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Specific Object Recognition

Slides from S. Savarese, D. Lowe and F. Rothganger
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Single 3D object recognition
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Where Is the crunchy nut?




Challenges:

* Variability due to:

— View point
— lllumination

— Occlusions

— But not intra-class variation



Recognition of single 3D objects

-Representation

-Features

-2D/3D Geometrical
constraints

-Model learning

-Recognition

-Hypothesis generation

-Validation

Rothganger et al. '04, '06
Brown et al, ‘05

Lowe ‘99, ‘04
Ferrari et al. '04, ‘06
Lazebnick et al '04



Representation

Interest points  -- or Regions (group of interest points)

» Detection
*Difference of Gaussian (DOG) [Lowe "99]
*Harris-Laplacian [Mikolajczyk & Schmid '01]
*Kadir-Brady [Kadir et al. ‘01]
*Laplacian [Garding & Lindeberg, ‘96]



Difference of Gaussian (DOG): used in Lowe 99, Brown et al ‘05
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Representation

Interest points  -- or Regions (group of interest points)
« Detection
*Difference of Gaussian (DOG) [Lowe "99] * X,y
*Harris-Laplacian [Mikolajczyk & Schmid '01] > *Scale

-Kadir-Brady [Kadir et al. ‘01] *Orientation
*Laplacian [Garding & Lindeberg, ‘96] *Affine structure



Adaptation

« keypoints are transformed in order to be
Invariant to translation, rotation, scale, and
other geometrical parameters

N

Change of scale, pose, illumination...

amo " Jo Asaunon




Scale & orientation adaptation

[used in Lowe "99]

.X,y
detector =) .sScale

*Orientation

« SIFT: Create histogram of
local gradient directions
computed at selected scale

« Assign canonical orientation
at peak of smoothed
histogram
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Affine adaptation

[used in Rothganger et al. ‘03, ‘06]
[Lazebnick et al '04]

1. Define elliptical region using second moment matrix
2. Use main canonical orientation to remove orientation ambiguity
3. Map ellipsis onto unit square

View 1 View 2
/ ‘ ' !
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Representation

-- or Regions (group of interest points)

« Description
SIFT
*Color histograms



Keypoint description

[Lowe "99]
« Thresholded image gradients are sampled over 16x16 array of
locations in scale space
« Create array of orientation histograms
« 8 orientations x 4x4 histogram array = 128 dimensions

» <L >
L - »

Image gradients Keypoint descriptor



Representation

Interest points  -- or Regions (group of interest points)

« Detection
*Difference of Gaussian (DOG) [Lowe '99]
*Harris-Laplacian [Mikolajczyk & Schmid '01]
*Kadir-Brady [Kadir et al. ‘01]
*Laplacian [Garding & Lindeberg, ‘96]

« Adaptation [invariants]
*Scale, rotation
*Affine

« Description
*SIFT
*Color histograms



Object representation:
2D or 3D location of key points

[Lowe '99] Rothganger et al. '06
" » 4{;;; : X’y’ Z +
Y g h,v +
descriptor
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Basic scheme

-Representation

-Features
-2D/3D Geometrical constraints

-Model learning

-Recognition

-hypothesis generation

-validation



MOdG' |eal'ning Rothganger et al. ‘03 '06

|2 )2 Jabuebyjoy jo Asapno)




Model learning rongangereta. o3 0s
Build a 3D model:

* N images of object from N
different view points

* Match key points between
consecutive views
[ create sample set]

- Use affine structure from m.otion to « Affine factorization Tomasi & Kanade '92
compute 3D location and orientation + « RANSAC
camera locations * 2 matches are needed rather than 4

thanks to affine invariant patches



MOdel Iea rn i ng Rothganger et al. ‘03 '06
Build a 3D model:

mages of obje om N
different view poin
| ke nts betwee
1SEeCl e EeWS
reate e set]
S e structure from ! Affine v
ute 3D locati nd e RANSA
_[ A ‘/—; I 2 -T -~ ~a ~ ~ Z
* Find connected components
n

« Use bundle adjustment to refine model E=Y Y|8;— MN;|%,
i=l1 ‘Z'EIj
- Upgrade model to Euclidean assuming ] '

zero skew and square pixels




Lea rnt mnmo d e I S Rothganger et al. ‘03 '06
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Learnt models
[Lowe '99]




Basic scheme

-Representation

-Features
-2D/3D Geometrical constraints

-Model learning

= Recog n |t|0n [object instance from object model]

-hypothesis generation

-Model verification




Recognition

Goal: given a query image |, identify object model in
the image | (match learned model to |)

- Generate hypothesis

 Verify hypothesis

« Select hypothesis with lowest fitting error
« Generate recognition results



Recognition

[Rothganger et al. ‘03 '06]

J

1. Find matches between model and test image features



Recognition

[Rothganger et al. ‘03 "06]

1. Find matches between model and test image features
2. Generate hypothesis:

«Compute transformation M from N matches (N=2; affine camera; affine key points)

3. Model verification

« Use M to project other matched 3D model features into test image
« Compute residual = D(projections, measurements)



Recognition

[Rothganger et al. ‘03 '06]

Goal:
Estimate (fit) the best M in presence of outliers



Recognition

Goal: given a query image |, identify object model Iin
the image | (match learned model to |)

- Generate hypothesis

» Verify hypothesis

» Select hypothesis with lowest
fitting error

» Generate recognition results

query



Recognition

Goal: given a query image |, identify object model in
the image | (match learned model to |)

- Generate hypothesis

» Verify hypothesis

» Select hypothesis with lowest
fitting error

» Generate recognition results

query

Verification: The hypothesis generates low
fitting error



Recognition

Goal: given a query image |, identify object model Iin
the image | (match learned model to |)

- Generate hypothesis

» Verify hypothesis

» Select hypothesis with lowest
fitting error

» Generate recognition results

query

Verification: The hypothesis generates high
fitting error



Initial matches based
on appearance

Object to recognize

Matches verified with
geometrical constraints Recovered pose

|e }2 1abuebyoy Jo Asauno)



Basic scheme

-Representation

-Features
-2D/3D Geometrical constraints

Let’'s see some
results!

-ReCOQ n ItIOI‘l [object instance from a single image]

-hypothesis generation

-Model learning

-Model verification



3D Object Recognition results

Rothganger et al. ‘03 '06

|e 1o Jabuebyjoy Jo Asapnon

Handle severe clutter



3D Object Recogmtlon results .. o o
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Handle severe occlusions
Fast!




3D Object Recognition results

[Ferrari et al '04]

model view |

test image

| Jo uenad Jo Asapno))

model view 8

Figure 17: Two comparnible (and correct) GAMs. The nose GAM
(black) is initially maiched from moadel view 8, and is rransferved
to model view 1. Notz how the other GAM (white) is very laige
and covers the head, arms and chest. 4 GAM can extend over
multiple jacets when the combination of viewpoints and suiface
orientations make the affine transformations of the region matches
vary smoothly even across facet edges. In there cases, the resulting
GAMs are larger and therefore more reliable and reievant.



3D Object Recognition results

Edward Hsiao, Alvaro Collet and Martial Hebert. Making specific features less discriminative to improve point-
based 3D object recognition. |[EEE International Conference on Computer Vision and Pattern Recognition
(CVPR), June, 2010.




Google Goggles

http://www.google.com/support/mobile/bin/answer.py ?hl=en&answer=166331

Google Goggles

by Google
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Overview

* Specific Object Recognition
— Lowe ‘04
— Rothganger et al. ‘03

* Face Dectection
— Sub-space methods
— Neural Network-based approaches
— Viola & Jones

* Face Recognition



Face Detection & Recognition

Slides from
P. Viola, S. Lazebnik, A. Torralba



Face detection




Face detection and recognition

Detection Recognition > “S3|ly”
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http://www.apple.com/ilife/iphoto/




Consumer application: iPhoto 2009
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http://www.maclife.com/article/news/iphotos faces recognizes cats




Challenges:

* Variability due to:

— Intra-class variation (but fairly small)
— lllumination

— Occlusions (eyeglasses, facial hair, hair)

— Fairly limited viewpoint (frontal, profile)



Practical Challenges of face detection

e Sliding window detector must evaluate tens of
thousands of location/scale combinations

e Faces are rare: 0—10 per image

— For computational efficiency, we should try to
spend as little time as possible on the non-face
windows

— A megapixel image has ~10° pixels and a
comparable number of candidate face locations

— To avoid having a false positive in every image
image, our false positive rate has to be less than
10®



Overview

* Specific Object Recognition
— Lowe ‘04
— Rothganger et al. ‘03

* Face Dectection
— Sub-space methods
— Neural Network-based approaches
— Viola & Jones

* Face Recognition



Subspace Methods

PCA (“Eigenfaces”, Turk and Pentland)
PCA (Bayesian, Moghaddam and Pentland)
LDA/FLD (“Fisherfaces”, Belhumeur &
Kreigman)

ICA



Principal Component Analysis

 Given: N data points x, ... ,xy in R¢

 We want to find a new set of features that are
linear combinations of original ones:

u(x;) = u'(x;— p)
(M: mean of data points)

« What unit vector u in R? captures the most
variance of the data?



Principal Component Analysis

« Direction that maximizes the variance of the projected data:
1 N

var(u) = < > ut(x — ) (x; = )’

T Y,
1 '

Projection of data point

= [ - s~

—1
l W,

V
Covariance matrix of data
= u Xxu

The direction that maximizes the variance is the eigenvector
associated with the largest eigenvalue of 2



Eigenfaces: Key idea

« Assume that most face images lie on
a low-dimensional subspace determined by
the first k (k<d) directions of maximum
variance

» Use PCA to determine the vectors u,,...u,
that span that subspace:
X=HM+wu, +w,u,+...+wu,

« Represent each face using its “face space”
coordinates (w,...w,)

« Perform nearest-neighbor recognition in “face
space”

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991




Eigenfaces example




Eigenfaces example

Top eigenvectors:

Mean: u




Eigenfaces example

« Face x in “face space” coordinates:




Eigenfaces example

« Face x in “face space” coordinates:

X
I
=

+  wau, + Wou, + Wals + wauy, t oL



Summary: Recognition with eigenfaces

Process labeled training images:
 Find mean g and covariance matrix
* Find Kk principal components (eigenvectors of Z) u,,...u,

* Project each training image x;, onto subspace spanned
by principal components:

(Wigse, Wi) = (U TG = M), .o, U (X — W)

Given novel image x:

* Project onto subspace:
Wy, W) = (U T (X =), ..., u (X = M)

 Optional: check reconstruction error x — x to determine
whether image is really a face

« Classify as closest training face in k-dimensional
subspace



Limitations

* Global appearance method: not robust to
misalignment, background variation




Limitations

« PCA assumes that the data has a Gaussian
distribution (mean p, covariance matrix 2)
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The shape of this dataset is not well described by its principal components



Limitations

 The direction of maximum variance is not
always good for classification



Distribution-Based Face Detector

Frontal Face Pattern

saraples to approximate

vector subspace of
canonical face views

Special Non-Face Pattern
samples to refine vector

subspace boundares of
canonical face views

Learn face and nonface models from examples [Sung and Poggio 95]

Cluster and project the examples to a lower dimensional space using
Gaussian distributions and PCA

Detect faces using distance metric to face and nonface clusters

x3  Face Sample X3 Approximation with
4  Distdbuton 4 Gavssian clusters :
S e, S " J

n &
g Test Pattern
R H
=
i
=0
5
%3 Non-Face Sample %3 Approximation with 4
_ Distribution Ganssian clusters >

Non-Face Centroids

Centroid




Distribution-Based Face Detector

* Learn face and nonface models from examples [Sung and Poggio 95]

Image Output

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern



Overview

* Specific Object Recognition
— Lowe ‘04
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* Face Dectection
— Sub-space methods
— Neural Network-based approaches
— Viola & Jones

* Face Recognition



Neural Network-Based Face Detector

* Train a set of multilayer perceptrons and arbitrate
a decision among all outputs [Rowley et al. 98]
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Oval mask for ignoring
background pixels:

Original window:

Best fit linear function:

Lighting corrected window:
(linear function subtracted)

Histogram equalized window:

The steps in preprocessing a window. First, a linear function is fit to the intensity values in the window,
and then subtracted out, correcting for some extreme lighting conditions. Then, histogram equalization is
applied, to correct for different camera gains and to improve contrast. For each of these steps, the
mapping is computed based on pixels inside the oval mask, while the mapping is applied to the entire
window.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Example CMU face detector results

input

All images from: http://www.ius.cs.cmu.edu/demos/facedemo.html
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Example face images, randomly mirrored,
rotated, translated, and scaled by small
amounts (photos are of the three authors).

e o o e
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From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/




During training, the partially-trained system is applied to images of scenery which do not
contain faces (like the one on the left). Any regions in the image detected as faces (which
are expanded and shown on the right) are errors, which can be added into the set of

negative training examples.

E..
v

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Images with all the above threshold detections indicated by boxes.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/
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The framework used for merging multiple detections from a single network: A) The detections
are recorded in an image pyramid. B) The detections are “spread out' and a threshold is
applied. C) The centroids in scale and position are computed, and the regions contributing to
each centroid are collapsed to single points. In the example shown, this leaves only two
detections in the output pyramid. D) The final step is to check the proposed face locations for

overlaps, and E) to remove overlapping detections if they exist. In this example, removing the
overlapping detection eliminates what would otherwise be a false positive.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/
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Osadchy, Miller, LeCun.
Face Detection and Pose Estimation, 2004

e Application of Convolutional Neural Networks

Cl: feature
maps 8@28x28

Convolutions

C3: f. maps
20@10x10
S1: f. maps 54: f. maps

‘ 20@5x5 (C5:120
8@14x14 I C s Output:
_-__-------- 9

) Full
___subsampling  connection
Convolutions Convolutions

Subsampling



Osadchy, Miller, LeCun.
Face Detection and Pose Estimation, 2004

e Non-linear dimensionality reduction

Integrating Face Detection and Pose

Estimation: Our Approach
Low di_m_ensignal space
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Overview

* Specific Object Recognition
— Lowe ‘04
— Rothganger et al. ‘03

* Face Dectection
— Sub-space methods
— Neural Network-based approaches
— Viola & Jones

* Face Recognition



Rapid Object Detection Using a Boosted Cascade of
Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:

http://citeseer.ist.psu.edu/cache/papers/cs/23183/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzviolazSzresearchzSzpublicationszSzICCV01-Viola-Jones.pdf/violaOlrobust.pdf



The Viola/Jones Face Detector

« A seminal approach to real-time object
detection

« Training is slow, but detection is very fast

* Key ideas
 Integral images for fast feature evaluation
» Boosting for feature selection
» Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones.

Rapid object detection using a boosted cascade of simple features. CVPR
2001.

P. Viola and M. Jones. Robust real-time face detection. |[JCV 57(2), 2004.




Image Features

“Rectangle filters” m

Value =

> (pixels in white area) —
> (pixels in black area)



Example

Source

2 £
b

Q& d o 23
I IO T RS2 3
RS

Result

Slide: S. Lazebnik



Fast computation with integral images

* The integral image
computes a value at each
pixel (x,y) that is the sum
of the pixel values above
and to the left of (x,y),
iInclusive

* This can quickly be
computed in one pass
through the image

(X,y)

Slide: S. Lazebnik



Computing the integral image

Slide: S. Lazebnik



Computing the integral image

ii(x, y-1)
s(x-1,y)| =

N

i(Xx, y)

Cumulative row sum: s(x, y) = s(x=1, y) + i(X, Y)
Integral image: ii(x, y) = 1i(x, y—1) + s(x, y)

MATLAB: ii = cumsum(cumsum(double(i)), 2);

Slide: S. Lazebnik



Computing sum within a rectangle

 Let A,B,C,D be the
values of the integral
Image at the corners of a . B

rectangle
* Then the sum of original
Image values within the N

rectangle can be C
computed as:

sum=A-B-C+D

* Only 3 additions are

required for any size of
rectangle!

Slide: S. Lazebnik



Example

Integral

-1

Slide: S. Lazebnik



Feature selection

* For a 24x24 detection region, the number of
possible rectangle features is ~160,000!
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Feature selection

For a 24x24 detection region, the number of
possible rectangle features is ~160,000!

At test time, it is impractical to evaluate the
entire feature set

Can we create a good classifier using just a
small subset of all possible features?

How to select such a subset?



Boosting

* Boosting is a classification scheme that works
by combining weak learners into a more
accurate ensemble classifier

« Training consists of multiple boosting rounds
* During each boosting round, we select a weak learner that
does well on examples that were hard for the previous weak
learners
« “Hardness” is captured by weights attached to training
examples

Y. Freund and R. Schapire, A short introduction to boosting, Journal of
Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.




Training procedure

« Initially, weight each training example equally

* In each boosting round:

* Find the weak learner that achieves the lowest weighted
training error

* Raise the weights of training examples misclassified by current
weak learner

« Compute final classifier as linear combination
of all weak learners (weight of each learner is
directly proportional to its accuracy)

« Exact formulas for re-weighting and combining
weak learners depend on the particular
boosting scheme (e.g., AdaBoost)

Y. Freund and R. Schapire, A short introduction to boosting, Journal of
Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.




Boosting

Weak

Classifier 1 \




Boosting

Weights
Increased




Boosting

Weak _—
Classifier 2




Boosting

Weights

Increased \




Boosting

Weak
Classifier 3




Boosting

Final classifier is
linear combination of
weak classifiers




Boosting vs. SVM

« Advantages of boosting
 Integrates classifier training with feature selection

» Complexity of training is linear instead of quadratic in the
number of training examples

 Flexibility in the choice of weak learners, boosting scheme
» Testing is fast
« Easy to implement

« Disadvantages
* Needs many training examples
* Training is slow
« Often doesn’t work as well as SVM (especially for many-
class problems)



Boosting fo

r face detection

« Define weak learners based on rectangle

features

ht(x) =

value of rectangle feature

1 1t p,f,(x)> p,0,

window

kO otherwise RN

parity threshold



Boosting for face detection

« Define weak learners based on rectangle

features

* For each round of boosting:
» Evaluate each rectangle filter on each example
» Select best filter/threshold combination based on weighted
training error
* Reweight examples



Boosting for face detection

« First two features selected by boosting:

This feature combination can yield 100%
detection rate and 50% false positive rate



Boosting for face detection

« A 200-feature classifier can yield 95% detection
rate and a false positive rate of 1 in 14084

ROC curve for 200 feature classifier
1

1 [
0.9
2 0.85F
R4
c
e
3
| |
g o Not good enough!
s}
L
80.75}
07F
0.65F
06 1 L 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

false positive rate x 107

Receiver operating characteristic (ROC) curve



Attentional cascade

« We start with simple classifiers which reject
many of the negative sub-windows while
detecting almost all positive sub-windows

» Positive response from the first classifier

triggers the evaluation of a second (more
complex) classifier, and so on

* A negative outcome at any point leads to the
immediate rejection of the sub-window

T T T
IMAGE e Classifier 2 }—» FACE
SUB-WINDOW
g 5 F

NON-FACE NON-FACE NON-FACE



Attentional cascade

« Chain classifiers that are
progressively more complex
and have lower false positive
rates:
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Attentional cascade

* The detection rate and the false positive rate of
the cascade are found by multiplying the
respective rates of the individual stages

* A detection rate of 0.9 and a false positive rate
on the order of 10-° can be achieved by a
10-stage cascade if each stage has a detection
rate of 0.99 (0.9970 = 0.9) and a false positive
rate of about 0.30 (0.3'0 = 6x10-°)
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Training the cascade

« Set target detection and false positive rates for
each stage

« Keep adding features to the current stage until

its target rates have been met

* Need to lower AdaBoost threshold to maximize detection (as
opposed to minimizing total classification error)

 Test on a validation set

* |f the overall false positive rate is not low
enough, then add another stage

» Use false positives from current stage as the
negative training examples for the next stage



The implemented system

* Training Data
« 5000 faces

— All frontal, rescaled to
24x24 pixels

« 300 million non-faces
— 9500 non-face images

 Faces are normalized
— Scale, translation

* Many variations
» Across individuals
* [llumination
 Pose




System performance

 Training time: “weeks” on 466 MHz Sun
workstation

« 38 layers, total of 6061 features

* Average of 10 features evaluated per window
on test set

« “On a 700 Mhz Pentium Il processor, the
face detector can process a 384 by 288 pixel

image in about .067 seconds”
« 15 Hz

» 15 times faster than previous detector of comparable
accuracy (Rowley et al., 1998)



Output of Face Detector on Test Images

TD‘,\“ pain makes you beautful

A




Funny Nikon ads
"The Nikon S60 detects up to 12 faces."

Nikon

The Nikon S60. Detects up to 12 faces.

Slide: S. Lazebnik



Other detection tasks
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Profile Detection




Profile Features




Summary: Viola/Jones detector

* Rectangle features
* Integral images for fast computation
« Boosting for feature selection

 Attentional cascade for fast rejection of
negative windows



Face Recognition
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Face Recognition

Attributes for training Similes for training
Attribute Positive Examples Negative Examples ) Simile Positive Examples Negat'ive Examples
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Face Recognition

Results on Labeled Faces in the Wild Dataset

1.0

o
o
:

©
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True Positive (Detection) Rate
o
19,

©
W

—— Our Attribute Classifiers (83.62%)
—— Our Simile Classifiers (84.14%)
—— Our Attribute + Simile Hybrid (85.29%)

©
N

- - Hybrid descriptor-based, funneled [34] (78.47%)
0.1} : - - - Merl+Nowak, funneled [18] (76.18%)
- - Nowak, funneled [25] (73.93%)
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