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Problem with bag-of-words

e All have equal probability for bag-of-words methods

* Location information is important



Model: Parts and Structure




Representation

* Object as set of parts
— Generative representation

* Model:
— Relative locations between parts
— Appearance of part

e |Issues:
— How to model location
— How to represent appearance
— Sparse or dense (pixels or regions)
— How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]



History of Parts and Structure
approaches
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Leibe & Schiele 03, '04

Manv nanerce <ince 2000



The correspondence problem

« Model with P parts
* Image with N possible locations for each part

« NP combinations!!!




Sparse representation

+ Computationally tractable (10° pixels - 101 -- 102 parts)
+ Generative representation of class

+ Avoid modeling global variability

+ Success In specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes



Connectivity of parts

« Complexity is given by size of maximal clique in graph
« Consider a 3 part model
— Each part has set of N possible locations in image

— Location of parts 2 & 3 is independent, given location of L
— Each part has an appearance term, independent between parts.

Shape Model

Variables

Factors

Factor graph
S(L) [S(L,2)| |S(L,3)| [AL) |AR) |A(3)
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Different connectivity structures

Fergus et al. '03 Crandall et al. ‘05 Crandall et al. ‘05 Felzenszwalb‘&
Fei-Fei et al. ‘03 Fergus et al. '05 Huttenlocher ‘00
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e) Bag of features [10, 21] f) Hierarchy [4] g) Sparse flexible model
Csurka ‘04 Bouchard & Triggs ‘05 Carneiro & Lowe ‘06

Vasconcelos ‘00
from Sparse Flexible Models of Local Features
Gustavo Carneiro and David Lowe, ECCV 2006



How much does shape help?

Crandall, Felzenszwalb, Huttenlocher CVPR’05
Shape variance increases with increasing model complexity
Do get some benefit from shape

(a) Airplane, 1 fan
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Appearance representation

« SIFT « Decision trees
[Lepetit and Fua CVPR 2005]
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Generative part-based models

)

| L le'HU)“;

R. Fergus, P. Perona and A. Zisserman, Object Class Recognition by Unsupervised
Scale-Invariant Learning, CVPR 2003



http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf

Probabilistic model

P(image | object) = P(appearance, shape | object)

N

Part Part
descriptors locations

Candidate parts



Probabilistic model

P(image | object) = P(appearance, shape | object)




Probabilistic model

P(image | object) = P(appearance, shape | object)
= max, P(appearance | h,object) p(shape| h,object) p(h | object)

h: assignment of features to parts




Probabilistic model

P(image | object) = P(appearance, shape | object)

= maxh‘P(appearance | h, objectjp(shape | h,object) p(h | object)

High-dimensional appearance space

Distribution
over patch
descriptors



Probabilistic model

P(image | object) = P(appearance, shape | object)
= max, P(appearance | h, objectjp(shape| h, object)‘p(h | object)

Distribution
“ | over joint
. | part positions

2D image space
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Learning procedure

 Find regions & their location & appearance

* Initialize model parameters

« Use EM and iterate to convergence:
E-step: Compute assignments for which regions belong to which part

M-step: Update model parameters

 Trying to maximize likelihood — consistency in shape & appearance




Example scheme, using EM for
maximum likelihood learning

1. Current estimate of 6 2. Assign probabilities to constellations

Image 1 Image 2 \ Image |

3. Use probabilities as weights to re-estimate parameters. Example: p

)
new estimate of p




Learning Shape & Appearance

Fergus et al. ‘03

Log parameter change
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Efficient search methods

* Interpretation tree (Grimson '87)

— Condition on assigned parts to
give search regions for remaining
ones

*
— Branch & bound, A vsise 5 YIXTX] e ——




Results: Faces
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Results: Motorbikes and airplanes
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Parts and Structure demo

Gaussian location model — star configuration

Translation invariant only
— Use 15t part as landmark

Appearance model is template matching

Manual training
— User identifies correspondence on training images

Recognition

— Run template for each part over image

— Get local maxima - set of possible locations for each part
— Impose shape model - O(N?P) cost

— Score of each match is combination of shape model and
template responses.



Demo iImages

« Sub-set of Caltech face dataset
« Caltech background images




Demo Web Page

3 A simple parts and|structure object detector - Microsoft Internet Explorer, provided by Insight Broadband

File  Edit “iew Favorites Tools  Help

eBack - J |ﬂ @ ;j /:\J Search “E;:( Favorites 6‘3 [j':v :_\; [=] - _J ﬁ ﬁ
address |€| http: ) fpeople.csail, it eduifergusficcv 2005/ partsstructure, hitml
GDCngB'|reserve "bediing hotel" Vl |G| Search @ @IUD blocked | *5f Check - A5, Autolink + | EOptions & @reserve E

A simple parts and sttucture object detector

ICCV 2005 short courses on
Recognizing and Learming Object Categories

Ay intuittve weay to represent objects i as a collection of distinetive parts. Such schetnes model hoth the relattve positions of the parts as well as their appearanece,
grving 4 sparse representation that captures the essence of the object.

This simple detnn illustrates the concepts behind many such "parts and structure” approaches. For sitaplicity, training is ranally snided with the user hand-clicking
on the distinctrve parts of a fevr training Images. & sitnple rmodel is then built for use i recognition. Two different reeogration approaches are provided: one relying
on feature points [1]; the other using the efficient methods of Felzenswalb and Huttenlocher [2].

The code consists of Iatlab seripts (whach should rim under hoth Windowws and Linw). The Image Processing toolbox is regquired. The code is for teaching/research
purposes only. [ wou find a bug, please ernail me at fergus where csal point mit point edu.

Download

Download the code and datasets (24 Ilbtes)

Operation of code

To rn the deraos:

1 TTrmack the min file intn a newrr divertorer e o hovae naermarne Hernne




Felative location model
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Precision

ROC Curve, Area: 0.85186 OpP: 0.757589

Demo (4)
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Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)
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Distance transforms

e Felzenszwalb and Huttenlocher '00 & '05

« Distance transforms
— O(N?P) = O(NP) for tree structured models

 How it works
— Assume location model is Gaussian (i.e. e%)
— Consider a two part model with y=0, c=1 on a 1-D image

Model

X
I T T T T T T T T T T T T T T I > |mage pixel
{  Appearance log probability at x, for part 2 = A,(x;)

«f(d) = -d2

Log probability




Distance transforms 2

For each position of landmark part, find best position for part 2
— Finding most probable x; is equivalent finding maximum over set of offset

parabolas
— Upper envelope computed in O(N) rather than obvious O(N?) via distance

transform (see Felzenszwalb and Huttenlocher '05).
Add A, (x) to upper envelope (offset by u) to get overall probability map

——+—+——+—> Image pixel

Log probability




Admin

* Need to move next week’s class to Tuesday
/pm.
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Deformable Template Matching

Berg et al. CVPR 2005

b

:J:,.'x RS 3

&

Template Query

« Formulate problem as Integer Quadratic Programming
* O(NP) in general
« Use approximations that allow P=50 and N=2550 in <2 secs




Multiple views

 Full 3-D location model
 Mixture of 2-D models 100

Orientation Tuning

— Weber CVPR ‘00 95
Component 1 90|
A B Q 85
H o 801
B = j 2 »
C \ = 01
- N 65,
60
Component 2 55 1
= >0 0 26 46 66 86 160
% 4 angle in degrees 4
BB
_:’15“1‘ @ @
ALY .
Ay A C 2N Frontal Profile




Multiple view points

viewpoints

images

model L l l l
(codebook, % i

'

Hoiem, Rother, Winn, 3D LayoutCRF for Thomas, Ferrari, Leibe,

Multi-View Object Class Recognition and 'Cl;uytlel_a;ars, iChI\I/Ie llet" ﬁ‘/'.‘d Lb\é‘i‘” ¢
Segmentation, CVPR ‘07 0ol. fowards Mulu-view Ubjec

Class Detection, CVPR 06




Hierarchical Representations

Pixels = Pixel groupings =2 Parts = Object

Multi-scale approach

increases number of ZZZZZ27 2
low-level features ZZLZ2<Z1
ZZL 2222
1 €22 217 &
Amit and Geman ‘98 279 2222
Ullman et al. Z27 2217 2

Bouchard & Triggs '05

Zhu and Mumford - - ¥
Jin & Geman ‘06
Zhu & Yuille ‘07 2 r E

Fidler & Leonardis ‘07

Bt

Images from [Amit98]



Stochastic Grammar of Images

S.C. Zhu et al. and D. Mumford
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Context and Hierarchy in a Probabilistic Image Model
Jin & Geman (2006)

SRS SRS
%%%%%%%% %%%%%
R

Q&C&CPA

e.g. dlSCOﬂtIﬂUItIES,

e.g. Imelets,

\
“animal head instantiated by animal head instantiated by
tiger head bear head



A Hierarchical Compositional System

for Rapid Object Detection
Long Zhu, Alan L. Yuille, 2007.

e

) Top-down
\w* Processing . ]

Level 3 ""—'\

Level 2

Level 1| —we \ _o= B o= N o= e

Levelo| = = o &

Able to learn #parts at each level



Learning a Compositional Hierarchy of Object Structure

Fidler & Leonardis, CVPR’07; Fidler, Boben & Leonardis, CVPR 2008

Layer 4

category
specific
learning
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learningl ) 092200022000
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Parts model

The architecture

(a) (b)
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Figure 7. The first row depicts the final parts comprising Layer Il obtained for (a) Cliparts and (b)
Airplanes. The variances of position distributions of parts, relative to the central part, are depicted
in the middle. The feature probabilities are listed in the last row.

\
\
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Figure 8. (a) Examples of Layer 3 parts, (b) variances of positions of the surrounding subparts

/

Learned parts




Implicit shape models

* Visual codebook is used to index votes for
object position

visual codeword with
displacement vectors

training image annotated with object localization info

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical
Learning in Computer Vision 2004



http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Implicit shape models

* Visual codebook is used to index votes for

test image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical
Learning in Computer Vision 2004



http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Implicit shape models: Detalls

Original Image it Balnie Matched Codebook Pro\l;:z::lgstlc

\ s Entries

Voting Space
Segmentation ﬂ-s] > -.;ﬂ : % (continuous)
o it TN ROy >
Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical
Learning in Computer Vision 2004



http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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Object Detection with

Discriminatively Trained Part
Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan



Histogram of Gradient (HOG) features
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e Image is partitioned into 8x8 pixel blocks
e In each block we compute a histogram of gradient orientations
— Invariant to changes in lighting, small deformations, etc.

e Compute features at different resolutions (pyramid)



HOG Filters

e Array of weights for features in subwindow of HOG pyramid

® Score 1s dot product of filter and feature vector

p

HOG pyramid H

Filter F

Score of F at position p 1S

F-¢Q@, H)

¢(p, H) = concatenation of
HOG features from
subwindow specified by p



Dalal & Triggs: HOG + linear SVMs

N not pedestrian
w- f<0

pedestrian
we >0

>

There 1s much more background than objects
Start with random negatives and repeat:

1) Train a model

Typical form of 2) Harvest false positives to define “hard negatives™

a model



Overview of our models

® Mixture of deformable part models

® Each component has global template + deformable parts

® Fully trained from bounding boxes alone



2 component bicycle model
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root filters part filters deformation
coarse resolution  finer resolution models

Each component has a root filter F
and 7 part models (F;, vi, d;)



z = (po,..., Pn)
j:::!a po - location of root

P1,..., Pn - location of parts

: Score 1s sum of filter
HE: scores minus
— deformation costs
Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions



Score of a hypothesis

“data term” “spatial prior”

TL

score(pg, - . .y Pn) = ZF"" - o(H, p;)|— Zd (dz?, dy?)
=0 T T displacements

filters deformation parameters

score(z) = - V(H, z)

/N

concatenation filters and  concatenation of HOG
deformation parameters features and part
displacement features




Matching

e Define an overall score for each root location

- Based on best placement of parts

score(pg) = plnm.:;;; score(Po, ...y Pn ).

e High scoring root locations define detections
- “sliding window approach”™

e Efficient computation: dynamic programming +
generalized distance transforms (max-convolution)



input image

head filter

Response of filter in 1-th pyramid level

Ri(x,y) = F - o(H, (x,y,1))

cross-correlation

Transformed response

Di(@,y) = max (Ri(e +dz,y + dy) — d; (dz?, dy?))

max-convolution, computed in linear time
(spreading, local max, etc)




feature map at twice the resolution

response of part filters

response of root filter

transformed responses

color encoding of filter
response values

_ comblned score of
root locations



Training
e Training data consists of images with labeled bounding boxes.

® Need to learn the model structure, filters and deformation costs.




Latent SVM (MI-SVM)

Classifiers that score an example x using

() = max - -P(x.z
f'ﬁ(r) zglzri(g) (1' )

 are model parameters
z are latent values

Training data D= {r1,y1)y---s (Tn,Yn)) yi € {—1,

We would like to find 3 such that: vifz(xi) >0

Minimize
TL

1
Lp(3) = EH;&\P +C Y max(0,1— y; f5(x:))
1=1



Latent SVM training

T

1B]% + C’Z max (0,1 — y; f5(x:))
1=1

1

® Convex 1f we fiX z for positive examples
® Optimization:
- Initialize 3 and iterate:
- Pick best z for each positive example

- Optimize  via gradient descent with data-mining



v

Training algorithm, nested iterations
Fix “best” positive latent values for positives
Harvest high scoring (x,z) pairs from background images

Update model using gradient descent

v Trow away (X.z) pairs with low score

e Sequence of training rounds
- Train root filters
- Initialize parts from root

- Train final model
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Bottle model
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Person detections

high scoring false positives
(not enough overlap)

high scoring true positives




Horse detections

high scoring true positives

high scoring false positives




Cat detections

high scoring false positives
(not enough overlap)

high scoring true positives

At
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Quantitative results

e 7 systems competed in the 2008 challenge
e Out of 20 classes we got:
- First place in 7 classes
- Second place in 8 classes
e Some statistics:
- It takes ~2 seconds to evaluate a model in one image
- It takes ~4 hours to train a model

- MUCH faster than most systems.



Precision/Recall results on Bicycles 2008

— UoCTTIUCI (42.0)
LEAR_PlusClass (34.3)
Oxford (24.6)
CASIA_Det (14.6)
———— XRCE_Det (10.5)
MP|_struct (8.0)
Jena (1.4)




/Recall results on Person 2008

15101
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(11.2)

(9.0)

(2.5)

— XRCE_Det
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——— UoCTTIUCI (42.0)
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Summary

e Deformable models for object detection
- Fast matching algorithms
- Learning from weakly-labeled data

- Leads to state-of-the-art results in PASCAL challenge

e Future work:
- Hierarchical models
- Visual grammars

- AO* search (coarse-to-fine)




Discriminatively Trained Deformable Part Models

Version 4. Updated on April 21, 2010.

r the past few vears we have developed a complete learning-based system for detecting and localizing objects in images. Our system represents objects using
tures of deformable part models. These models are trained using a discriminative method that only requires bounding boxes for the objects in an image. The
roach leads to efficient object detectors that achieve state of the art results on the PASCAL and INRIA person datasets.

a high level our system can be characterized by the combination of

strong low-level features based on histograms of oriented gradients (HOG).

‘fficient matching algorithms for deformable part-based models (pictorial structures).
iscriminative learning with latent variables (latent SVM).

SCAT VOC "T fetime Achievement" Prize



