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Motivation

e Have access to © ~ pgatq(z) through training set

e Want to learn a model & ~ pyoger ()

o Want p,,04e1 to be similar to pggta:

Samples from true data

distribution have high

likelihood under p,,odei R

Samples drawn from

Pmoder  Teflect structure —;
Of Pdata B

Training examples
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Motivation

Why do generative modeling?

o Unsupervised representation learning
e Can transfer learned representation so discriminative tasks,
retrieval, clustering, etc.

Train network with both discriminative and generative
criterion
o Utilize unlabeled data, regularize

Understand data

Density estimation

Data augmentation
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Motivation

Focus of this talk

Generative modeling is a HUGE field...I will focus on (a
selected set of) deep directed models of natural images
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© Background
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Background

Directed graphical models

o We assume data is generated by:

zplz) o~ p(ef2)

e z is latent/hidden x is observed (image)

@ Use 6 to denote parameters of the generative model

Emily Denton Deep generative models of natural images



Background

Parameter estimation

e Given dataset {x1, ..., x,}, maximize likelihood of data
under model:

m@axiz; og p(z;;0) mgx;zzz og p(x;, z;0)

o This quantity often intractable, difficult to optimize
directly

e Can be optimized with iterative Expectation Maximization
(EM) algorithm
o Fix parameters and compute log likelihood wrt p(z|z; 6?)
o Fix z find parameters #+1) to maximize log likelihood
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Background

Parameter estimation

Standard EM requires access to
posterior p(z|z)

For the deep neural net models we
care about this is infeasible

@ Solution: introduce variational
approximation ¢(z; @) to p(z|x)

Will give bound on log likelihood

OOOOOQ) =

@00

w®
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Background

Bounding the marginal likelihood

Recall Jenson’s inequality: When f is concave, f(E[x]) > E[f(z)]

logp(z) = log / p(z, 2)

i [ o)

= log /Z q(2) 02)

> /ZQ(Z) log pf‘;?z)Z) = L(SU; 0, 925) (by Jensons inequality)
= /q(z) log p(x, z) —/q(z) log q(2)

= Eq(2 [log p(z, 2)] +H(q(2))
———

Expectation of joint distribution Entropy
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Background

Bound is tight when variational approximation matches true
posterior:
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Background

Summary

o Assume existence of ¢(z; @)
e Bound log p(z;0) with L(x;0, ¢)

e Bound is tight when:

Dkr(q(z;9)llp(2]x)) =0 <= q(2;¢) = p(z|x)
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Background

Learning directed graphical models

Maximize bound on likelihood of data:

N N
max logp(x;;0) > max L(z;; 0, ¢,
0 ; gp(i; 6) 0.61,m08 (z::6, 64)

o Historically, used different ¢; for every data point
e But we’ll move away from this soon..

o Can still use EM style algorithm to iteratively optimize

e For more info see Blei et al. (2003)
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Background

New method of learning: approximate inference model

o Instead of having different variational parameters for each
data point, fit a conditional parametric function

@ The output of this function will be the parameters of the
variational distribution ¢(z|z)

e Instead of q(z) we have g4(z|z)

o ELBO becomes:

L(z;0,9) = Eg(zo)llogpe(z,2)]  +H(gs(2[2))
~~ I —
Expectation of joint distribution Entropy
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Variational autoencoders

. Autoregressive mode

ent algorithms P i
° Generative adversarial networks

Generative moment matching networks

Outline

© Recent algorithms
@ Variational autoencoders
e Autoregressive models
@ Generative adversarial networks
e Generative moment matching networks
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ional autoencoders
. ive models
Recent algorithms .
S Generative adversarial networks
Generative moment matching networks

Variational autoencoder

e Encoder network maps from 2~ 4,1

image space to latent space .I. .I. [’I. .I.]

e Outputs parameters of
q9(2|7)

Encoder/ Decoder/
Inference network Generative network

@ Decoder maps from latent
space back into image space

o Outputs parameters of ’I. ’I’ [.I. ’I.]

po(]2)

x pg(x|z)

[Kingma & Welling (2013)]
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Variational autoencoders
ssive models
adversarial networks
ing networks

Example

e FEncoder network outputs z~q,z|x)

mean and variance of Normal
distribution .I. .I. [.I. ’I’]

o 4o(2[x) = N(pg(x), 04 (x))

Encoder/ Decoder/
Inference network Generative network

o Decoder network outputs
mean (and optionally
variance) of Normal

distribution [’I. .I.]

o po(z]z) = N(MO(Z)aI) X~ p,(x|2)

[Kingma & Welling (2013)]
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gorithms

Variational autoencoder

o Rearranging the ELBO:

(z, 2)

L(x;0,0) = /Q(Z\x) log 2

: q(z|x)
— | ool 10 PE2)P(2)
_/zq< ) log q(z|v)
= z|x) log p(x|z Z|T) 10 o
= [atetaosptals) + [ ateloiop 22

q(z|z)
=E (12 logp(z|z) —E, (.12 lo
atel) 108 P(]2) = Eq(efe) log = o3

— B e log p(212) — D (a(=12)]Ip(2))

Reconstruction term Prior term
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Var ntlonal autoencoders
)¢

Recent algorithms

( nerative momse nl matc hm networks

Variational autoencoder

z~ q¢(z|x)

o Inference network outputs .I. .I. (.I. .I.]

parameters of gy (z|x)

Encoder/ Decoder/
Inference network Generative network

o Generative network outputs
parameters of pg(z|z)

) ([OOOO

o Optimize 6 and ¢ jointly by X~p.(x|2)

maximizing ELBO:

L(;0,¢) = Eq(z0) log p(2|2) — Drer(q(z]2)]p(2))

Vv vV
Reconstruction term Prior term
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Variational autoencoders

Autor ssive models

Generative adversarial networks
Generative moment matching networks

Stochastic gradient variation bayes (SGVB) estimator

e Reparameterization trick : re-parameterize z ~ gy(2|x) as
z = gg(x,€) with € ~ p(e)
e For example, with a Gaussian can write z ~ N (i, 02) as

2= pu+ e with e ~ N(0,1)

[Kingma & Welling (2013); Rezende et al. (2014)]
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Variational autoencoders

Autor ssive models

Generative adversarial networks
Generative moment matching networks

Stochastic gradient variation bayes (SGVB) estimator

L(x; Ha ¢) = Eq(z\m) Ing(x’Z) - DKL(Q(Z’$)|’])(Z)Z

' Vv
Reconstruction term Prior term

o Using reparameterization trick we form Monte Carlo
estimate of reconstruction term:

Eq, (z12) log po(z]2) = Ep (o) log po(z]gg (2, €))
| L
I Z log po(z|gs(x,€)) where € ~ p(e)

=1

R

o KL divergence term can often be computed analytically
(eg. Gaussian)
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Variational autoencoders
Autoregressive mod
Generative advers 1 networks

Recent algorithms

Generative moment matching networks

VAE tradeoffs

@ Pros:
o Theoretically pleasing
o Optimizes bound on likelihood
e Easy to implement
o Cons:
e Samples tend to be blurry
o Maximum likelihood minimizes Dx 1 (Pdata||Pmodel)

Data KLD

[Theis et al. (2016)]
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Variational \\Httll(4xl4 S
Autoregressive m

Generative advers networks
Generative moment matching networks

Recent algorithms

Autoregressive models

o Tractably model a joint distribution of the pixels in the
image

o Learn to predict the next pixel given all the previously
generated pixels

e Joint distribution of all pixels just product of conditionals:

p(x) = Hp($i|l‘1, ey Ti—1)

Emily Denton Deep ge i 0 of natural images



Variational autoencoders

AU':OY yressive mo

Generative adversarial networks
Generative moment matching networks

Autoregressive models: NADE

@ Recently gained popularity
with Neural Autoregressive
Density Estimator (NADE)

o Basic idea: use neural network
to implement conditional
probability functions

[Larochelle & Murray (2011)]
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Variational autoencoders
ssive mod
e adversarial networks
srative moment matching networks

Recent algorithms

NADE samples
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[Larochelle & Murray (2011)]
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al autoenco ders
emmleh
wdversarial networks
renerative moment matching networks

Recent algorithms

Autoregressive models: PixelRNN

@ Use 2 dimensional RNN to model conditional probabilities

o More powerful model, still easy to train

occluded completions original

Van den Oord et al. (2016)]
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Variational autoencoders
Autoregressive models

Generative adversarial networks
Generative moment matching networks

Recent algorithms

PixelRNN samples
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Variational autoencoders
. Autoregressive mo
Recent algorithms . er
S Generative advers 1 networks

Generative moment matching networks

Autoregressive tradeoffs

@ Pros:

e Tractable and exact likelihood
e Simple maximum likelihood training

@ Cons:

o Inefficient sampling
e No obvious way to get latent representation of image
e Same issue of blurry samples due to optimizing log

likelihood obiective
Data KLD

[Theis et al. (2016)]
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Variational autoencoder

Autore sive mode

Genera adversarial networks
Generative moment matching networks

ent algorithms

Generative adversarial networks

Z ™ Py

e Don’t focus on optimizing [.I. .I.]

p(z), just learn to sample

Generative
network

o Two networks pitted
against one another: x~p,

o Generative model G % [.I‘.I.]

captures data
distribution
e Discriminative model D ‘ Discriminative ‘ ‘ Discriminative ‘
L. . network network

distinguishes between

real and fake samples
D tries to D tries to
output 0 output 1

[Goodfellow et al. (2014)]
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Variational autoencoders

Autor ive models

senera adversarial networks
Generative moment matching networks

Recent algorithms

Generative adversarial networks

e D is trained to estimate the probability that a sample
came from data distribution rather than G

o (G is trained to maximize the probability of D making a
mistake

min max Eorpiatacey 108 D(@) + Eonp, oo l0g(1 — D(G(2)))
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Variational autoencoders
. Autor ive models
Recent algorithms . , S ~
S senera adversarial networks
Generative moment matching networks

Generative adversarial networks

mGin max Eorpuatacey 108 D(@) + Eonp oo l0g(1 — D(G(2)))

o Resembles Jensen-Shannon divergence
o Alternating optimization procedure
e Training can (and often is) very unstable

e No obvious objective criterion to track during training

of natural images
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Variational autoencoders

Conditional generative adversarial networks

@ Can extend to case where both networks receive additional
vector y (e.g. class label) of information:

e D now has to determine (i) if sample is real and (ii)
correspondence

mén ml:)ix E:v7y~pdam(z,y) log D(z,y) +
Esznoise(z)vprnoise(y) log(l - D(G(Z7 y)’ y))

[Mirza & Osindero, 2014; Gauthier, 2014]
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Variational autoencod

Autore ssive mod

senerative adversarial net s
Generative moment matching networks

rorithms

Conditional generative adversarial networks

z~ pnoise(z) y-~ pdala(y)

OO

Generative
network

XY~ Diaa 6 Y)

X Yy

+ (00O0 OO OO

Discriminative Discriminative
network network
D tries to D tries to
output 0 output-1
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Recent algorithms 3 5
8 Generative adversarial networks

GAN samples (original paper)

BE S
W i

CIFAR-10 (fully connected) CIFA -10 (convolutional
[Goodfellow et al. (2014)]
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Variational autoencoders

o Radford et al. (2016) propose several tricks to make GAN
training more stable
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Variational autoencoders
Autoregressive models

senerative adversarial networks
Generative moment matching networks

Recent algorithms

DCGAN vector arithmetic

= <f =
4 ==
man woman
with glasses without glasses without glasses

woman with glasses
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Variational autoencoc

Autoreg sive mod

o ; I -

renera adversarial networks
Generative moment matching networks

Recent algorithms

GAN tradeoffs

@ Pros:

e Very powerful model
e High quality samples

@ Cons:

o Tricky to train (see: https://github.com/soumith/ganhacks )
o Can ignore large parts of image space

Data KLD JSD

[Theis et al. (2016)]
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iational autoencoders
ive mod
rerative adversarial networks
Generative moment matching networks

Recent algorithms

Generative moment matching networ

o Same idea as GANSs, but
different optimization method Z~ Pyoise()

OO0

\ 4
Generative
network

@ Match moments of data and
generative distributions

o Maximum mean discrepancy

o Estimator for answering
whether two samples come
from same distribution

y
o Evaluate MMD on generated (‘I‘ ‘I‘]

samples A

[Li et al. (2015); Dziugaite et al. (2015)]
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Variational autoencoders

Autor ssive models

Gener e adversarial nets

Generative moment match networks

Generative moment matching networks

Laor = Il D280 = 3 > ()
= % ; ;¢(ZEZ)T¢($1”) - # ; ;qﬁ(xj) B(z;)
- o 2 =100 )

@ Can make use of kernel trick

@ If ¢ is identity, then matching means

@ Complex ¢ can match higher order moments
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Variational autoencoders

Recent algorithms

GMMN samples

(b) GMMN TFD samples

7..“1!3

=
RS

(c) GMMN+AE MNIST samples  (d) GMMN+AE TFD samples
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Variational autoencoc

Autoregressive mod

Generative advers 1 networks
Generative moment matching networks

Recent algorithms

o Pros:
o Theoretically pleasing
o Cons:

e Batch size very important
e Samples aren’t great (get better when combined with
autoencoder)

Data KLD MMD JSD

[Theis et al. (2016)]
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iational autoencoders
ive models
rerative adversarial networks
Generative moment matching networks

Recent algorithms

e Models that optimize log likelihood (VAEs, autoregressive)
tend to put density where there is none

e Results in blurry samples

e Models that optimize JS divergence (GANs) or MMD
(GMMNs) have mode seeking tendencies

o Results in crisp samples at expense of missing some of data
space

@ GANSs currently produce best visual samples, but difficult
to train
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Evaluating generative models

Outline

@ Evaluating generative models
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Evaluating generative models

Evaluating a generative model: log likelihood

o Has generally been default criterion

o Makes sense when goal is density estimation

o Many approaches don’t have tractable likelihood or it isn’t
explicitly represented

o Have to resort to Parzen window estimates (Breuleux et al.
, 2009) ... can be meaningless in high dimensional spaces

@ Model can have poor log-likelihood and good samples (and
vice versa)
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Evaluating generative models

Evaluating a generative model: sample quality

o If goal is image synthesis, this makes more sense

o How how to get objective measure of perceptual quality?

o Human experiments

o Look at responses from pretrained imagenet network
(Salimans et al. , 2016; Augustus Odena, 2016)

e Measure diversity in samples

e But a lookup table of training images will succeed here,
need to be careful about memorizing
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Evaluating generative models

How to evaluate a generative model?

Log likelihood on held out data

Quality of samples

o Best: evaluate in context of particular application

See Theis et al. (2016) for more details
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e models
e-to-image models
may

5 . o generation
Extensions ’

Outline

© Extensions
@ Image models
o Image-to-image models
o Text-to-image models
@ Video generation
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Extensions

DRAW: Deep Recurrent Attentive Writer

Basic idea:
@ Recurrent encoder and

o Iteratively construct image decoder

@ Observe image through

; o Optimizes variational
sequence of glimpses

bound
Ct—l—vct—-ir:ti\—» ... ~cr-{o}-P(z|21.7)
e e Attention mechanism
2 e secocing determines:
[sample sample | (generative model) .
encoding e Input region observed by

Q(zt|z, z1:0-1) \ Q(Z‘t+l‘zs21:t) (inference) d
i A .

il o Output region modified

*if"— foed by decoder

&xr xT

[Gregor et al. (2015)]
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Image modc‘lx

Extensions

DRAW samples

50 e 55 ' A 0 FEEEESL Eial
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Extensions

Laplacian pyramid of generative adversarial networks

o Generate images in coarse-to-fine fashion

e Train conditional GAN on each scale, afterwards chain
together

"TELL

[Denton et al. (2015)]
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Image models
e-to-image models
to-image models

Video generation

Extensions

Laplacian pyramid of generative adversarial networks

B~

N @ Real/
z; 1; Generated

Real/

Generated?

Real/Generated?

k Real/Generated?
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Image models
Image-to-image models
Text-to-image models

o . Video generation
Extensions =

Laplacian pyramid of generative adversarial networks

o

- F [
'-""5 ‘c

f
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) s Video generation
Extensions ’

Conditional image synthesis with auxiliary classifier GANs

e Have discriminator not only fake) ()
predict real/fake but also classify
images form 1 of k classes

e Condition generator on 1-hot
encoding of class

(Xreawrtdat)  ( Xpape )

e On Imagenet, train 100 different
models each on 10 classes

[Augustus Odena (2016)]

Emily Denton Deep generative models of natural images



Image models
Image-to-image models
Text-to-image models

o . Video generation
Extensions -

Conditional image synthesis with auxiliary classifier GANs

monarch butterfly fi Y redshank
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models
nodels

) s Video generation
Extensions ’

Synthesizing preferred inputs for neurons in n.n via deep generator nets

@ Generator G maps pre-trained classifier features to images (Dosovitskiy &
Brox, 2016)
o Combined pixel mse, feature mse and adversarial loss

@ Optimize latent code to find image that highly activates specified class
@ Not generative model (no prior over latent space, no implicit density
model, no sampling procedure)

Code Image
: : Forward and backward passes

\J\ ﬁi_ H H D — dl
= banana
\ o4 \ cs . '

== convertible

fcé upconvolutional convolutional fc8
v J fc6 fc7

T
Deep generator network . )
(prior) DNN being visualized

[Nguyen et al. (2016Db)]
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Image mod
1ge-to-image models
i models

N s Video generation
Extensions

Synthesizing preferred inputs for neurons in n.n via deep generator nets

lipstick brambling Jef beetle

broom cellphone aircraft carrier entertainment ctr jean

f natural imag



Image models
-to-im
ima models
Video generation

Extensions

Plug & Play Generative Networks

@ Turn activation maximization model into generative model
@ Synthesized images are diverse and high quality

@ DAl Image classifier @ PPGN-h

Image classifier

o n—[__g_]—x—@g

P
h—| &
a5l

classes
classes

(a) Real: top 9 (c) Real: random 9 (d) PPGN (this)

[Nguyen et al. (2016a)]
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Image models
e-to-image models
to-image models

5 . Video generation
Extensions

Plug & Play Generative Networks

redshank ant monastery

ral imag



models

Extensions

Plug & Play Generative Networks

e Can plug in image captioning network instead of classifier (left)
e Can use different classifier from one generator was trained on (right)

a red car parked on the side of a road a blue car parked on the side of a road G
artstudio  shopfront

‘someone s just about 1o “g

banquet hall canyon restaurant  residential area cottage garden

Figure 4: Images synthesized conditioned on MIT Places
oranges on a fable next o a liquor bottle  a pile of oranges st [62] classes instead of ImageNet classes.
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Extensions

Image-to-Image translation with conditional adversarial ne

Pasitiy .
Feal or faxe pair? |

Real or fake pair?
%
. |
*

D

G lries to synthesize fake
images that fool D T
D rries o identify the fakes o

U-Net

[Isola et al. (2016)]
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Image models
Image-to-image models
Text-to-image models

o . Video generation
Extensions -

Image-to-Image translation with conditional GANs

Facade labels — photos:

Ground truth Ground truth

W llu.ul Mun i)

AU R g F 1L L LT
umu_gﬁ el i
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Image models
Image-to-image models
Text-to-image models

o . Video generation
Extensions

Image-to-Image translation with conditional GANs

Day — night:

s

Input Ground truth Input ] Gmund truth
1 o h
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Image models
Image-to-in models
X -image models

5 . generation
Extensions

Image-to-Image translation with conditional GANs

Edges — handbags:

Ground truth Output Ground truth Output
y ra

Emily Denton sep generati 0 of natural images



Image models
-to-image models
-image models

5 . generation
Extensions

Generative adversarial text to image synthesis

e Conditional GAN model
e Generation conditioned on text features encoded by a hybrid
character-level recurrent convnet neural network.

This flower has small, round violet . This flover has small, round violet
petals with a dark purple center &= G(z,9(t)) petals with a dark purple center
o0
\f./

U -

Generator Network

Discriminator Network
[Reed et al. (2016a)]
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image models

Video generation

Extensions

Generative adversarial text to image

1s

Caption

Image

a pitcher is about to throw the ball to the batter

a group of people on skis stand in the snow

a man in a wet suit riding a surfboard on a wave

Emily Denton e nerative m

of natural imag;




models

image models
Text-t nage models
Video generation

Extensions

Generative a ial text to image synthesis

Caption

this vibrant red bird has a pointed black
beak

this bird is yellowish orange with black
wings

the bright blue bird has a white colored
belly

Emily Denton Deer nerative mo of natural image:



GT

a group of &
people on skis | gh
standonthe

snow.

a table with

food and
drinks

two giraffe
standing next
to each other
in a forest

alarge blue
octopus kite
flies above
the people
having fun at
the beach.

ixtensions

Image modc
Image-to-image models
Text-to-image models
Video generation

arial text to image synthesis

¥ suit riding a
surfboard on a
., wave.

guacamole and
rice.

agreen plant
that is growing
out of the

horse in the
grassy field.

GT

a pitcher is
about to throw
the ball to the
batter.

apiewreota googl]

very clean
living room.

a toilet in a small
room with a
window and
unfinished walls.

of natural

mages



Image models
Image-to-image models
Text-to-image models

Extensions Video generation
Learning what and where to draw
g a ra o A o ore o O A
C O
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Image models
Image-to-image models
Text-to-image models

o . Video generation
Extensions -

Learning what and where to draw

Conditioning on location improves image quality

Ground-
truth image
and text
caption

GAN-INT-CLS
(Reed et. al,
2016b)

points

GAWWN
Key points
given

GAWWN
Key points
generated

A small sized bird that - L

has tones of brown and This bird has a yellow
dark red with a short "N breast and a dark grey
stout hill

The bird is solid black with
white eyes and a black
beak.

Emily Denton Deep generative models of natural images



Text-to-image models
Video generation

Extensions

Video pixel networks

e Extension of autoregressive model to video

30 30 g0 g0
303030 g0

30 30 3‘310
9y 94 94 94 qy 94 94 99 39 94

19 19
t9 19

19191919

[Kalchbrenner et al. (2016)]
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Image models
Image-to-image models
lext-to-image models

N . Video generation
Extensions

Video pixel networks

tﬁﬂ?&?@ r?rgr:@ o
S e

AT NN TN TN

[Kalchbrenner et al. (2016)]

Emily Denton Deep generative models of natural images



Image models

Extensions Video generation

Generating videos with scene dynamics

o Two-stream generative adversarial network model
e Foreground and background modeled separately

Foreground Stream
b e
Foreground
" S eh
N, v N 3
N - .
Noise m® f+(1-m) @b
< IEEE—
T, Sy,
b )
- Miask
A W Sgmaid Generated Video
iy, | Space-Time Coboid
™ -

Rezicate sver Time

Background Stream ¢
20 comelutions oy, Background
y Tann

[Vondrick et al. (2016)]
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Extensions

Generating videos with scene dynamics

Background Foreground Generation Background Foreground Generation
) —

* J"‘
S .. =)
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Image mode

ge models

Extensions

Generating videos with scene dynami

Beach Generated Videos Golf Course Generated Videos
Frame 1 Frame 16 Frame 32 Frame 1 Frame 16 Frame 32

Train Station Generated Videos Hospital / Baby Generated Videos
Frame 1 Frame 16 Frame 32 Frame 1 Frame 16 Frame 32
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