Recurrent Neural Networks
+
Multimodal Deep Learning (Vision+Language)

Jamie Ryan Kiros
University of Toronto
Recurrent neural networks

Feed-forward neural network

(images from Andrej Karpathy)
Recurrent neural networks

Image-captioning
(image -> sequence of words)
Recurrent neural networks

e.g. Sentiment classification
sequence of words -> sentiment
Recurrent neural networks

e.g. Machine Translation
sequence of words -> sequence of words
Recurrent neural networks

- **one to one**
- **one to many**
- **many to one**
- **many to many**

Examples:
- Language modelling
- Video frame classification
Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

new state \quad \text{old state} \quad \text{input vector at some time step}

some function with parameters W
(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:

$$h_t = f_W(h_{t-1}, x_t)$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$y_t = W_{hy}h_t$$

(images from Andrej Karpathy)
Example: character-level language models

(images from Andrej Karpathy)
RNNs for language: language models

Predictions of next words

RNN state

Word embeddings

A dog is barking
RNNs for language: decoders
(conditional language models)

Predictions of image caption

RNN state

RNNs for language: encoders

Sentence vector
(distributed representation for the text “dog is barking”)

dog is barking
RNNs for language: encoder-decoders

Decoder for french sentence

Encoder for english sentence
Problems with vanilla RNNs

Vanishing gradient problem

-> use LSTM

Exploding gradient problem

-> use gradient clipping
Long short-term memory (LSTM)
(slide from Alex Graves)

- **LSTM** is an RNN architecture designed to have a better memory. It uses linear memory cells surrounded by multiplicative gate units to store, read, write, and reset information.

Image of LSTM diagram with labels:
- Input gate: scales input to cell (write)
- Output gate: scales output from cell (read)
- Forget gate: scales old cell value (reset)
LSTM vs simple RNN
(images from Chris Olah)
Some successes of the LSTM from 2013-2014 (many more since then!) (list from Schmidhuber)

1. Text-to-speech synthesis (Fan et al., Microsoft, Interspeech 2014)
2. Language identification (Gonzalez-Dominguez et al., Google, Interspeech 2014)
3. Large vocabulary speech recognition (Sak et al., Google, Interspeech 2014)
4. Prosody contour prediction (Fernandez et al., IBM, Interspeech 2014)
5. Medium vocabulary speech recognition (Geiger et al., Interspeech 2014)
6. English to French translation (Sutskever et al., Google, NIPS 2014)
7. Audio onset detection (Marchi et al., ICASSP 2014)
8. Social signal classification (Brueckner & Schulter, ICASSP 2014)
9. Arabic handwriting recognition (Bluche et al., DAS 2014)
10. TIMIT phoneme recognition (Graves et al., ICASSP 2013)
11. Optical character recognition (Breuel et al., ICDAR 2013)
12. Image caption generation (Vinyals et al., Google, 2014)
13. Video to textual description (Donahue et al., 2014)
14. Syntactic parsing for Natural Language Processing (Vinyals et al., Google, 2014)
15. Photo-real talking heads (Soong and Wang, Microsoft, 2014).
Applications to Multimodal tasks (Language+Vision)

(#1): Multimodal image-sentence embeddings

(#2): Image caption generation

(#3): Skip-thought vectors

(#4): Aligning books and movies

(#5): Style analogies + Neural storyteller
Applications to Multimodal tasks
(Language+Vision)

(#1): Multimodal image-sentence embeddings

(#2): Image caption generation

(#3): Skip-thought vectors

(#4): Aligning books and movies

(#5): Style analogies + Neural storyteller
A joint image-text embedding (ConvNet - LSTM)

Minimize the following objective:

\[
\sum_{x} \sum_{k} \max\{0, \alpha - s(x, v) + s(x, v_k)\} + \\
\sum_{v} \sum_{k} \max\{0, \alpha - s(v, x) + s(v, x_k)\}
\]
Train globally, retrieve locally

tower, building, cathedral, dome, castle

bowl, cup, soup, cups, coffee

kitchen, stove, oven, refrigerator, microwave

ski, skiing, skiers, skiiers, snowmobile

beach

snow
Adjectives

- fluffy
- delicious
- adorable
- sexy
The dogs are in the snow in front of a fence.

Four men playing basketball, two from each team.

A boy skateboarding.

Two men and a woman smile at the camera.

Women participate in a skit onstage.

A man is doing tricks on a bicycle on ramps in front of a crowd.
Not so good retrieval results
(these have ground truth ranked > 100)

two people wearing white shirts and jeans each carrying a skateboard

A lady holds a little boy While another little boy smiles at them .

A dog jumps over a bar with a ball in its mouth .

White medium sized dog is running through the ocean .

A man and a woman walking down a street , carrying luggage .

Woman in white dribbling basketball .
Multimodal linguistic regularities

- dog + cat =
- cat + dog =
- plane + bird =
- man + woman =
colours

- blue + red =
- blue + yellow =
- yellow + red =
- white + red =
Some interesting examples

- day + night =

- flying + sailing =

- bowl + box =

- box + bowl =
<table>
<thead>
<tr>
<th>Word</th>
<th>Nearest images</th>
</tr>
</thead>
<tbody>
<tr>
<td>night</td>
<td> </td>
</tr>
<tr>
<td>sailing</td>
<td> </td>
</tr>
<tr>
<td>box</td>
<td> </td>
</tr>
<tr>
<td>bowl</td>
<td> </td>
</tr>
</tbody>
</table>
PCA embedding
Why does this work?

\[\mathbf{v}_{\text{car}} \quad \mathbf{v}_{\text{red}} \quad \mathbf{v}_{\text{blue}} : \text{word vectors for 'car', 'red', 'blue} \]

\[\mathbf{I}_{\text{bcar}} \quad \mathbf{I}_{\text{rcar}} : \text{embeddings of a blue car and a red car} \]

After training a linear encoder, the model has the property that:

\[\mathbf{v}_{\text{blue}} + \mathbf{v}_{\text{car}} \approx \mathbf{I}_{\text{bcar}} \quad \text{and} \quad \mathbf{v}_{\text{red}} + \mathbf{v}_{\text{car}} \approx \mathbf{I}_{\text{rcar}} \]

It follows that:

\[\mathbf{v}_{\text{car}} \approx \mathbf{I}_{\text{bcar}} - \mathbf{v}_{\text{blue}} \quad \text{(1)} \]

\[\mathbf{v}_{\text{red}} + \mathbf{v}_{\text{car}} \approx \mathbf{I}_{\text{bcar}} - \mathbf{v}_{\text{blue}} + \mathbf{v}_{\text{red}} \quad \text{(2)} \]

\[\mathbf{I}_{\text{rcar}} \approx \mathbf{I}_{\text{bcar}} - \mathbf{v}_{\text{blue}} + \mathbf{v}_{\text{red}} \quad \text{(3)} \]
Image-text alignments from scratch

People, water, truck

Boy, car, road

Woman, fence, cars, building

Chair, pillow, table, lamp
Image-text alignments

Oven, microwave, counter

Cup, pear, book, bowl

Motorcycle, cow, shop

Screen, clock, window, shelf
adjectives

Delicious

fluffy

Shiny, round

cute
Order-embeddings (Vendrov et al, 2016)
Order-embeddings (Vendrov et al, 2016)
Query

max("man", "cat")

max("black dog", "park")

min(,)

min(, "dog")

max(, "man")

Nearest non-query images in COCO train
Applications to Multimodal tasks (Language+Vision)

(#1): Multimodal image-sentence embeddings

(#2): Image caption generation

(#3): Skip-thought vectors

(#4): Aligning books and movies

(#5): Style analogies + Neural storyteller
Google model: Multimodal LSTM (Vinyals et al, 2015)
Google model: Multimodal LSTM

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

A skateboarder does a trick on a ramp.

A dog is jumping to catch a frisbee.

A group of young people playing a game of frisbee.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

A refrigerator filled with lots of food and drinks.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

A red motorcycle parked on the side of the road.

A yellow school bus parked in a parking lot.
Toronto model: Structure-content NLMs

\[P(w_n | w_{1:n-1}, t_{n:n+k}, x) \]

n-th word word context POS context
Some good results - generation

- A car is parked in the middle of nowhere.
- A wooden table and chairs arranged in a room.
- A ferry boat on a marina with a group of people.
- There is a cat sitting on a shelf.
- A little boy with a bunch of friends on the street.
Some failure types

- The handlebars are trying to ride a bike rack. (nonsensical)
- A giraffe is standing next to a fence in a field. (hallucination)
- A parked car while driving down the road. (contradiction)
- A woman and a bottle of wine in a garden. (gender)
Montreal+Toronto: LSTM with attention (Xu et al, 2015)
Montreal+Toronto: LSTM with attention (Xu et al, 2015)

$f = (a, \text{ man, is, jumping, into, a, lake, .})$
Image caption generation with attention
Image caption generation with attention
Image caption generation with attention
Many, many captioning papers...

https://github.com/kjw0612/awesome-rnn#image-captioning

See the above for a full list! (15 papers and counting)
Who is best? Microsoft COCO Competition

<table>
<thead>
<tr>
<th>Team</th>
<th>M1</th>
<th>M2</th>
<th>Total</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>1st (tie)</td>
</tr>
<tr>
<td>MSR</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>1st (tie)</td>
</tr>
<tr>
<td>Montreal-Toronto</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3rd (tie)</td>
</tr>
<tr>
<td>MSR Captivator</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3rd (tie)</td>
</tr>
<tr>
<td>Berkeley</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5th</td>
</tr>
</tbody>
</table>

M1: Percentage of captions that are evaluated as better or equal to human.
M2: Percentage of captions that pass the Turing Test.
Applications to Multimodal tasks
(Language+Vision)

(#1): Multimodal image-sentence embeddings

(#2): Image caption generation

(#3): Skip-thought vectors

(#4): Aligning books and movies

(#5): Style analogies + Neural storyteller
Unsupervised Distributed Representations for words and sentences

• There is a **massive** amount of available text data

• Good word vectors utilize distributional hypothesis + tons of data
 Context as a learning signal (implicit or explicit)

• Sentence representations, on the other hand are usually task specific
 Backprop through the "composition function" using labelled data

Can we abstract how we learn word vectors to construct new objectives for learning sentence vectors?

Does the concept of a non-task specific sentence vector even make sense?
Revisiting skip-gram (Mikolov et al. 2013)

- Skip-gram is an encoder-decoder model:
 - Input X: A word
 - Encoder: Lookup table
 - Decoder: Matrix multiply
 - Context $C(X)$: Predictions of surrounding words

- Minimize NLL of context predictions given X
• Skip-gram is just an instance of a more generic family of models!

• If we want to learn a vector for X, we just need to specify:
 - the encoder which maps X to vec(X)
 - the context C(X)
 - the decoder which maps vec(X) to predictions of C(X)

• Does X have to be a word? Why not a sentence? Paragraph? Etc...
From words to sentences

<table>
<thead>
<tr>
<th>Input</th>
<th>Word</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder</td>
<td>Lookup table</td>
<td>RNN or ConvNet</td>
</tr>
<tr>
<td>Context</td>
<td>Surrounding words</td>
<td>Surrounding sentences</td>
</tr>
<tr>
<td>Decoder</td>
<td>Matrix multiply</td>
<td>RNN</td>
</tr>
</tbody>
</table>

- What is a good context for sentences?
 - We use surrounding words for word context
 - Why not use surrounding sentences for sentence context?
Skip-thought vectors (Kiros et al. 2015)

Given a sentence X, predict sentences before and after

Note that we need contiguous text for training!

BookCorpus dataset: 10K+ books, 70M+ sentences, ~1B words (Zhu+Kiros et al. 2015)
What does it learn? Nearest neighbours:

he ran his hand inside his coat, double-checking that the unopened letter was still there.

he slipped his hand between his coat and his shirt, where the folded copies lay in a brown envelope.

I'm sure you'll have a glamorous evening, she said, giving an exaggerated wink.

I'm really glad you came to the party tonight, he said, turning to her.

Although she could tell he hadn't been too invested in any of their other chitchat, he seemed genuinely curious about this.

Although he hadn't been following her career with a microscope, he'd definitely taken notice of her appearances.
Related models and ideas

- **Paragraph Vector** (Le & Mikolov, 2014)
 - Encoder: Lookup table
 - Decode: Words in the sentence/paragraph

- **Sequence Autoencoders** (Dai & Le, 2015)
 - Encoder: LSTM
 - Decode: Words in the sentence

- **C-PHRASE** (Pham et al., 2015)
 - Encoder: Sum of word vectors
 - Decode: Syntactic context each each level of hierarchy

Main weakness: These models only look at the current sentence! Ignores the context of which the sentence occurs
Cramming everything into a vector

- For some tasks (MT, QA, reading comprehension), this doesn't make a whole lot of sense
 - Instead, dynamically update the representation of a sentence
 - “Zone in” on the relevant parts at any given time
 - Attention mechanisms, memory networks, etc

Can we still make use of unsupervised sentence vectors for these tasks?

(Bahdanau et al., 2014)
How can we utilize skip-thought vectors for multimodal tasks?
Applications to Multimodal tasks (Language+Vision)

(#1): Multimodal image-sentence embeddings

(#2): Image caption generation

(#3): Skip-thought vectors

(#4): Aligning books and movies

(#5): Style analogies + Neural storyteller
Aligning books and movies (Zhu+Kiros et al., 2015)
Aligning books and movies (Zhu+Kiros et al., 2015)
How it works

- **Context-aware CNN that combines:**
 - **Text-to-text similarity:** Skip-thoughts + tf-idf + BLEU(1-5)
 - **Video-to-text similarity:** Visual-semantic embedding of clips and DVS

- **Chain CRF:** Unaries are CNN outputs
 Pairwise terms for consistency between nearby alignments
... He realized he must be in the hospital wing. He was lying in a bed with white linen sheets, and next to him was a table piled high with what looked like half the candy shop.

"Tokens from your friends and admirers," said Dumbledore, beaming. "What happened down in the dungeons between you and Professor Quirrell is a complete secret, so, naturally, the whole school knows. I believe your friends Misters Fred and George Weasley were responsible for trying to send you a toilet seat. No doubt they thought it would amuse you. Madam Pomfrey, however, felt it might not be very hygienic, and confiscated it." ...
Batman.Begins

[01:38:41:01:38:44] I'm gonna give you a sedative. You'll wake up back at home.

A Captive's Submission

"I believe you will enjoy your time here. I am not a harsh master but I am strict. When we are with others, I expect you to present yourself properly. What we do here in your room and in the dungeon is between you and I. It is a testament to the trust and respect we have for each other and no one else needs to know about our arrangement. I'm sure the past few days have been overwhelming thus far but I have tried to give you as much information as possible. Do you have any questions?"
the club was a little emptier than i would have expected for the late afternoon , and the bartender , in red waistcoat and bowtie , was busy wiping down his counter , replacing peanuts and putting out new coasters .
a television with the latest la liga news was hung in an upper corner , and behind him , rows of bottles were reflected in a giant bar mirror .
above the stools , a pergola-type overhead structure held rows of wine glasses .
it was a classy place , with ferns in the corner , and not the kind of bar to which i was accustomed .
my places usually had a more ... relaxed feel .

he felt like an idiot for yelling at the child , but his frustration and trepidation was getting the better of him .
he glanced toward the shadowed hall and quickly nodded toward melissa before making his way forward .
he came across more children sitting upon a couch in the living room .
they watched him , but did n't move and did n't speak .
his skin started to feel like hundreds of tiny spiders were running up and down it and he hurried on .
Can we generate stories instead?
Applications to Multimodal tasks (Language+Vision)

(#1): Multimodal image-sentence embeddings

(#2): Image caption generation

(#3): Skip-thought vectors

(#4): Aligning books and movies

(#5): Style analogies + Neural storyteller
(#3) Style analogies with thought vectors

“A group of people at the beach” - COCO + Novels = ???
The Neural-Storyteller

Retrieved captions

“A dog running in the green grass.”

(mean of ST vectors from COCO)

(mean of ST vectors from romance books)

ST Vectors

RNN Decoder

output

LSTM Autoencoder
We were barely able to catch the breeze at the beach, and it felt as if someone stepped out of my mind. She was in love with him for the first time in months, so she had no intention of escaping. The sun had risen from the ocean, making her feel more alive than normal. She's beautiful, but the truth is that I don't know what to do. The sun was just starting to fade away, leaving people scattered around the Atlantic Ocean. I'd seen the men in his life, who guided me at the beach once more.
Generated story about image
Model: Romantic Novels

“He was a shirtless man in the back of his mind, and I let out a curse as he leaned over to kiss me on the shoulder.

He wanted to strangle me, considering the beautiful boy I’d become wearing his boxers.”
Generated story about image
Model: Romantic Novels

“We men were in a tense position at the end of the meeting. And I looked up at my best friend.

Of course, I had no intention of letting him go. I don’t know what else to say, but he is also the most beautiful man you ever meet.”
What about Taylor Swift?

“A group of people at the beach”

Taylor

COCO

“???”
You're the only person on the beach right now
you know
I don't think I will ever fall in love with you
and when the sea breeze hits me
I thought
Hey
(#3) Results (Samim Winiger*)

*"Generating stories about images"

Generated story about image
Model: Taylor Swift Lyrics

“I give you a man, I don’t know what’s happening to me, and when I look back at the stage, I say, God, I love you more than I should.”
(#3) Results (Samim Winiger*)

*"Generating stories about images"

Generated story about image
Model: Taylor Swift Lyrics

“Like I'm standing right now, man, it's going to be a sidewalk in the street, I thought, Oh my God, I don't see you walking away.”
Resources and Code
Resources and code

https://github.com/ryankiros
- Skip-thought vectors
- Neural-Storyteller
- Visual Semantic Embeddings

http://www.cs.toronto.edu/~mbweb/
- BookCorpus dataset
- Ground-truth Movie/Book alignments

https://github.com/kelvinxu/arctic-captions
- “Show, attend and Tell” code
Andrej Karpathy

https://github.com/karpathy
http://cs231n.stanford.edu/

- char-rnn
- neuraltalk
- neuraltalk2
- randomfun

Learn more about RNNs

- https://github.com/kjw0612/awesome-rnn

Large collection of lectures, papers and code
My awesome collaborators (for multimodal learning)

Toronto
- Richard Zemel
- Ruslan Salakhutdinov
- Raquel Urtasun
- Sanja Fidler
- Kevin Swersky
- Jimmy Ba
- Yukun Zhu
- Ivan Vendrov
- Mengye Ren
- Shikhar Sharma

Montreal
- Yoshua Bengio
- Aaron Courville
- Kelvin Xu

Harvard
- Ryan Adams
- Jasper Snoek
- Oren Rippel

NYU
- Kyunghyun Cho

MIT
- Antonio Torralba