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Admin	
  stuff	
  

•  Start	
  homework	
  2	
  early!!!!	
  

•  Have	
  grader	
  for	
  course	
  (Jiali	
  Huang	
  
jiali.huang@nyu.edu)	
  

•  Come	
  and	
  see	
  me	
  about	
  projects!!!!	
  



Overview	
  of	
  today	
  
•  Denoising	
  

– Averaging	
  
– Wiener	
  denoising	
  
– Median	
  filtering	
  

•  Bilaterial	
  filtering	
  
– Cross-­‐bilateral	
  filter	
  
– Flash	
  applicaVons	
  
	
  

	
  



Noisy image

•  Usually for dark 

conditions!

F. Durand 



Noise

•  Fluctuation 

when taking 
multiple shots!

F. Durand 



Canon 1D mark IIN at ISO 3200


F. Durand 



Histogram of grey patch

•  Should be single values for RGB (constant color)!

F. Durand 



Where Does Noise come from?




Digital pipeline 
• Photosites transform photons into charge (electrons) 

– The sensor itself is linear 
• Gets amplified (depending on ISO setting) 
• Then goes through analog to digital converter 

– up to 14 bits/channel these days 

• Stop here when shooting RAW 

• Then demosaicing, denoising, white balance, a response 
curve, gamma encoding are applied 

• Quantized and recorded as 8-bit JPEG 

F. Durand 



Pipeline & noise 
•  This is a conceptual diagram, don’t take it too literally  

– e.g. the AD converter is a serious source of noise, but 
usually electronic noise, not quantization artifacts  

• Orders of magnitude: 
– # of photons per photosite : 10,000-100,000 
– Electronic noise 5-30 electrons per photosite 

Sensor Gain 
(ISO) A/D 

Photon 
noise 

additive  
noise 

additive 
noise quantization 

Photons 
Digital 
image 

F. Durand 



ISO amplifies 
•  e.g. going from ISO 100 to ISO 400 amplifies by 4 
•  both noise & signal 
•  usually use high ISO when signal is low 
•  => worse signal/noise ratio 

Sensor Gain 
(ISO) A/D 

Photon 
noise 

additive  
noise 

additive 
noise quantization 

small # 
Photons 

Digital 
image 

F. Durand 



Canon 1D mark IIN at ISO 3200


F. Durand 



Canon 1D Mark II, ISO 100

•  Lot less noisy!!

F. Durand 



http://wiegaertnerfilms.com/tutorials/the-best-iso-settings-for-canon-
video-dslrs/ 

F. Durand 



Denoising by Averaging




1 image


F. Durand 



3 images




5 images




Denoising a single image




Denoising from 1 image

•  We can’t take average 

over multiple images!
Noisy input	



F. Durand 



Denoising from 1 image

•  We can’t take average 

over multiple images!
•  Idea 1: take a spatial 

average!
• Most pixels have 

roughly teh same color 
as their neighbor


• Noise looks high 
frequency => do a low 
pass


•  Here: Gaussian blur!

Noisy input	



F. Durand 



Gaussian blur

•  Noise is mostly gone!
•  But image is blurry!

• duh!


After Gaussian blur	



F. Durand 



Weiner Denoising




Wiener	
  denoising	
  derivaVon	
  
•  See	
  hWp://www.cs.dartmouth.edu/farid/tutorials/fip.pdf	
  
•  Pages	
  57à59	
  



Wiener	
  denoising	
  

From	
  J.PorVlla	
  ICIP’01	
  

White	
  Gaussian	
  noise	
  power	
  
(assumed	
  to	
  be	
  known)	
  





Denoising salt’n’pepper noise




Median	
  filter	
  
Replace	
  each	
  pixel	
  by	
  the	
  median	
  over	
  N	
  pixels	
  (5	
  pixels,	
  
for	
  these	
  examples).	
  	
  Generalizes	
  to	
  “rank	
  order”	
  filters.	
  

5-­‐pixel	
  
neighborhood	
  

In:	
   Out:	
  

In:	
   Out:	
  

Spike	
  noise	
  is	
  
removed	
  

Monotonic	
  
edges	
  remain	
  
unchanged	
  

Median([1	
  7	
  1	
  5	
  1])	
  =	
  1	
  
Mean([1	
  7	
  1	
  5	
  1])	
  =	
  2.8	
  



Median	
  filtering	
  results	
  

hWp://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm#guidelines	
  

Best	
  for	
  salt	
  and	
  pepper	
  noise	
  



Bilateral filtering




Gaussian blur

•  Noise is mostly gone!
•  But image is blurry!

• duh!


•  Problem: not all neighbors 
have the same color!

•  Bilateral filter idea: only 
consider neighbors that 
have values similar 
enough!

After Gaussian blur	



F. Durand 



A Gentle Introduction 
to Bilateral Filtering 
and its Applications 

“Fixing the Gaussian Blur”:  
the Bilateral Filter 

 

Sylvain Paris – MIT CSAIL 

Fredo- Durand – MIT CSAIL 



Blur Comes from  
Averaging across Edges 

* 

* 

* 

input output 

Same Gaussian kernel everywhere. 



Bilateral Filter 
No Averaging across Edges 

* 

* 

* 

input output 

The kernel shape depends on the image content. 

[Aurich 95, Smith 97, Tomasi 98] 



Bilateral filter 
•  Tomasi and Manduci 1998] 

– http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf  
• Developed for denoising 
•  Related to  

– SUSAN filter [Smith and Brady 95]  
http://citeseer.ist.psu.edu/smith95susan.html 

– Digital-TV [Chan, Osher and Chen 2001] 
http://citeseer.ist.psu.edu/chan01digital.html  

– sigma filter http://www.geogr.ku.dk/CHIPS/Manual/f187.htm  
•  Full survey: 

http://people.csail.mit.edu/sparis/publi/2009/fntcgv/
Paris_09_Bilateral_filtering.pdf  

F. Durand 



space weight 

not new 

range weight 

I 

new 

normalization 
factor 

new 

Bilateral Filter Definition: 
an Additional Edge Term 
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Same idea: weighted average of pixels. 



Illustration a 1D Image 

•  1D image = line of pixels 

•  Better visualized as a plot 

pixel 
intensity 

pixel position 



space 

Gaussian Blur and Bilateral Filter 

space range 
normalization 

Gaussian blur 
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Bilateral filter 
[Aurich 95, Smith 97, Tomasi 98] 
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Bilateral Filter on a Height Field 

output input 
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p

reproduced 
from [Durand 02] 



Space and Range Parameters 

•  space σs : spatial extent of the kernel, size of 
the considered neighborhood. 

•  range σr : “minimum” amplitude of an edge 
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Influence of Pixels 

p 

Only pixels close in space and in range are considered. 

space 

range 



Bilateral filter


Noisy input	

 After bilateral filter	





σs = 2 

σs = 6 

σs = 18 

σr = 0.1 σr = 0.25 
σr = ∞  

(Gaussian blur) 

input 

Exploring the Parameter Space 



σs = 2 

σs = 6 

σs = 18 

σr = 0.1 σr = 0.25 
σr = ∞  

(Gaussian blur) 

input 

Varying the Range Parameter 



input 



σr = 0.1 



σr = 0.25 



σr = ∞ 
(Gaussian blur) 



σs = 2 

σs = 6 

σs = 18 

σr = 0.1 σr = 0.25 
σr = ∞  

(Gaussian blur) 

input 

Varying the Space Parameter 



input 



σs = 2 



σs = 6 



σs = 18 



How to Set the Parameters 

Depends on the application. For instance: 
 

•  space parameter: proportional to image size 
–  e.g., 2% of image diagonal 

•  range parameter: proportional to edge amplitude 
–  e.g., mean or median of image gradients 

•  independent of resolution and exposure 



Bilateral Filter Crosses Thin Lines 
•  Bilateral filter averages across  

 features thinner than ~2σs  

•  Desirable for smoothing: more pixels = more robust 
•  Different from diffusion that stops at thin lines 

close-up kernel 



Bilateral Filtering Color Images 
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For gray-level images  

For color images  

intensity difference 

color difference 

scalar 

3D vector  
(RGB, Lab) 

input 

output 



Hard to Compute 

•  Nonlinear 

•  Complex, spatially varying kernels 
– Cannot be precomputed, no FFT… 

•  Brute-force implementation is slow > 10min 

( ) ( )∑
∈

−−=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs σσ



Basic denoising 

Noisy input Bilateral filter 7x7 window 



Bilateral filter 

Basic denoising 

Median 3x3 



Bilateral filter 

Basic denoising 

Median 5x5 



Basic denoising 

Bilateral filter Bilateral filter – lower sigma 



Bilateral filter 

Basic denoising 

Bilateral filter – higher sigma 



Denoising 

•  Small spatial sigma (e.g. 7x7 window) 

•  Adapt range sigma to noise level  

•  Maybe not best denoising method, but best 
simplicity/quality tradeoff 
– No need for acceleration (small kernel) 

– But the denoising feature in e.g. Photoshop is better 



Ordinary Bilateral Filter 

Bilateral à two kinds of weights, one image A : 
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‘Joint’ or ‘Cross’ Bilateral Filter 

NEW:        two kinds of weights, two images 
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c 

s 

A: Noisy, dim 
(ambient image) 

c 

s 

B: Clean,strong  
(Flash image)  



Image A: Warm, shadows, but too Noisy 
(too dim for a good quick photo) 

No-flash 



Image B: Cold, Shadow-free, Clean 
(flash: simple light, ALMOST no shadows) 



MERGE BEST OF BOTH: apply 
‘Cross Bilateral’ or ‘Joint Bilateral’ 



(it really is much better!) 



Dark Flash Photography 

Dilip Krishnan 
Rob Fergus 

 
 

Dept. of Computer Science, 
Courant Institute,  

New York University 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 





Our Camera & Dark Flash 

Dark Flash 
 
Emits Ultraviolet 
(UV) and Infrared 
(IR) light just 
outside visible 
wavelength range 



•  Dark flash is ~200 times dimmer than conventional 
Ground truth Reconstruction 2. Ambient image 

Dark Flash Photography 

1. Dark Flash image 



Key Challenges 

1.  How to add light to the scene without it 
being perceived by people. 

2.  How to obtain an image with correct colors. 



Key Challenges 

1.  How to add light to the scene without it 
being perceived by people. 

2.  How to obtain an image with correct colors. 



Dark Flash Emission Spectrum 

Camera 
Spectral 
Sensitivity 

Dark  
Flash 
Emission 



Flash Safety  

•  Government tables  
specify safe limits  
of  exposure to  
UV (< 400nm) 

•  Safety limit is  
115,000 Flashes 
per day @ 1m 

•  Each flash equivalent  
to being outside for  
1/100th second 

 

Dark Flash 

Dark	
  Light	
  
@	
  1m	
  for	
  
~1	
  sec	
  

Hazard 
     Factor 

Visible 



Key Challenges 

1.  How to add light to the scene without it 
being perceived by people. 

2.  How to obtain an image with correct colors. 



Two Images: Five Spectral Bands 

•  In Dark Flash image: 
–  “Blue” channel records UV 
–  “Red” channel records IR 

Assumptions 
 
1.  Little ambient  

UV and IR light 
 

2.  UV/IR flash dominates 
ambient visible light 

2. Ambient R G B 

1. Dark Flash IR UV 



Ambient : 1/20th sec  Reconstruction Long exposure: 4 sec 



1/64th  1/90th  1/256th  

Reconstruction 

Ambient (Fraction of Normal Illumination) 



Ambient Illumination: 1/40th Normal Lighting  



Reconstruction 

Ambient  
Zoom-in 

Reconstruction 
Zoom-in 

Reconstruction 



Ambient 
Zoom-in 

Reconstruction 
Zoom-in 

Reconstruction 



Limitations – Lack of edges in UV/IR  

Taking	
  Photos	
  in	
  Low	
  Light	
  Levels	
  

1/45th 1/90th  1/256th  Dark flash 

Long Exposure 
 

Ambient - Fraction of normal illumination 

Reconstruction 



High Dynamic Range Imaging




Real world dynamic range 

•  Eye can adapt from ~ 10-6 to 106 cd/m2 

•  Often 1  :  10,000 in a scene 

10-6 106 

Real world 

High dynamic range 



Picture dynamic range 

•  Typically   1: 20 or 1:50 
– Black              is   ~ 50x darker than white 

 

10-6 106 

10-6 106 

Real world 

Picture 

Low contrast 



Multiple exposure photography 

•  Merge multiple exposure to cover full range 

•  We obtain one single image with floats per pixel 
– But we still can’t display it 

10-6 106 

Real world 
High dynamic range 

HDR 
Merge 



HDR image using multiple exposure 

•  Given N photos at different exposure 

•  Recover a HDR color for each pixel 



If we know the response curve 

•  Just look up the inverse of the response curve 

•  But how do we get the curve?  

Pixel value 

scene value 



Calibrating the response curve 

•  Two basic solutions 
– Vary scene luminance and see pixel values 

•  Assumes we control and know scene luminance 

– Vary exposure and see pixel value for one scene 
luminance  

•  But note that we can usually not vary exposure more finely 
than by 1/3 stop 

•  Best of both:  
– Vary exposure 

– Exploit the large number of pixels 



• 3 

• 1 

• 2 

Δt = 
1/100 sec 

• 3 

• 1 

• 2 

Δt = 
1 sec 

• 3 

• 1 

• 2 

Δt = 
1/1000 sec 

• 3 

• 1 

• 2 

Δt = 
10 sec 

Image series 

• 3 

• 1 

• 2 

Δt = 
1/10 sec 

Exposure = Radiance × Δt 
log Exposure = log Radiance + log 

Δt 

Pixel Value Z = f(Exposure) 

Slide adapted from Alyosha Efros who borrowed it from Paul Debevec 
Δ t don't really correspond to pictures. Oh well.  

The Algorithm 



log Exposure 

Assuming unit radiance 
for each pixel 

After adjusting radiances to obtain a 
smooth response curve 

Pi
xe

l v
al

ue
 3 

1 

2 

log Exposure 

Pi
xe

l v
al

ue
 

Slide stolen from Alyosha Efros who stole it from Paul Debevec 

Response curve 
•  Exposure is unknown, fit to find a smooth curve 



Slide stolen from Fredo Durand who stole it from  Alyosha Efros who stole it from Paul Debevec 

Reconstructed radiance map 



Problem: Contrast reduction 

•  Match limited contrast of the medium 

•  Preserve details 

10-6 106 

10-6 106 

Real world 

Picture 

Low contrast 

High dynamic range 



Tone mapping 

•  Input: high-dynamic-range image 
–  (floating point per pixel) 



Naïve technique 

•  Scene has 1:10,000 contrast, display has 1:100 

•  Simplest contrast reduction? 



Naïve: Gamma compression 

•  X -> Xγ  (where γ=0.5 in our case)	



•  But… colors are washed-out. Why? 
Input Gamma 



Gamma compression on intensity 

•  Colors are OK,  
but details (intensity high-frequency) are blurred 

Gamma on intensity Intensity 

Color 



Oppenheim 1968, Chiu et al. 1993 

•  Reduce contrast of low-frequencies (log domain) 

•  Keep high frequencies 
Reduce low frequency Low-freq. 

High-freq. 

Color 



The halo nightmare 

•  For strong edges 

•  Because they contain high frequency 
Reduce low frequency Low-freq. 

High-freq. 

Color 



Bilateral filtering to the rescue 

•  Large scale = bilateral (log intensity)  

•  Detail = residual 
Output Large-scale 

Detail 

Color 

[Durand & Dorsey 2002] 



Contrast reduction 
Input HDR image 

Contrast 
too high! 



Contrast reduction 

Color 

Intensity 

Input HDR image 



Contrast reduction 

Color 

Intensity Large scale 

Bilateral  
Filter  
(in log domain!) 

Input HDR image 

Spatial sigma: 2% image size 
Range sigma: 0.4 (in log 10) 



Contrast reduction 

Detail 

Color 

Intensity Large scale 

Bilateral  
Filter 

Input HDR image 

Detail = log intensity –large scale 
(residual) 



Contrast reduction 

Detail 

Color 

Intensity Large scale 

Bilateral  
Filter 

Reduce 
contrast 

Large scale 

Input HDR image 



Contrast reduction 

Detail 

Color 

Intensity Large scale 

Bilateral  
Filter 

Reduce 
contrast 

Detail 

Large scale 

Preserve! 

Input HDR image 



Contrast reduction 

Detail 

Color 

Intensity Large scale 

Bilateral  
Filter 

Reduce 
contrast 

Detail 

Large scale 

Color 

Preserve! 

Output Input HDR image 



Contrast reduction in log domain 

•  Set target large-scale contrast (e.g. log10 10) 
–  In linear output, we want 1:10 contrast for large scale 

•  Compute range of input large scale layer:  
–  largeRange = max(inLogLarge) – min (inLogLarge) 

•  Scale factor k= log10 (10) / largeRange 

•  Normalize so that the biggest value is 0 in log 
 

 
outLog= inLogDetail +  

  inLogLarge * k – max(inLogLarge) 


