Machine Learning

• Up until now: how to reason in a model and how to make optimal decisions

• Machine learning: how to acquire a model on the basis of data / experience
 • Learning parameters (e.g. probabilities)
 • Learning structure (e.g. BN graphs)
 • Learning hidden concepts (e.g. clustering)

Example: Spam Filter

• Input: email
• Output: spam/ham
• Setup:
 • Get a large collection of example emails, each labeled "spam" or "ham"
 • Note: someone has to hand label all this data!
 • Want to learn to predict labels of new, future emails
• Features: The attributes used to make the ham / spam decision
 • Words: FREE!
 • Text Patterns: $dd, CAPS
 • Non-text: SenderInContacts
 • ...

Example: Digit Recognition

• Input: images / pixel grids
• Output: a digit 0-9
• Setup:
 • Get a large collection of example images, each labeled with a digit
 • Note: someone has to hand label all this data!
 • Want to learn to predict labels of new, future digit images
• Features: The attributes used to make the digit decision
 • Pixels: (6,8)=ON
 • Shape Patterns: NumComponents, AspectRatio, NumLoops
 • ...

Important Concepts

• Data: labeled instances, e.g. emails marked spam/ham
 • Training set
 • Held-out set
 • Test set
• Features: attribute-value pairs which characterize each x
• Experimentation cycle
 • Learn parameters (e.g. model probabilities) on training set
 • Tune hyperparameters on held-out set
 • Compute accuracy of test set
 • Very important: never "peek" at the test set
• Evaluation
 • Accuracy: fraction of instances predicted correctly
 • Overfitting and generalization
 • Want a classifier which does well on test data
 • Overfitting: fitting the training data very closely, but not generalizing well
 • We’ll investigate overfitting and generalization formally in a few lectures
General Naïve Bayes

- A general naïve Bayes model:

\[P(Y, F_1 \ldots F_n) = P(Y) \prod_i P(F_i|Y) \]

| Y parameters | n x (F x Y) parameters |

- We only specify how each feature depends on the class.
- Total number of parameters is \(\text{linear} \) in \(n \).

Naïve Bayes for Text

- Bag-of-Words Naïve Bayes:
 - Predict unknown class label (spam vs. ham).
 - Assume evidence features (e.g., the words) are independent.
 - Warning: subtly different assumptions than before!

- Generative model

\[P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i|C) \]

- Tied distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution \(P(F|Y) \).
 - In a bag-of-words model
 - Each position is identically distributed.
 - All positions share the same conditional prob \(P(W|C) \).
 - Why make this assumption?

Example: Spam Filtering

- Model:

\[P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i|C) \]

- What are the parameters?

\[
\begin{align*}
P(C) & \\
\text{ham} : & 0.46 \quad \text{spam} : 0.33
\end{align*}
\]

\[
\begin{align*}
P(W|\text{spam}) & \\
\text{the} : & 0.0166
\end{align*}
\]

\[
\begin{align*}
P(W|\text{ham}) & \\
\text{the} : & 0.0230
\end{align*}
\]

- Where do these tables come from?

Parameter Estimation

- Estimating distribution of random variables like \(X \) or \(X | Y \)
- Empirically: use training data
 - For each outcome \(x_i \), look at the empirical rate of that value:

\[f_{\text{ML}}(x) = \frac{\text{count}(x_i)}{\text{total samples}} \]

- This is the estimate that maximizes the likelihood of the data

\[L(x, \theta) = \prod_i P(x_i|\theta) \]

Example: Overfitting

- Posterior determined by relative probabilities (odds ratios):

\[
\begin{align*}
P(W|\text{ham}) & \\
P(W|\text{spam})
\end{align*}
\]

| south-west | inf | nation | inf | minute | inf | guaranteed | inf | $205.00 | inf | delivery | inf |
| south-west | inf | nation | inf | minute | inf | guaranteed | inf | $205.00 | inf | delivery | inf |

What went wrong here?
Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn’t
 mean we won’t see it at test time.
 - Unlikely that every occurrence of “minute” is 100% spam
 - What about all the words that don’t occur in the training set at all?
 - In general, we can’t go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn’t generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but
 isn’t enough
- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Relative frequencies are the maximum likelihood estimates
 \[\theta_{ML} = \arg \max_\theta P(X|\theta) \]
 \[P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}} \]
- In Bayesian statistics, we think of the parameters as just another random
 variable, with its own distribution
 \[\theta_{MAP} = \arg \max_\theta P(\theta|X) \]
 \[\theta_{MAP} = \arg \max_\theta P(X|\theta) P(\theta)/P(X) \]
 \[= \arg \max_\theta P(X|\theta) P(\theta) \]

Estimation: Laplace Smoothing

- Laplace’s estimate:
 \[P_{LAP}(x) = \frac{c(x) + 1}{N + |X|} \]
 \[P_{LAP}(X) = \]

Estimation: Linear Interpolation

- Laplace’s estimate (extended):
 \[P_{LAP}(x) = \frac{c(x) + k}{N + k|X|} \]
 \[P_{LAP}(X) = \]
 - What’s Laplace with k = 0?
 - k is the strength of the prior
 - Laplace for conditionals:
 - Smooth each condition independently:
 \[P_{LAP}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|} \]
 - Other option: linear interpolation
 - Also get P(X) from the data
 - Make sure the estimate of P(X|Y) isn’t too different from P(X)
 \[P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x) \]
 - What if \(\alpha \) is 0?!
Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:
 \[
 \frac{P(W|\text{ham})}{P(W|\text{spam})} \quad \frac{P(W|\text{spam})}{P(W|\text{ham})}
 \]

 - **helvetica**: 11.4
 - **seem**: 10.8
 - **group**: 10.2
 - **ago**: 8.4
 - **areas**: 8.3
 - **...**

 - **verdana**: 28.8
 - **Credit**: 28.4
 - **ORDER**: 27.2
 - **<PURT>**: 26.9
 - **money**: 26.5
 - **...**

 Do these make more sense?

Tuning on Held-Out Data

- Now we've got two kinds of unknowns
 - Parameters: the probabilities \(P(Y|X), P(Y)\)
 - Hyperparameters, like the amount of smoothing to do, \(\alpha\)
- Where to learn?
 - Learn parameters from training data
 - Must tune hyperparameters on different data
 - \(\alpha\)
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Baselines

- First step: get a baseline
 - Baselines are very simple "straw man" procedures
 - Help determine how hard the task is
 - Help know what a "good" accuracy is

- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
 - For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

- The confidence of a probabilistic classifier:
 - Posterior over the top label
 \[
 \text{confidence}(x) = \max P(y|x)
 \]
 - Represents how sure the classifier is of the classification
 - Any probabilistic model will have confidences
 - No guarantee confidence is correct

Measuring Performance

- Two main measures
 1. ROC curves
 - Receiver Operating Characteristic
 2. Recall Precision

ROC Curves

- In two class problem, we have
 - True Positives
 - False Positives
 - True Negatives
 - False Negatives
 - ROC curve shows trade-off btw. two types of error
Precision vs. Recall

- Let’s say we want to classify web pages as homepages or not.
 - In a test set of 1K pages, there are 3 homepages.
 - Our classifier says they are all non-homepages.
 - 99.7 accuracy!

- Need new measures for rare positive events.

- Precision: fraction of guessed positives which were actually positive.
- Recall: fraction of actual positives which were guessed as positive.

- Say we guess 5 homepages, of which 2 were actually homepages.
 - Precision: 2 correct / 5 guessed = 0.4
 - Recall: 2 correct / 3 true = 0.67

- Which is more important in customer support email automation?
- Which is more important in airport face recognition?

Precision vs. Recall

- Precision/recall tradeoff:
 - Often, you can trade off precision and recall.
 - Only works well with weakly calibrated classifiers.

- To summarize the tradeoff:
 - Break-even point: precision value when \(p = r \).
 - F-measure: harmonic mean of \(p \) and \(r \):
 \[
 F_1 = \frac{2}{1/p + 1/r}
 \]

Errors, and What to Do

- Examples of errors:

 Dear GlobalSCAPE Customer,
 GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99 - the regular list price is $499! The most common question we’ve received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

 ... To receive your $30 Amazon.com promotional certificate, click through to http://www.amazon.com/apparel and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you’d rather not receive future e-mails announcing new store launches, please click . . .

- Need more features—words aren’t enough!
- Have you emailed the sender before?
- Have 1K other people just gotten the same email?
- Is the sending information consistent?
- Is the email in ALL CAPS?
- Do inline URLs point where they say they point?
- Does the email address you by (your) name?

- Can add these information sources as new variables in the NB model.
- Next class we’ll talk about classifiers which let you easily add arbitrary features more easily.

Naïve Bayes - Summary

- Bayes rule lets us do diagnostic queries with causal probabilities.
- The naïve Bayes assumption takes all features to be independent given the class label.
- We can build classifiers out of a naïve Bayes model using training data.
- Smoothing estimates is important in real systems.
- Classifier confidences are useful, when you can get them.

Generative vs. Discriminative

- Generative classifiers:
 - E.g. naïve Bayes.
 - A causal model with evidence variables.
 - Query model for causes given evidence.

- Discriminative classifiers:
 - No causal model, no Bayes rule, often no probabilities at all.
 - Try to predict the label Y directly from X.
 - Robust, accurate with varied features.
 - Loosely: mistake driven rather than model driven.

- What to Do About Errors?
 - Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Can add these information sources as new variables in the NB model.
- Next class we’ll talk about classifiers which let you easily add arbitrary features more easily.
Discriminative vs. Generative

- Generative model (The artist)
 - \[p(Data, No Zebra) \]
 - \[p(Data | No Zebra) \]

- Discriminative model (The lousy painter)
 - \[p(No Zebra | Data) \]
 - \[p(Data | No Zebra) \]

 - Classification function \[f(Data) \]

Some (Simplified) Biology

- Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation \(w(x) = \sum w_i f_i(x) = w \cdot f(x) \)

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Example: Spam

- Imagine 4 features (spam is "positive" class):
 - free (number of occurrences of "free")
 - money (occurrences of "money")
 - BIAS (intercept, always has value 1)

 \[
 \begin{align*}
 \text{BIAS} & : -3 \\
 \text{free} & : 4 \\
 \text{money} & : 2 \\
 \ldots \\
 \text{BIAS} & : 1 \\
 \text{free} & : 1 \\
 \text{money} & : 1 \\
 \ldots \\
 \end{align*}
 \]

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to \(Y=+1 \)
 - Other corresponds to \(Y=-1 \)

\[
W = \begin{cases} +1 & \text{if } w \cdot f(x) \geq 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}
\]

Binary Perceptron Update

- Start with zero weights
- For each training instance:
 - Classify with current weights

 \[
 y = \begin{cases} +1 & \text{if } w \cdot f(x) \geq 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}
 \]

 - If correct (i.e., \(y = y^* \)), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if \(y^* \) is -1.

 \[
 w = w + y^* \cdot f
 \]
Multiclass Decision Rule

- If we have more than two classes:
 - Have a weight vector for each class: w_y
 - Calculate an activation for each class
 \[
 \text{activation}_y(x, y) = w_y \cdot f(x)
 \]
 - Highest activation wins
 \[
 y = \arg \max_y (\text{activation}_y(x, y))
 \]

Example

"win the vote"

w_{SPORTS} $w_{POLITICS}$ w_{TECH}

<table>
<thead>
<tr>
<th>BIAS</th>
<th>win</th>
<th>game</th>
<th>vote</th>
<th>the</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The Perceptron Update Rule

- Start with zero weights
- Pick up training instances one by one
- Classify with current weights
 \[
 y = \arg \max_y w_y \cdot f(x) = \arg \max_y \sum_i w_{yi} \cdot f_i(x)
 \]
 - If correct, no change!
 - If wrong: lower score of wrong answer, raise score of right answer
 \[
 w_y = w_y - f(x)
 \\
 w_y' = w_y' + f(x)
 \]

Example

"win the vote"
"win the election"
"win the game"

w_{SPORTS} $w_{POLITICS}$ w_{TECH}

<table>
<thead>
<tr>
<th>BIAS</th>
<th>win</th>
<th>game</th>
<th>vote</th>
<th>the</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Examples: Perceptron

- Separable Case