

Web-Scale Training for Face Identification

¹ Ming Yang ¹ Marc'Aurelio Ranzato ² Lior Wolf ¹ Yaniv Taigman

¹ Facebook AI Research

² Tel Aviv University

FACE RECOGNITION

Why faces?

1. One class. Billions of **unique** instances.
2. Plays an important role in our social interactions, conveying people's identity; **The most frequent entity** in the media by far: e.g. ~1.2 faces / Photo by avg
3. Enables many **applications** in Man-Machine interaction

Applications

Face Recognition main objective

Find a representation & similarity measure such that:

- Intra-subject similarity is high
- Inter-subject similarity is low

Milestones in Face Recognition

1964
Bledsoe
Face
Recognition

1973
Kanade's
Thesis

1991
Turk &
Pentland
Eigenfaces

1997
Belhumeur
Fisherfaces

1999
Blanz &
Vetter
Morphable
faces

1999
Wiskott
EBGM

2001
Viola &
Jones
Boosting

2006
Ahonen
LBP

Problem solved?

NIST's best-performer's on:

1. Its internal dataset with 1.6 million identities: 95.9%
2. On LFW (public) with 'only' 4,249 identities: 56.7%

→ Answer: No.

- L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition: Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014.

Types of Face Recognition

- ‘Constrained’ – Mainly for traditional purposes
- ‘Unconstrained’ – General purpose

Constrained

NIST's FR Vendor Test (FRVT) 2006

Unconstrained

In the wild

Challenges in Unconstrained Face Recognition

1. Pose

2. Illumination

3. Expression

4. Aging

5. Occlusion

Probes for example

Gallery

Unconstrained Face Recognition Era: The Labeled Faces in the Wild (LFW)

13,233 photos of 5,749 celebrities

Labeled faces in the wild: A database for studying face recognition in unconstrained environments, Huang, Jain, Learned-Miller, ECCVW, 2008

LFW: Progress over the recent 7 years

- Labeled faces in the wild: A database for studying face recognition in unconstrained environments, ECCVW, 2008.
- Descriptor methods in the Wild, ECCV-W 2008
- Attribute and simile classifiers for face verification, ICCV 2009.
- Multiple one-shots for utilizing class label information, BMVC 2009.
- Large scale strongly supervised ensemble metric learning, with applications to face verification and retrieval, NEC Labs TR, 2012.
- Learning hierarchical representations for face verification with convolutional deep belief networks, CVPR, 2012.
- Bayesian face revisited: A joint formulation, ECCV 2012.
- Tom-vs-pete classifiers and identity preserving alignment for face verification, BMVC 2012.
- Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification, CVPR 2013.
- Probabilistic elastic matching for pose variant face verification, CVPR 2013.
- Fusing robust face region descriptors via multiple metric learning for face recognition in the wild, CVPR 2013.
- Fisher vector faces in the wild, BMVC 2013.
- Hybrid deep learning for computing face similarities, ICCV 2013.
- A practical transfer learning algorithm for face verification, ICCV 2013.

Verification

=

≠

LFW: Progress over the recent 7 years

Verification Impacts Recognition

DeepFace

*DeepFace: Closing the Gap to Human-Level Performance in Face Verification;
Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato and Lior Wolf (CVPR 2014)*

Face Recognition Pipeline

Detect

Align

Represent

Classify

Face Recognition Pipeline

Detect

Align

Represent

Classify

0001001100
1101001101
0011100000
110011111101
001001000101
011000110110
101011011100
011110110110

Yaniv

Lubomir

Marc'Aurelio

Faces are 3D objects

Texture vs. Shape

Shape A

Shape A +
Texture A

Shape A +
Texture of Bush

Shape A +
Texture of BinLaden

Face alignment

(‘Frontalization’)

Detect

2D-Aligned

3D-Aligned

2D alignment

$$p^0 = A_{n \times d} \cdot f$$

$$p^t = s_t[R_t|t_t] \cdot p^{t-1}$$

3D alignment

$$loss(\vec{P}) = r^T \Sigma^{-1} r$$

$$r = (x_{2d} - X_{3d} \vec{P})$$

$$\begin{aligned}\widetilde{x}_{3d}(x, y) := \\ x_{3d}(x, y) + r(x, y)\end{aligned}$$

Examples

Next: Representation Learning

Detect

Align

Represent

Classify

- 2004 – 2013 : Feature engineering monopoly, mostly LBP.
 - Contributions mainly in Classification.

‘Multi-Shots’; Taigman, Hassner, Wolf

LBP; Ahonen 2004

High-Dim LBP; Chen, Cao, Wen, Sun

- 2012 : The resurrection of LeCun’s Deep Convolutional Neural Networks (CNNs) by Krizhevsky, Sutskever and Hinton.

CNNs for: Image Classification vs. Face Recognition

1. We mostly care about feature learning
 - We do not know the number of identities before-hand
 - Transfer Learning

- **Last layer** can be removed or replaced
- We still need to think about the Classification stage (later)

CNNs for: Image Classification vs. Face Recognition

2. Geometry is physically relaxed:

- Translation, scale and 2D-rotation due to Detection and 2D Alignment
- Out-of-plane rotation due to 3D Alignment.

Aligned pixels → Enables Untying the weights → ‘Locally-connected’ layers.

→ Greater focus in training on what’s not solved already.

CNNs for: Image Classification vs. Face Recognition

3. Several levels of (max-) **pooling** would cause the network to lose information about the precise position of detailed facial structure and micro-textures.

DeepFace Architecture

$$G(I) = g_{\phi}^{F_7}(g_{\phi}^{L_6}(\dots g_{\phi}^{C_1}(T(I, \theta_T))\dots))$$

alignment

SFC Training dataset (pre-cropping)

4.4 million photos
blindly sampled,
containing more
than 4,000 identities
(permission granted)

Detect

Align

Represent

Classify

DeepFace
Replica

DeepFace
Replica

(a) Cosine angle

$$S(f_1, f_2) = \frac{}{\|f_1\| \|f_2\|}$$

(b) Kernel Methods

$$S_{\chi^2}(f_1, f_2) = \sum w_i \frac{(f_1[i] - f_2[i])^2}{f_1[i] + f_2[i]}$$

(c) Siamese Network¹

$$S_{Siam}(I_1, I_2) = \frac{1}{1 + e^{-(W|f(I_1) - f(I_2)| + b)}}$$

Deep Siamese Architecture [1]

$$p = \frac{1}{1 + e^{-(W \cdot |f_1 - f_2| + b)}}$$

$$E = -y \log(p) - (1 - y) \log(1 - p)$$

Results on LFW

‘Explaining’ the False Negatives pairs (1.65%)

False Positive pairs (1.00%)

Results on YouTube Faces (Video)

↑ False negatives

False positives →

Face Identification (1:N)

Unaccounted challenges in **verification**:

- I. Reliability
- II. Large confusion ($P \times G$)
- III. Different distributions
- IV. Unknown class

LFW Identification (1:N) Protocols²

1. Close Set

- #Gallery¹: 4,249
- #Probes: 3,143

Measured³ by Rank-1 rate.

2. Open Set

- #Gallery¹: 596
- #Probes: 596
- #Impostors: 9,491 ('unknown class')

Measured³ by Rank-1 rate @ 1% False Alarm Rate.

¹ Each identity with a **single** example

² Unconstrained Face Recognition: Identifying a Person of Interest from a Media Collection
Best-Rowden, Han, Otto, Klare and Jain (Technical Report MSU-CSE-2014-1)

³ Training is **not** permitted on LFW ('unsupervised')

LFW Identification (1:N) Results

Method	DeepFace [20]	BLS [3]*	NIST's s1 [1]
Verification	97.35	93.18	-
Rank-1	64.9	18.1	56.7
DIR @ 1%	44.5	7.89	25

Cosine similarity measure ('unsupervised'):

$$\text{Confusion Matrix} = G^T * P$$

G is 256×4249

P is 256×3143

(part of the) t-SNE visualization of LFW faces

Match

Why does it work so well ?

1. Coupling alignment with Locally-Connected layers
2. Large capacity model that actually enjoy large data

But can we understand more with respect to the roles of:

- What each layer is actually doing
- Is alignment necessary?
- Is regularization needed?
- Dimensionality & Sparsity
- Will more data help?

Localization is needed

Localization is needed but insufficient

- Alignment – DNN + LBP → Accuracy drops to 91.5% (-6%)

Local Patches are Insufficient

→ Fully-Connected Layer is the holistic representation

Projects input ‘features’
Into the representation.

1. **Correlates** between different local parts
2. Can exploit **symmetries** in faces
3. **High-Level templates**, a-la Eigenfaces (PCA)

Sparsity

- The RELU := $\max(0, x)$ encourage sparsity.
- Weights can be ‘thought of’ as weak template classifiers:

$$\text{Output} := \max (0, W^* \text{input} + \mathbf{b})$$

- Bias ‘b’ is a trainable **thresholder** / filter:

IF : $W^* \text{input} < -\mathbf{b}$ THEN
 Output := 0
ELSE
 Output := $W^* \text{input} + b$

80% of the dims are zero by avg.

Most of the information is encoded in whether a unit is fired or not

$X := (X > 0) \rightarrow$ Performance drops only a bit.

The **norm** of the the representation is a measure of signal acquisition

For faces: $\| F(I) \|$ is a measure of feed-forward confidence

Smallest norm's in LFW:

Largest norm's in LFW:

Understanding feature response

Occlusion

Failed Alignment

Correlation between norm & accuracy confidence

- True Positive Or True Negatives
- False Positives or False Negatives

Bottleneck is an important Regularizer in Transfer Learning

The network overfits less on the SOURCE training set, and performs better on the TARGET when reducing the representation layer (F7) from 4K dims to **256 dims**.

Bottleneck regularizes Transfer Learning

CNN's (can) saturate

“Results can be improved simply by waiting for faster GPUs and bigger datasets to become available” -- Krizhevsky et al.

What happens when the network is fixed & the number of training grows from 4m \rightarrow 0.5b ?

Answer: our findings reveal that this holds to a certain degree only.

Scaling up

DeepFace : 4.4 million images / 4,030 identities

Random 108k : 6 million images / 108,000 identities

Random 250k : 10 million images / 250,000 identities
(yes : 250K softmax)

Training set	Random 108K			Random 250K			DeepFace
Dimension	256	512	1024	256	512	1024	1201
Verification	97.35	97.62	96.90	96.33	97.10	97.67	97.35

→ Saturation

Scaling up: Semantic Bootstrapping

- 0.5B images \rightarrow 10M hyperplanes
- Lookalike hyperplanes \rightarrow DB2
- Training on DB2 with more capacity.

Second round results

Comparison to NIST's State Of The Art

Second-round DeepFace

Same system that achieved 92% Rank-1 accuracy on a table of 1.6 million identities. (NIST's State-Of-The-Art, Constrained)

Method	DeepFace [20]	BLS [3]*	COTS-s1 [1]	COTS-s1+s4 [1]	1024+	Fusion
Verification	97.35	93.18	-	-	98.00	98.37
Rank-1	64.9	18.1	56.7	66.5	82.1	82.5
DIR @ 1%	44.5	7.89	25	35	59.2	61.9

Additional works

- *Deep learning face representation by joint identification-verification, Sun, Wang, Tang, technical report, arxiv, 6/2014*
- 200 ConvNets from 400 patches \leftarrow 2D Aligned (no 3D)
- With Joint Bayesian source / target adaptation
 \rightarrow 99.15% on the verification (1:1) task.

Additional works

New free public large face dataset from SMU:

WLFDB : Weakly Labeled Faces on the Web

*Wang, Dayong, Hoi, Steven C. H., He, Ying, Zhu, Jianke, Mei, Tao and Luo, Jiebo,
Retrieval-Based Face Annotation by Weak Label Regularized Local Coordinate Coding*

714,454 facial images / **6,025** identities

Conclusion:

- Coupling 3D alignment with Large locally-connected networks

- Two-stage 3D alignment system

- Regularization in Transfer Learning

- Scaling up through bootstrapping

- At the brink of human-level performance

Thank you!

¹ Ming Yang ¹ Marc'Aurelio Ranzato ² Lior Wolf

¹ Facebook AI Research

² Tel Aviv University

References:

1. *DeepFace: Closing the Gap to Human-Level Performance in Face Verification*; Taigman, Yang, Ranzato, Wolf
2. *Web-Scale Training for Face Identification*; Taigman, Yang, Ranzato, Wolf
3. *Multi-GPU Training of ConvNets*; Yadan, Adams, Taigman, Ranzato

