
Computer Vision – Lecture 1

Prof. Rob Fergus



What is Computer Vision?

• Vision is about discovering from images 
what is present in the scene and where it is.

• In Computer Vision a camera (or several 
cameras) is linked to a computer. The 
computer interprets images of a real scene 
to obtain information useful for tasks such 
as navigation, manipulation and 
recognition.



The goal of computer vision

• To bridge the gap between pixels and 
“meaning”

What we see What a computer sees
Source: S. Narasimhan



What is Computer Vision NOT?

• Image processing: image enhancement, 
image restoration, image compression. Take 
an image and process it to produce a new 
image which is, in some way, more desirable.

• Computational Photography: extending the 
capabilities of digital cameras through the 
use of computation to enable the capture of 
enhanced or entirely novel images of the 
world. (See my other course)



Why study it?

• Replicate human vision to allow a machine to 
see:
– Central to that problem of Artificial Intelligence
– Many industrial applications

• Gain insight into how we see
– Vision is explored extensively by neuroscientists to 

gain an understanding of how the brain operates 
(e.g. the Center for Neural Science at NYU)



Applications
• Until ~6-7 years ago, mainly niche 

applications

• Now huge number of uses
– Huge number of startups & companies, e.g.

240 @ CVPR2017 conference

• Key perceptual input for 
Artificial Intelligence

• Industrial robotics / inspection 
e.g. light bulbs, electronic circuits

• Self driving cars

• Security
e.g. facial recognition in airports

• Mission critical for Internet Companies
– Google, Facebook, etc.



• Early 1990’s: Handwritten Digit recognition, License plate recognition.

At the time, 1/3 of all checks written in US were read by this system

Convolutional Neural Networks
• Developed by Yann LeCun (NYU faculty)
• Neural network with specialized connectivity 

structure.



• Early 1990’s: Handwritten Digit recognition, License plate recognition.

At the time, 1/3 of all checks written in US were read by this system

Convolutional Neural Networks
• Developed by Yann LeCun (NYU faculty)
• Neural network with specialized connectivity 

structure.



[The Return of] Convolutional Neural 
Networks

• Still pretty much LeCun et al. 1989, just 
bigger models and larger training sets

• GPUs: nVidia Pascal 10 million times 
faster than 1980’s Sun workstation

• Huge revival in 2012: Krizhevsky et al. NIPS 2012



Object Recognition

  

Validation classification

[Krizhevsky et al. NIPS 2012]

• Image Classification
– Pixels à Class Label
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Object Detection Progress 



He, Zhang, Ren, & Sun. “Deep Residual Learning for Image 
Recognition”. ICCV 2015.



He, Zhang, Ren, & Sun. “Deep Residual Learning for Image 
Recognition”. ICCV 2015.



Pose Estimation

[Mask R-CNN, He et al. ICCV 2017]



Face Detection (find faces) 

• Real-time face detection on most 
phones/cameras now

• Use to set exposure
• Also input for face recognition system



Face Recognition (distinguish 
individuals)

• Used by Facebook, Google etc.
• Tag people’s faces in photos
• Need to distinguish a person’s

face from many others

[Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face 
Verification, CVPR’14]

Network Error Network Error Network Error
DF-1.5K 7.00% DF-10% 20.7% DF-sub1 11.2%
DF-3.3K 7.22% DF-20% 15.1% DF-sub2 12.6%
DF-4.4K 8.74% DF-50% 10.9% DF-sub3 13.5%

Table 1. Comparison of the classification errors on the SFC w.r.t.

training dataset size and network depth. See Sec. 5.2 for details.

Network Error (SFC) Accuracy ± SE (LFW)
DeepFace-align2D 9.5% 0.9430 ±0.0043
DeepFace-gradient 8.9% 0.9582 ±0.0037
DeepFace-Siamese NA 0.9617 ±0.0038

Table 2. The performance of various individual DeepFace net-
works and the Siamese network.

Ensembles of DNNs Next, we combine multiple net-
works trained by feeding different types of inputs to the
DNN: 1) The network DeepFace-single described above
based on 3D aligned RGB inputs; 2) The gray-level im-
age plus image gradient magnitude and orientation; and 3)
the 2D-aligned RGB images. We combine those distances
using a non-linear SVM (with C=1) with a simple sum
of power CPD-kernels: KCombined := Ksingle + Kgradient +
Kalign2d, where K(x, y) := �||x� y||2, and following the
restricted protocol, achieve an accuracy 97.15%.

The unrestricted protocol provides the operator with
knowledge about the identities in the training sets, hence
enabling the generation of many more training pairs to be
added to the training set. We further experiment with train-
ing a Siamese Network (Sec. 4.2) to learn a verification met-
ric by fine-tuning the Siamese’s (shared) pre-trained feature
extractor. Following this procedure, we have observed sub-
stantial overfitting to the training data. The training pairs
generated using the LFW training data are redundant as
they are generated out of roughly 9K photos, which are
insufficient to reliably estimate more than 120M parame-
ters. To address these issues, we have collected an ad-
ditional dataset following the same procedure as with the
SFC, containing an additional new 100K identities, each
with only 30 samples to generate same and not-same pairs
from. We then trained the Siamese Network on it followed
by 2 training epochs on the LFW unrestricted training splits
to correct for some of the data set dependent biases. The
slightly-refined representation is handled similarly as be-
fore. Combining it into the above-mentioned ensemble,
i.e., KCombined += KSiamese, yields the accuracy 97.25%, un-
der the unrestricted protocol. By adding four additional
DeepFace-single networks to the ensemble, each trained
from scratch with different random seeds, i.e., KCombined +=P

KDeepFace-Single, the obtained accuracy is 97.35%. The
performances of the individual networks, before combina-
tion, are presented in Table 2.

The comparisons with the recent state-of-the-art meth-

Method Accuracy ± SE Protocol
Joint Bayesian [6] 0.9242 ±0.0108 restricted
Tom-vs-Pete [4] 0.9330 ±0.0128 restricted
High-dim LBP [7] 0.9517 ±0.0113 restricted
TL Joint Bayesian [5] 0.9633 ±0.0108 restricted
DeepFace-single 0.9592 ±0.0029 unsupervised
DeepFace-single 0.9700 ±0.0028 restricted
DeepFace-ensemble 0.9715 ±0.0027 restricted
DeepFace-ensemble 0.9735 ±0.0025 unrestricted
Human, cropped 0.9753

Table 3. Comparison with the state-of-the-art on the LFW dataset.

Method Accuracy (%) AUC EER
MBGS+SVM- [31] 78.9 ±1.9 86.9 21.2
APEM+FUSION [22] 79.1 ±1.5 86.6 21.4
STFRD+PMML [9] 79.5 ±2.5 88.6 19.9
VSOF+OSS [23] 79.7 ±1.8 89.4 20.0
DeepFace-single 91.4 ±1.1 96.3 8.6

Table 4. Comparison with the state-of-the-art on the YTF dataset.

ods in terms of the mean accuracy and ROC curves are pre-
sented in Table 3 and Fig. 3, including human performance
on the cropped faces. The proposed DeepFace method ad-
vances the state-of-the-art, closely approaching human per-
formance in face verification.

5.4. Results on the YTF dataset
We further validate DeepFace on the recent video-level

face verification dataset. The image quality of YouTube
video frames is generally worse than that of web photos,
mainly due to motion blur or viewing distance. We em-
ploy the DeepFace-single representation directly by creat-
ing, for every pair of training videos, 50 pairs of frames,
one from each video, and label these as same or not-same
in accordance with the video training pair. Then a weighted
�2 model is learned as in Sec. 4.1. Given a test-pair, we
sample 100 random pairs of frames, one from each video,
and use the mean value of the learned weighed similarity.

The comparison with recent methods is shown in Ta-
ble 4 and Fig. 4. We report an accuracy of 91.4% which
reduces the error of the previous best methods by more than
50%. Note that there are about 100 wrong labels for video
pairs, recently updated to the YTF webpage. After these are
corrected, DeepFace-single actually reaches 92.5%. This
experiment verifies again that the DeepFace method easily
generalizes to a new target domain.

5.5. Computational efficiency
We have efficiently implemented a CPU-based feedfor-

ward operator, which exploits both the CPU’s Single In-
struction Multiple Data (SIMD) instructions and its cache
by leveraging the locality of floating-point computations

Figure 3. MegaFace statistics. We present randomly selected photographs (with provided detections in red), along with distributions of
Flickr tags, GPS locations, and camera types. We also show the pose distribution (yaw and roll), number of faces per photograph, and
number of faces for different resolutions (compared to LFW in which faces are approximately 100x100).

above that resolution, we add them all, given that they are
different people with high probability. We then repeated
this process (choosing the second, then the third, etc. photo
from each user), until a sufficient number of faces were as-
sembled. Based on our experiments face detection can have
up to 20% false positive rate. Therefore, to ensure that our
final set includes a million faces, the process was terminated
once 1, 296, 079 faces were downloaded. Once face detec-
tion was done, we ran additional stricter detection, and re-
moved blurry faces. We assembled a total of 690, 572 faces
in this manner that have a high probability of being unique
individuals. While not guaranteed, the remaining 310K in
our dataset likely also contain additional unique identities.
Figure 3 presents a histogram of number of faces per photo.

Face processing. We downloaded the highest resolution
available per photo. The faces are detected using the Head-
Hunter2 algorithm by Mathias et al. [21], which reported
state of the art results in face detection, and is especially
robust to a wide range of head poses including profiles.
We crop detected faces such that the face spans 50% of the
photo height, thus including the full head (Fig. 3). We fur-
ther estimate 49 fiducial points and yaw and pitch angles, as
computed by the IntraFace3 landmark model [35].

Dataset statistics. Figure 3 presents MegaFace’s statis-
tics:

• Representative photographs and bounding boxes. Ob-
serve that the photographs contain people from dif-
ferent countries, gender, variety of poses, glasses/no
glasses, and many more variations.

2http://markusmathias.bitbucket.org/2014_eccv_face_
detection/

3http://www.humansensing.cs.cmu.edu/intraface/

• Distribution of Flickr tags that accompanied the down-
loaded photos. Tags range from ’instagram’ to ’wed-
ding,’ suggesting a range of photos from selfies to high
quality portraits (prominence of ’2013’ likely due to
timing of when the Flickr dataset was released).

• GPS locations demonstrate photos taken all over the
world.

• Camera types dominated by DSLRs (over mobile
phones), perhaps correlated with creative commons
publishers, as well as our preference for higher reso-
lution faces.

• 3D pose information: more than 197K of the faces
have yaw angles larger than ±40 degrees. Typically
unconstrained face datasets include yaw angles of less

than ±30 degrees.
• Number of faces per photo, to indicate the number of

group photos.
• Face resolution: more than 50% (514K) of the photos

in MegaFace have resolution more than 40 pixels inter-
ocular distance (40 IOD corresponds to 100x100 face
size, the resolution in LFW).

We believe that this dataset is extremely useful for a variety
of research areas in recognition and face modeling, and we
plan to maintain and expand it in the future. In the next
section, we describe the MegaFace challenge.

4. The MegaFace Challenge
In this section, we describe the challenge and evaluation

protocols. Our goal is to test performance of face recogni-
tion algorithms with up to a million distractors, i.e., faces of
unknown people. In each test, a probe image is compared



Advanced Photo Search

• Text-based image search
– (that actually looks at image)

http://clarifai-blog.s3.amazonaws.com/wp-content/uploads/2015/12/pic1.jpg



Self-Driving Cars

• Mobileye: Vision systems 
in high-end BMW, GM, 
Volvo models

• Very stringent accuracy 
requirements (not yet met) 

Source:  A. Shashua

http://www.mobileye.com/


Self-Driving Cars
• Many other companies:

– Uber
– Tesla
– GM
– Toyota 

• More than just vision
– LIDAR
– Planning
– Mapping
– Anticipating behavior

of other drivers



Virtual/Augmented Reality

• Tracking of user head w/high accuracy
• Rendering realistic 3D scene in real-time
• Oculus / HTC / Hololens



Vision-based interaction (and games)

Microsoft Kinect



Vision for robotics, space exploration

Vision systems (JPL) used for several tasks
• Panorama stitching
• 3D terrain modeling
• Obstacle detection, position tracking
• For more, read “Computer Vision on Mars” by Matthies et al.

NASA'S Mars Exploration Rover Spirit captured this westward view from atop 
a low plateau where Spirit spent the closing months of 2007. 

Source: S. Seitz

http://www.ri.cmu.edu/pubs/pub_5719.html
http://marsrovers.jpl.nasa.gov/gallery/images.html


Novel view synthesis

Inputs: sparsely sampled images of scene Outputs: new views of same scene

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al. ECCV 2020]



3D Reconstruction
Real-time stereo Structure from motion

NASA Mars Rover

Pollefeys et al.

Reconstruction from
Internet photo collections

Goesele et al.



What is it related to?

Machine learning
(Deep Learning)

Computer Vision

Neuroscience

Speech Information retrieval

Maths

Computer
Science

Biology

Information
Engineering

Physics

Robotics



The problem

Real world
scene

Sensing device Interpreting device Interpretation

A person/
A person with 
folded arms/ 
Prof. Pietro 
Perona/ etc.

•Want to make a computer understand images

• We know it is possible – we do it effortlessly!



The Human Eye
• Retina measures about 5 ×

5 cm and contains 108

sampling elements (rods 
and cones).

• The eye’s spatial resolution 
is about 0.01◦ over a 150◦
field of view (not evenly 
spaced, there is a fovea and 
a peripheral region).

• Intensity resolution is 
about 11 bits/element, 
spectral range is 400–
700nm.

• Temporal resolution is 
about 100 ms (10 Hz).

• Two eyes give a data rate 
of about 3 GBytes/s!



Human visual system

[Thorpe et. al.]

• Vision is the 
most powerful of 
our own senses.

• Around 1/3 of our brain is devoted to processing 
the signals from our eyes.

• The visual cortex has around O(1011) neurons. 



Vision as data reduction

• Raw feed from camera/eyes:
– 107-9 Bytes/s

• Extraction of edges and salient features
– 103-4 Bytes/s

• High-level interpretation of scene
– 101-2 Bytes/s



Why don’t we just copy 
the human visual system?

•People try to but we don’t yet have a 
sufficient understanding of how our visual 
system works.

•O(1011) neurons used in vision

•By contrast, latest CPUs have O(108) 
transistors (most are cache memory)

•Very different architectures:
- Brain is slow but parallel
- Computer is fast but mainly serial

•Bird vs Airplane
- Same underlying principles
- Very different hardware



Admin Interlude



Course details

• Lecture recordings on Brightspace
• Course webpage:

– http://cs.nyu.edu/~fergus/teaching/vision
• Piazza for discussions: 

– https://piazza.com/class/lm7352jomfb2k8
• Assignment submission

– NYU Brightspace

http://cs.nyu.edu/~fergus/teaching/vision
https://piazza.com/class/lm7352jomfb2k8


Location

• 19 Washington Place, Room 102

• Office Hours
– In person (+virtual): Thursday, 9pm onwards,

i.e. right after class.
• 19 Washington Place, Room 102



Class Teaching Assistants
Tutors:
• Rajeev Koppuravuri (rk4305@nyu.edu)
• Sriharsha Gaddipati (sg7372@nyu.edu)

Graders:
• Kranthi Kiran GV kranthi.gv@nyu.edu

Office hours to be announced (see website)

mailto:kranthi.gv@nyu.edu


What you need

• Access to a computer than can run 
PyTorch
– Open-source download

• GPU access: 
– Everyone should have been granted an NYU 

HPC account with Google Cloud access.
• If not, please email me….

– Class TAs will run a session showing you 
how to use. Please attend.



Pre-requisites

• Linear algebra
– https://www.coursera.org/learn/linear-

algebra-machine-learning
• Basic machine learning

– E.g. Andrew Ng’s Coursera course
• Coding in Python

– PyTorch experience useful

https://www.coursera.org/learn/linear-algebra-machine-learning


Textbooks

• Course does not use a textbook
• Deep Learning book (Goodfellow, Courville and 

Bengio)
– http://www.deeplearningbook.org/

• Lots of pretty good blogs

• Geometric vision:

Szeliski, R., Computer Vision. 
http://szeliski.org/Book/

Hartley, R. and Zisserman, A. Multiple 
View Geometry in Computer Vision, 
Academic Press, 2002.

http://szeliski.org/Book/


Grading

• Assignments (51%) + Course project (49%)

• Assignments on the course webpage are 
outdated: new ones will appear

• 3 assignments (51% of total)
• 1st = 17%.     [Object classification]
• 2nd = 17%     [Object Detection]
• 3rd = 17%    [3D computer vision]



Course Project
• Please choose by mid-October

– Require project abstract 
• Will put list of good project ideas up on 

Piazza
• Feel free to come up with your own!

– Come to office hours to discuss
• Work in pairs (3 in a pinch)

– Can use whatever platform you prefer
• Submit report + 2 min video instead of 

final exam. Due Monday December 18th.



Syllabus
• High-level vision

– Introduction to neural nets
– Convolutional nets (ConvNets)
– Object recognition
– Face recognition
– Video recognition

• Low-level vision
– Edge, corner, feature detection
– Stereo reconstruction
– Structure from motion, optical flow

• Other topics
– Image processing tasks
– Recurrent nets (images + text) 
– Generative models
– Unsupervised learning



What the course will NOT cover

• Biology relating to vision
– Go to CNS

• Huge detail on stereo reconstruction
– Cool topic, but could easily be course of its own

• How to capture & enhance images
– See Computational Photography course



Likely Deviations

• May have guest lecturers give some 
classes 



End of
Admin Interlude



Computer Vision: 
A whole series of problems

• What is in the image ?

- Object recognition problem 

• Where is it ?

- 3D spatial layout

- Shape

• How is the camera moving ? 

• What is the action ?



Object Recognition
• “Understand objects in image”

• Different tasks:

Classification:
Image contains bus (binary yes/no)

Detection:
Localize object instances

(bounding box or mask)

Semantic segmentation:
Label every pixel 



Image is a projection of world



An under-constrained problem



Stereo Vision

• By having two cameras, we can triangulate 
features in the left and right images to obtain 
depth.

• Need to match features 
between the two images:
– Correspondence Problem



Geometry:
3D models of planar objects

[Fitzgibbon et. al]
[Zisserman et. al. ]



Structure and Motion Estimation

Objective: given a set of images …

Want to compute where the camera is for each image and the 
3D scene structure:

- Uncalibrated cameras

- Automatic estimation from images (no manual clicking)



Example

Image sequence Camera path and points

[Fitzgibbon et. al]
[et. al. Zisserman]



Application: Augmented reality
original sequence



Augmented



DynamicFusion

https://www.youtube.com/watch?v=i1eZekcc_lM

https://www.youtube.com/watch?v=i1eZekcc_lM


Interpretation from limited cues



Shape from Shading

• Recover scene structure from shading in 
the image

• Typically need to assume:
– Lambertian lighting, isotropic reflectance



Shape from Texture

• Texture provides a very strong cue for inferring surface orientation 
in a single image. 

• Necessary to assume homogeneous or isotropic texture. 
• Then, it is possible to infer the orientation of surfaces by analyzing 

how the texture statistics vary over the image.



Human motion detection



Johansson’s experiments [‘70s]



Can you tell what it is?



Cameras & Image Formation

Slides from: F. Durand, S. Seitz, S. Lazebnik, S. Palmer



Overview
• The pinhole projection model

– Qualitative properties
– Perspective projection matrix

• Cameras with lenses
– Depth of focus
– Field of view
– Lens aberrations

• Digital cameras
– Types of sensors
– Color



Let’s design a camera

• Idea 1:  put a piece of film in front of an object

• Do we get a reasonable image?
Slide by Steve Seitz



Pinhole camera

• Add a barrier to block off most of the 
rays
– This reduces blurring
– The opening is known as the aperture

Slide by Steve Seitz



Pinhole camera model

• Pinhole model:
– Captures pencil of rays – all rays through a single point
– The point is called Center of Projection (focal point)
– The image is formed on the Image Plane

Slide by Steve Seitz



Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

What have we lost?
• Angles
• Distances (lengths)

Slide by A. Efros



Projection properties

• Many-to-one: any points along same visual 
ray map to same point in image

• Points → points
– But projection of points on focal plane is 

undefined
• Lines → lines (collinearity is preserved)

– But line through focal point (visual ray) 
projects to a point

• Planes → planes (or half-planes)
– But plane through focal point projects to line



Perspective distortion
• Problem for architectural photography: 

converging verticals

Source: F. Durand



Perspective distortion

• The exterior columns appear bigger
• The distortion is not due to lens flaws
• Problem pointed out by Da Vinci

Slide by F. Durand



Perspective distortion: People



Modeling projection

• The coordinate system
– The optical center (O) (aka focal point / center of projection) 

is at the origin
– Optical axis is in z direction
– The image plane is parallel to xy-plane (perpendicular to z axis) 

Source: J. Ponce, S. Seitz

x

y

z

f



Modeling projection

• Projection equations
– Compute intersection with image plane of ray from P = (x,y,z) to O
– Derived using similar triangles

),,(),,( f
z
yf

z
xfzyx ®

Source: J. Ponce, S. Seitz

• We get the projection by throwing out the last coordinate:
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Homogeneous coordinates

• Is this a linear transformation?

Trick:  add one more coordinate:

homogeneous image 
coordinates

homogeneous scene 
coordinates

Converting from homogeneous coordinates

• no—division by z is nonlinear

Slide by Steve Seitz
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divide by the third 
coordinate

Perspective Projection Matrix
• Projection is a matrix multiplication using 

homogeneous coordinates:
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divide by the third 
coordinate

Perspective Projection Matrix
• Projection is a matrix multiplication using 

homogeneous coordinates:
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In practice: split into lots of different coordinate transformations…

World to 
camera coord. 

trans. matrix
(4x4)

Perspective
projection matrix

(3x4)

Camera to 
pixel coord. 
trans. matrix 

(3x3)

=2D
point
(3x1)

3D
point
(4x1)



• Special case of perspective projection
– Distance from center of projection to image plane is 

infinite

– Also called “parallel projection”
– What’s the projection matrix?

Orthographic Projection

Image World

Slide by Steve Seitz



Building a real camera



Camera Obscura

• Basic principle 
known to Mozi (470-
390 BCE), Aristotle 
(384-322 BCE)

• Drawing aid for 
artists: described by 
Leonardo da Vinci 
(1452-1519) 

Gemma Frisius, 1558

Source: A. Efros



Home-made pinhole camera 

http://www.debevec.org/Pinhole/

Why so
blurry?

Slide by A. Efros

http://www.debevec.org/Pinhole/


Shrinking the aperture

• Why not make the aperture as small as possible?
– Less light gets through
– Diffraction effects…

Slide by Steve Seitz



Shrinking the aperture



Adding a lens

• A lens focuses light onto the film
– Rays passing through the center are not 

deviated

Slide by Steve Seitz



Adding a lens

• A lens focuses light onto the film
– Rays passing through the center are not deviated
– All parallel rays converge to one point on a plane 

located at the focal length f
Slide by Steve Seitz

focal point

f



Adding a lens

• A lens focuses light onto the film
– There is a specific distance at which objects are “in 

focus”
• other points project to a “circle of confusion” in the 

image

“circle of 
confusion”

Slide by Steve Seitz



Thin lens formula

f
DD’

Frédo Durand’s slide



Thin lens formula

f
DD’

Similar triangles everywhere!

Frédo Durand’s slide



Thin lens formula

f
DD’

y’
y

y’/y = D’/D

Frédo Durand’s slide



Thin lens formula

f
DD’

y’
y

y’/y = D’/D
y’/y = (D’-f)/f

Frédo Durand’s slide



Thin lens formula

f
DD’

1
D’ D

1 1
f+ = Any point satisfying the thin lens equation is in focus.

Frédo Durand’s slide



Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Slide by A. Efros

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm


How can we control the depth of 
field?

• Changing the aperture size affects depth of field
– A smaller aperture increases the range in which the object is 

approximately in focus
– But small aperture reduces amount of light – need to 

increase exposure
Slide by A. Efros



Varying the aperture 

Large aperture  = small DOF Small aperture = large DOF
Slide by A. Efros



Field of View

Slide by A. Efros



Field of View

Slide by A. Efros



f

Field of View

Smaller FOV = larger Focal Length
Slide by A. Efros

f

FOV depends on focal length and size of the camera retina



Field of View / Focal Length

Large FOV, small f
Camera close to car

Small FOV, large f
Camera far from the car

Sources: A. Efros, F. Durand



Same effect for faces

standardwide-angle telephoto

Source: F. Durand



Source: Hartley & Zisserman

Approximating an affine camera



Real lenses



Lens Flaws: Chromatic Aberration
• Lens has different refractive indices for 

different wavelengths: causes color fringing

Near Lens Center Near Lens Outer Edge



Lens flaws: Spherical aberration

• Spherical lenses don’t focus light perfectly
• Rays farther from the optical axis focus closer



Lens flaws: Vignetting



No distortion Pin cushion Barrel

Radial Distortion
– Caused by imperfect lenses
– Deviations are most noticeable near the edge of the lens



Digital camera

• A digital camera replaces film with a sensor 
array

– Each cell in the array is light-sensitive diode that converts photons to electrons
– Two common types

• Charge Coupled Device (CCD)
• Complementary metal oxide semiconductor (CMOS)

– http://electronics.howstuffworks.com/digital-camera.htm
Slide by Steve Seitz

http://electronics.howstuffworks.com/digital-camera.htm


CCD vs. CMOS
• CCD: transports the charge across the chip and reads it at one corner of the 

array. An analog-to-digital converter (ADC) then turns each pixel's value into a 
digital value by measuring the amount of charge at each photosite and 
converting that measurement to binary form

• CMOS: uses several transistors at each pixel to amplify and move the charge 
using more traditional wires. The CMOS signal is digital, so it needs no ADC. 

http://www.dalsa.com/shared/content/pdfs/CCD_vs_CMOS_Litwiller_2005.pdf

http://electronics.howstuffworks.com/digital-camera.htm

http://www.dalsa.com/shared/content/pdfs/CCD_vs_CMOS_Litwiller_2005.pdf
http://electronics.howstuffworks.com/digital-camera.htm


Color sensing in camera: Color filter array

Source: Steve Seitz

Estimate missing components 
from neighboring values
(demosaicing)

Why more green?

Bayer grid

Human Luminance Sensitivity Function



Demosaicing



Problem with demosaicing: color moire

Slide by F. Durand



The cause of color moire

detector

Fine black and white detail in image
misinterpreted as color information

Slide by F. Durand



Color sensing in camera: Foveon X3

Source: M. Pollefeys

http://en.wikipedia.org/wiki/Foveon_X3_sensorhttp://www.foveon.com/article.php?a=67

• CMOS sensor
• Takes advantage of the fact that red, blue and green 

light penetrate silicon to different depths

better image quality

http://en.wikipedia.org/wiki/Foveon_X3_sensor
http://www.foveon.com/article.php?a=67


Digital camera artifacts
• Noise

• low light is where you most notice noise
• light sensitivity (ISO) / noise tradeoff
• stuck pixels

• In-camera processing
• oversharpening can produce halos

• Compression
• JPEG artifacts, blocking

• Blooming
• charge overflowing into neighboring pixels

• Color artifacts
• purple fringing from microlenses, 
• white balance

Slide by Steve Seitz

http://www.dpreview.com/learn/?/key=noise
http://www.dpreview.com/learn/?/key=sharpening
http://www.dpreview.com/learn/?/key=blooming
http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration_01.htm


Historic milestones
• Pinhole model: Mozi (470-390 BCE), 

Aristotle (384-322 BCE)
• Principles of optics (including lenses):

Alhacen (965-1039 CE)  
• Camera obscura: Leonardo da Vinci 

(1452-1519), Johann Zahn (1631-1707)
• First photo: Joseph Nicephore Niepce (1822)
• Daguerréotypes (1839)
• Photographic film (Eastman, 1889)
• Cinema (Lumière Brothers, 1895)
• Color Photography (Lumière Brothers, 1908)
• Television (Baird, Farnsworth, Zworykin, 1920s)
• First consumer camera with CCD: 

Sony Mavica (1981)
• First fully digital camera: Kodak DCS100 (1990)

Niepce, “La Table Servie,” 1822

CCD chip

Alhacen’s notes


