Today

• Search Conclusion
• Constraint Satisfaction Problems

A* Review

• A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$
• A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
• Heuristic design is key: relaxed problems can help

A* Graph Search Gone Wrong

Consistency

The story on Consistency:
• Definition: $cost(A \text{ to } C) + h(C) \geq h(A)$
• Consequence in search tree:
 Two nodes along a path: N_A, N_C
 $g(N_C) = g(N_A) + cost(A \text{ to } C)$
 $g(N_C) + h(C) \geq g(N_A) + h(A)$
• The f value along a path never decreases
• Non-decreasing f means you’re optimal to every state (not just goals)
Optimality Summary

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- In general, natural admissible heuristics tend to be consistent
- Remember, costs are always positive in search!

What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables \(X_i \) with values from a domain \(D \) (sometimes \(D \) depends on \(i \))
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: \(X_{ij} \)
 - Domains: \{0, 1\}
 - Constraints:
 \[
 \forall i, j, k \quad (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}
 \]
 \[
 \forall i, j, k \quad (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}
 \]
 \[
 \forall i, j, k \quad (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}
 \]
 \[
 \sum_{i,j} X_{ij} = N
 \]

- Formulation 1.5:
 - Variables: \(Q_k \)
 - Domains: \{11, 12, 13, \ldots, 21, \ldots, NN\}
 - Constraints:
 \[
 \forall i, j \quad \text{non-threatening}(Q_i, Q_j)
 \]
 \[
 \forall i, j \quad (Q_i, Q_j) \in \{(11,23), (11,24), \ldots\}
 \]

- Formulation 2:
 - Variables: \(Q_k \)
 - Domains: \{1, 2, 3, \ldots, N\}
 - Constraints:
 Implicit: \(\forall i, j \quad \text{non-threatening}(Q_i, Q_j) \)
 Explicit: \((Q_1, Q_2) \in \{(1,3), (1,4), \ldots\} \)

...there's an even better way! What is it?
Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

 WA ≠ NT
 (WA, NT) ∈ \{(red, green), (red, blue), (green, red)\}
- Solutions are assignments satisfying all constraints, e.g.:\n \(WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\)

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles):

 \(F T U W R O X_1 X_2 X_3\)
- Domains:

 \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\)
- Constraints (boxes):

 \(\text{alldiff}(F, T, U, W, R, O)\)

 \(O + O = R + 10 \cdot X_1\)

 \(\ldots\)

Example: Sudoku

- Variables: Each (open) square
- Domains: \(\{1, 2, \ldots, 9\}\)
- Constraints:

 9-way alldiff for each column
 9-way alldiff for each row
 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
- Look at all intersections
- Adjacent intersections impose constraints on each other

Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - "General position": no junctions change with small movements of the eye.
- Then each line on image is one of the following:

 - Boundary line (edge of an object) (\(\rightarrow\)) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (\(\+)
 - Interior concave edge (\(-\))
Legal Junctions
- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label

Varieties of CSPs
- Discrete Variables
 - Finite domains
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
 - Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints
- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 - \(S \neq \text{green} \)
 - Binary constraints involve pairs of variables:
 - \(S.A \neq W.A \)
 - Higher-order constraints involve 3 or more variables:
 - e.g., cryptarithm column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representative by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Standard Search Formulation
- Standard search formulation of CSPs (incremental)
- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, \{\}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal

Real-World CSPs
- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!
- Many real-world problems involve real-valued variables…

Search Methods
- What does BFS do?
- What does DFS do?
- What's the obvious problem?
- What's the slightly-less-obvious problem?
Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., (WA = red then NT = green) same as (NT = green then WA = red)
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- Idea 2: Only allow legal assignments at each point
 - I.e., consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - "Incremental goal test"

- Depth-first search for CSPs with these two improvements is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for \(n = 25 \)

Backtracking Example

Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

 - Why min rather than max?
 - Also called "most constrained variable"
 - "Fail-fast" ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

 - Why most rather than fewest constraints?
Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:

 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent:
 - $X \rightarrow Y$ is consistent if for every value x there is some allowed y

 - If X loses a value, neighbors of X need to be rechecked!
 - Arc consistency detects failure earlier than forward checking
 - What’s the downside of arc consistency?
 - Can be run as a preprocessor or after each assignment

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
- Worst-case solution cost is \(O((n/c)(d^c)) \), linear in \(n \)
- E.g., \(n = 80, d = 2, c = 20 \)
 \[2^{80} = 4 \text{ billion years at 10 million nodes/sec} \]
 \[(4)(2^{20}) = 0.4 \text{ seconds at 10 million nodes/sec} \]

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
- For \(i = n : 2 \), apply RemoveInconsistent(Parent\((X_i) \), \(X_i \))
- For \(i = 1 : n \), assign \(X_i \) consistently with Parent\((X_i) \)
- Runtime: \(O(n \ d^2) \)

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n \ d^2) \) time!
- Compare to general CSPs, where worst-case time is \(O(d^n) \)
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size \(c \) gives runtime \(O((d^c)(n-c) \ d^2) \), very fast for small \(c \)

Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints} \)

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \text{number of attacks} \)
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking + depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem strucutre
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Node Class

class Node:
def __init__(self, state, parent, action, path_cost):
 "Create a search tree Node, derived from a parent by an action."
 "YOUR CODE HERE: Set state, parent, action, path_cost"
 self.state = state
 etc......
 if parent:
 "YOUR CODE HERE: If valid parent, increment depth, path_cost"
def path(self):
 "Create a list of nodes from the root to this node."
 "i.e. Follow parent pointers back up to root"
def expand(self, problem):
 "Return a list of nodes reachable from this node"
 "i.e. Follow parent pointers back up to root"
def graph_search(problem, fringe):
 "Search through the successors of a problem to find a goal."
 return None
def depthFirstSearch(problem):
 "Search the deepest nodes in the search tree first"
 return graph_search(problem, util.Stack())
def breadthFirstSearch(problem):
 "Search the shallowest nodes in the search tree first"
 return graph_search(problem, util.Queue())