other companies:

* More than just vision

Uber
Tesla
GM
Toyota

LIDAR
Planning
Mapping
Anticipating behavior
of other drivers



Virtual/Augmented Reality

 Tracking of user head w/high accuracy

* Rendering realistic 3D scene in real-time
* Oculus / HTC / Hololens




Vision-based interaction (and games)




Vision for robotics, space exploration

NASA'S Mars Exploration Rover Spirit captured this westward view from atop
a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

« Panorama stitching
« 3D terrain modeling
« Obstacle detection, position tracking

« For more, read “Computer Vision on Mars” by Matthies et al.
Source: S. Seitz



http://www.ri.cmu.edu/pubs/pub_5719.html
http://marsrovers.jpl.nasa.gov/gallery/images.html

Novel view synthesis

Inputs: sparsely sampled images of scene Outputs: new views of same scene

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al. ECCV 2020]



3D Reconstruction

Relating images

Y

Structure & Motion
recovery

Y

Dense Matching

Y

3D Model Building

3D surface model

Pollefeys et al. Goesele et al.



What is it related to?

Biology

Information Neuroscience
Engineering Robotics Computer
Science

Machine learning

(Deep Learning)

Speech Information retrieval

Computer Vision

Physics Maths



The problem

* Want to make a computer understand images

* We know it is possible - we do it effortlessly!

Real world
scene

Sensing device Interpreting device Interpretation

A person/
A person with
folded arms/

Prof. Pietro

Perona/ etc.




The Human

Retina measures about 5 X
5 cm and contains 108
sampling elements (rods
and cones).

The eye’ s spatial resolution
is about 0.01° over a 150°
field of view (not evenly
spaced, there is a fovea and
a peripheral region).
Intensity resolution is
about 11 bits/element,
%ectral range is 400-

Onm.

Temporal resolution is
about 100 ms (10 Hz).

Two eyes give a data rate
of about 3 GBytes/s!
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Human visual system

Categorical judgments,

decision making Simple visual forms,

edges, cormners

* Vision is the b
most powerful of
our own senses.

S
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orpe et. al.]

* Around 1/3 of our brain is devoted to processing
the signals from our eyes.

* The visual cortex has around O(10™) neurons.



Vision as data reduction

* Raw feed from camera/eyes:
— 107 Bytes/s

 Extraction of edges and salient features
—10%4 Bytes/s

» High-level interpretation of scene
— 1012 Bytes/s



Why don’ t we just copy
the human visual system?

*People try to but we don’t yet have a
sufficient understanding of how our visual
system works.

11 o
*O(10"") neurons used in vision

*By contrast, latest CPUs have 0(10%
transistors (most are cache memory)

*Very different architectures:
- Brain is slow but parallel
- Computer is fast but mainly serial

*Bird vs Airplane
- Same underlying principles
- Very different hardware



Admin Interlude




Course details

Lecture recordings on Brightspace

Course webpage:
— http:/ /cs.nyu.edu/~fergus/teaching/vision

Piazza for discussions:
— https:/ /piazza.com/class/Im7352jom{b2k8

Assignment submission
— NYU Brightspace



http://cs.nyu.edu/~fergus/teaching/vision
https://piazza.com/class/lm7352jomfb2k8

Location

* 19 Washington Place, Room 102

e Office Hours

— In person (+virtual): Thursday, 9pm onwards,
i.e. right after class.
* 19 Washington Place, Room 102



Class Teaching Assistants

Tutors:

* Rajeev Koppuravuri (rk4305@nyu.edu)
* Sriharsha Gaddipati (sg7372@nyu.edu)

Graders:
* Kranthi Kiran GV kranthi.gv@nyu.edu

Office hours to be announced (see website)


mailto:kranthi.gv@nyu.edu

What you need

* Access to a computer than can run
PyTorch

— Open-source download

e GPU access:

— Everyone should have been granted an NYU
HPC account with Google Cloud access.

* If not, please email me....

— Class TAs will run a session showing you
how to use. Please attend.



Pre-requisites

 Linear algebra

— https:/ /www.coursera.org/learn/linear-
algebra-machine-learning

* Basic machine learning
— E.g. Andrew Ng’'s Coursera course
* Coding in Python

— PyTorch experience useful


https://www.coursera.org/learn/linear-algebra-machine-learning

Textbooks

Course does not use a textbook

Deep Learning book (Goodfellow, Courville and

Bengio)
— http:/ /www.deeplearningbook.org/
Lots of pretty good blogs

Geometric vision:

Szeliski, R., Computer Vision.
http:/ /szeliski.org/Book/

Hartley, R. and Zisserman, A. Multiple
View Geometry in Computer Vision,
Academic Press, 2002.

Lv_ nnnnnnnnnnnnnnnnnnn

Computer Vision

Algorithms and Applications



http://szeliski.org/Book/

Grading

* Assignments (51%) + Course project (49%)

* Assignments on the course webpage are
outdated: new ones will appear

* 3 assignments (51% of total)

e Ist=17%.
e 2nd =17%
e 3rd=17%

Object classification]
Object Detection]

3D computer vision]



Course Project

Please choose by mid-October
— Require project abstract

Will put list of good project ideas up on
Piazza

Feel free to come up with your own!
— Come to office hours to discuss

Work in pairs (3 in a pinch)

— Can use whatever platform you prefer

Submit report + 2 min video instead of
final exam. Due Monday December 18,



Syllabus

* High-level vision
— Introduction to neural nets
— Convolutional nets (ConvNets)
— Object recognition
— Face recognition
— Video recognition

 Low-level vision
— Edge, corner, feature detection
— Stereo reconstruction
— Structure from motion, optical flow

* Other topics
— Image processing tasks
— Recurrent nets (images + text)
— Generative models
— Unsupervised learning



What the course will NOT cover

* Biology relating to vision
— Go to CNS

* Huge detail on stereo reconstruction

— Cool topic, but could easily be course of its own

* How to capture & enhance images

— See Computational Photography course



Likely Deviations

* May have guest lecturers give some
classes



End of
Admin Interlude




Computer Vision:
A whole series of problems

* What is in the image ?

- Object recognition problem
* Where is it ?

- 3D spatial layout

- Shape

* How is the camera moving ?

e What is the action ?



Object Recognition

* “Understand objects in image”

e Different tasks:

Classification:

Image contains bus (binary yes/no)

Detection:

Localize object instances
(bounding box or mask)

Semantic segmentation:
Label every pixel



Image is a projection of world

Optical
axis

Image
plane

World
coordinates

Optical | ™_
centre
BN
Xe
y  Camera-centered
€ coordinates



An under-constrained problem

Hans-Jurgen Niegel 1: 1
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Stereo Vision

* By having two cameras, we can triangulate
features in the left and right images to obtain

depth.
 Need to match features

between the two images:

— Correspondence Problem




Geometry:
3D models of planar objects

[Fitzgibbon et. al]
[Zisserman et. al. ]



Structure and Motion Estimation

Objective: given a set of images ...

Want to compute where the camera is for each image and the
3D scene structure:

- Uncalibrated cameras

- Automatic estimation from images (no manual clicking)



Example

Image sequence Camera path and points

[Fitzgibbon et. al]
[et. al. Zisserman]



Application: Augmented reality

original sequence




Augmented
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DynamicFusion

https://www.youtube.com/watch?v=i1eZekcc IM



https://www.youtube.com/watch?v=i1eZekcc_lM

Interpretation from limited cues

s
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Shape from Shading

* Recover scene structure from shading in
the image

* Typically need to assume:

— Lambertian lighting, isotropic reflectance




Shape from Texture

» Texture provides a very strong cue for inferring surface orientation
in a single image.
* Necessary to assume homogeneous or isotropic texture.

* Then, it is possible to infer the orientation of surfaces by analyzing
how the texture statistics vary over the image.
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Human motion detection




Johansson' s experiments [ ‘70s]



Can you tell what it is?



Cameras & Image Formation

Slides from: F. Durand, S. Seitz, S. Lazebnik, S. Palmer



Overview

* The pinhole projection model
— Qualitative properties
— Perspective projection matrix

e Cameras with lenses
— Depth of focus
— Field of view

— Lens aberrations

* Digital cameras
— Types of sensors
— Color



Let' s design a camera

cbject filrm

. o

* Idea 1: put a piece of film in front of an object

* Do we get a reasonable image?

Slide by Steve Seitz



Pinhole camera

cbject barrier filrm

[
—>

 Add a barrier to block off most of the
rays
— This reduces blurring

— The opening is known as the aperture

Slide by Steve Seitz



Pinhole camera model

* Pinhole model:

— Captures pencil of rays - all rays through a single point
— The point is called Center of Projection (focal point)
— The image is formed on the Image Plane

Slide by Steve Seitz



Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

O

[

Point of observation

What have we lost?
* Angles
» Distances (lengths)

Slide by A. Efros
Figures © Stephen E. Palmer, 2002



Projection properties

* Many-to-one: any points along same visual
ray map to same point in image
* Points — points

— But projection of points on focal plane is
undefined

* Lines — lines (collinearity is preserved)

— But line through focal point (visual ray)
projects to a point

* Planes — planes (or half-planes)

— But plane through focal point projects to line



Perspective distortion

* Problem for architectural photography:
converging verticals

Source: F. Durand



Perspective distortion

he exterior columns appear bigger

he distortion is not due to lens flaws

1 Q 7
AN

Slide by F. Durand



Perspective distortion: People




Modeling projection

* The coordinate system

— The optical center (O) (aka focal point / center of projection)
is at the origin

— Optical axis is in z direction
— The image plane is parallel to xy-plane (perpendicular to z axis)

Source: J. Ponce, S. Seitz



Modeling projection

* Projection equations

— Compute intersection with image plane of ray from P = (x,y,z) to O

— Derived using similar triangles ¥ y
(X,y,Z) — (f;»f;:f)

*  We get the projection by throwing out the last coordinate:

(x,y,zH(ff,ff)

Source: J. Ponce, S. Seitz



Homogeneous coordinates
(.2.2) > (S o)

e |s this a linear transformation?

* no—division by z is nonlinear

Trick: add one more coordinate:

(z,y) = | ¥

homogeneous image
coordinates

(z,y,2) =

T
Y
z

1

homogeﬁeou§ scene
coordinates

Converting Jfrom homogeneous coordinates

y | = (z/w,y/w)

i

Y
z
_w_

= (z/w,y/w, z/w)

Slide by Steve Seitz



Perspective Projection Matrix

* Projection is a matrix multiplication using
homogeneous coordinates:

1 0
0 1
0 0

0 0
0 0
1/ f 0

— N e =

X

Y
z/ f

:<f§,f§>

divide by the third
coordinate



Perspective Projection Matrix

* Projection is a matrix multiplication using
homogeneous coordinates:

1 0
0 1
0 0

e A

2D
point
(3x1)

| x _ _
0 O X
Y X L)
Z Z Z
1/f 0O z/ f divide by the third
- 1 - - coordinate
In practice: split into lots of different coordinate transformations...
4 N
e N/ I 4 A
Qar|r1era tg Perspective World to 3D
pixet coord. projection matrix camera coord. point
trans. matrix trans. matrix
(3x4) (4x1)
(3x3) (4x4)
AN _/ \_ /




Orthographic Projection

* Special case of perspective projection

— Distance from center of projection to image plane is
infinite

— Also called “parallel projection”
— What' s the projection matrix?

Slide by Steve Seitz



Building a real camera




Camera Obscura

0(. d;[‘ 0 CE 1 . . .
g M%‘ﬁiﬁ%ﬁ@mﬁ(“"i * Basic principle

oS oe 451 known to Mozi (470-
390 BCE), Aristotle
(384-322 BCE)

% >=e="" * Drawing aid for
s.' . . .
e — artists: described by

Leonardo da Vinci
(1452-1519)

Source: A. Efros



Home-made pinhole camera

Slide by A. Efros ' http://www.debevec.org/Pinhole/



http://www.debevec.org/Pinhole/

Shrinking the aperture

2 mm I mm

(0.6mm 0.35 mm

* Why not make the aperture as small as possible?

— Less light gets through
— Diffraction effects...

Slide by Steve Seitz



Shrinking the aperture

2 mm I mm

(0.6mm 0.35 mm

OPFTICA

FOTORMAY A

S ————

0.15 mm 0.07 mm



Adding a lens

cbject lens filrm

* A lens focuses light onto the film

— Rays passing through the center are not
deviated

Slide by Steve Seitz



Adding a lens

cbject lens filrm

A;:\'é‘ focal point
ZX

* A lens focuses light onto the film

— Rays passing through the center are not deviated

— All parallel rays converge to one point on a plane
located at the focal length f

Slide by Steve Seitz



Adding a lens

cbject lens filrm

—“circle of
confusion”

* A lens focuses light onto the film

— There is a specific distance at which objects are “in
focus”

« other points project to a “circle of confusion” in the
image
Slide by Steve Seitz



Thin lens formula

> € -
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v
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Frédo Durand’ s slide



Thin lens formula

Similar triangles everywhere!

~
©

Frédo Durand’ s slide



Thin lens formula
y /[y=D"/D

Frédo Durand’ s slide



Thin lens formula
y /[y=D"/D
y /[y = (D -f)/f

Frédo Durand’ s slide



Thin lens formula

1

— Any point satistying the thin lens equation is in focus.

11
DO D f

D’ D

Frédo Durand’ s slide



Depth of Field

DEPTH OF FIELD
DEPTH OF FIELD

DEPTH OF FIELD

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Slide by A. Efros


http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

How can we control the depth of
field?

* Changing the aperture size affects depth of field

— A smaller aperture increases the range in which the object is
approximately in focus

— But small aperture reduces amount of light - need to
increase exposure

Slide by A. Efros



Varying the aperture
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gright 1937 phileBnit,edu

Large aperture =small DOF Small aperture = large DOF

Slide by A. Efros

copyright 1937 philsBnit,edu
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Slide by A. Efros

From London and Upton



IEW

Field of V

1000 mm
S00

1385mm

Slide by A. Efros

From London and Upton




Field of View
. f\

\/

FOV depends on focal length and size of the camera retina

d
(p:tan‘l i
(th'b)

Smaller FOV = larger Focal Length
Slide by A. Efros



Field of View / Focal Length

Large FOV, small f
Camera close to car

Small FOV, large f
Camera far from the car

Sources: A. Efros, F. Durand



Same effect for faces

wide-angle standard telephoto



Approximating an affine camera

perspective weak perspective

increasing focal length >

increasing distance from camera

Source: Hartley & Zisserman



Real lenses




Lens Flaws: Chromatic Aberration

* Lens has different refractive indices for
different wavelengths: causes color fringing




Lens flaws: Spherical aberration

* Spherical lenses don’ t focus light perfectly
* Rays farther from the optical axis focus closer




Lens flaws: Vignetting




Radial Distortion

— Caused by imperfect lenses
— Deviations are most noticeable near the edge of the lens

T o

I_J,____Q sl

No distortion Pin cushion Barrel




Digital camera

ab

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

* A digital camera replaces film with a sensor
array

— Each cell in the array is light-sensitive diode that converts photons to electrons

— Two common types

¢ Charge Coupled Device (CCD)

¢ Complementary metal oxide semiconductor (CMOS)
— http:/ /electronics.howstuffworks.com/digital-camera.htm

Slide by Steve Seitz


http://electronics.howstuffworks.com/digital-camera.htm

CCD vs. CMOS

CCD: transports the charge across the chip and reads it at one corner of the
array. An analog-to-digital converter (ADC) then turns each pixel's value into a
digital value by measuring the amount of charge at each photosite and
converting that measurement to binary form

CMOS: uses several transistors at each pixel to amplify and move the charge
using more traditional wires. The CMOS signal is digital, so it needs no ADC.

http://electronics.howstuffworks.com/digital-camera.htm

CCD photon to electron CMOS

| | conversion N
T e
| charge o [y [y
| \ to voltage IS
— conversion ot Nond Ko
| [ [ [
SIS
il e

(et sl Ol [l (!

CCDs move photogenerated charge from pixel to pixel and convert it to voltage at
an output node. CMOS imagers convert charge to voltage inside each pixel.

http://www.dalsa.com/shared/content/pdfs/CCD vs CMOS Litwiller 2005.pdf



http://www.dalsa.com/shared/content/pdfs/CCD_vs_CMOS_Litwiller_2005.pdf
http://electronics.howstuffworks.com/digital-camera.htm

Color sensing in camera: Color filter array
Bayer grid

Estimate missing component

from neighboring values
(demosaicing)

I | | Why more green?

Incoming Light

Filter Layer

Sensor Array

Relative Sensitivity

Resulting Pattern

400 500 600 700
Wavelength (nm)

Human Luminance Sensitivity Function

Source: Steve Seitz



icing

Demosa




Problem with demosaicing: color moire

I T

Slide by F. Duran



The cause of color moire

detector

Fine black and white detail in image
misinterpreted as color information

Slide by F. Durand



Color sensing in camera: Foveon X3
e CMOQOS sensor

* Takes advantage of the fact that red, blue and green
light penetrate silicon to different depths

Silicon color absorption Foveon X3 sensor stack

|-— %7 microns —-l
<Blue TS ¢
\ \ \ | | | | | ‘ absorption . ) _T
| | g———" M
| ‘ ’ | X'J. & <Green A
= absorption wn
First came fiim. Then came digital. Now there's Foveon X3. a E
o Red
< : "
COLOR FILM contains three TYPICAL DIGITAL SENSORS FOVEON X3 direct image 3 absorption S
layers of emulsion which have just one layer of pixels and  sensors have three layers of - »
directly record red, green, caplure only parl of the color. pixels which directly capture _1
and blue light. all of the celor. .~
http://www.foveon.com/article.php?a=67 http://en.wikipedia.org/wiki/Foveon X3 sensor

better image quality

Source: M. Pollefeys


http://en.wikipedia.org/wiki/Foveon_X3_sensor
http://www.foveon.com/article.php?a=67

Digital camera artifacts

Noise
 low light is where you most notice noise
+ light sensitivity (ISO) / noise tradeoff
* stuck pixels

In-camera processing
 oversharpening can produce halos

Compression
 JPEG artifacts, blocking

Blooming
 charge overflowing into neighboring pixels

Color artifacts

e purple fringing from microlenses,
» white balance
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http://www.dpreview.com/learn/?/key=noise
http://www.dpreview.com/learn/?/key=sharpening
http://www.dpreview.com/learn/?/key=blooming
http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration_01.htm

Historic milestones

Pinhole model: Mozi (470-390 BCE), p il
Aristotle (384-322 BCE) I%zé \
Principles of optics (including lenses):

Alhacen (965-1039 CE)

Camera obscura: Leonardo da Vinci
(1452-1519), Johann Zahn (1631-1707)

First photo: Joseph Nicephore Niepce (1822)
Daguerréotypes (1839)

Photographic film (Eastman, 1889)

Cinema (Lumiere Brothers, 1895)

Color Photography (Lumiere Brothers, 1908)
Television (Baird, Farnsworth, Zworykin, 1920s)

NS

First consumer camera with CCD:
Sony Mavica (1981)

First fully digital camera: Kodak DCS100 (1990)

CCD chip



