Machine Learning

- Up until now: how to reason in a model and how to make optimal decisions
- Machine learning: how to acquire a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

Example: Spam Filter

- Input: email
- Output: spam/ham
- Setup:
 - Get a large collection of example emails, each labeled "spam" or "ham"
 - Note: someone has to hand label all this data!
 - Want to learn to predict labels of new, future emails
- Features: The attributes used to make the ham / spam decision
 - Words: FREE!
 - Text Patterns: allCaps, CAPS
 - Non-text: SenderInContacts
 - ...

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9
- Setup:
 - Get a large collection of example images, each labelled with a digit
 - Note: someone has to hand label all this data!
 - Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the digit decision
 - Pixels: (6,8)=ON
 - Shape Patterns: NumComponents, AspectRatio, NumLoops
 - ...

Other Classification Tasks

- In classification, we predict labels y (classes) for inputs x
- Examples:
 - Spam detection (input: document, classes: spam / ham)
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grader (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - … many more
- Classification is an important commercial technology!
Important Concepts

- Data: labeled instances, e.g., emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
 - Learning parameters (e.g., model probabilities) on training set
 - Tune hyperparameters on held-out set
 - Compute accuracy of test set
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - We’ll investigate overfitting and generalization formally in a few lectures

Bayes Nets for Classification

- One method of classification:
 - Use a probabilistic model!
 - Features are observed random variables \(F \)
 - Y is the query variable
 - Use probabilistic inference to compute most likely Y

\[
y = \text{argmax}_y P(y|F_1 \ldots F_n)
\]

- You already know how to do this inference

Simple Classification

- Simple example: two binary features

\[
P(m|s, f) \quad \text{direct estimate} \quad P(S|M) \quad P(F|M)
\]

\[
P(m|s, f) = \begin{cases}
1 & \text{Bayes estimate (no assumptions)} \\
\frac{P(s, f|m)P(m)}{P(s, f)} & \text{Conditional independence} \\
\end{cases}
\]

\[
P(m|s, f) = P(s|m)P(f|m)P(m) + \begin{cases}
P(\text{not}, m, s, f) = P(s|m)P(f|m)P(m) \\
P(\text{not}, m, s, f) = P(s|m)P(f|m)P(m) \\
\end{cases}
\]

Inference for Naive Bayes

- Goal: compute posterior over causes
 - Step 1: get joint probability of causes and evidence

\[
P(Y, F_1 \ldots F_n) = \begin{bmatrix} P(Y_1, F_1 \ldots F_n) \\
P(Y_2, F_1 \ldots F_n) \\
\vdots \\
P(Y_k, F_1 \ldots F_n) \\
\end{bmatrix}
\]

\[
P(Y_1)P(F_1|Y_1)P(F_2|Y_2)P(F_3|Y_3) \ldots P(F_n|Y_n)
\]

- Step 2: get probability of evidence
- Step 3: renormalize

\[
P(F_1 \ldots F_n)
\]

General Naive Bayes

- A general naïve Bayes model:

\[
P(Y, F_1 \ldots F_n) = P(Y) \prod_{i} P(F_i|Y)\]

\[
\text{parameters } |Y| \times n \times |F|
\]

- We only specify how each feature depends on the class
- Total number of parameters is linear in n

General Naive Bayes

- What do we need in order to use naïve Bayes?

 - Inference (you know this part)
 - Start with a bunch of conditionals, P(Y) and the P(F|Y) tables
 - Use standard inference to compute P(Y|F_1 \ldots F_n)
 - Nothing new here
 - Estimates of local conditional probability tables
 - P(Y), the prior over labels
 - P(F_i|Y) for each feature (evidence variable)
 - These probabilities are collectively called the parameters of the model and denoted by \(\theta \)
 - Up until now, we assumed these appeared by magic, but…
 - …they typically come from training data: we’ll look at this now
A Digit Recognizer

- Input: pixel grids

- Output: a digit 0–9

Naïve Bayes for Digits

- Simple version:
 - One feature F_{ij} for each grid position (i,j)
 - Possible feature values are on/off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.
 \[F_{0,0} = 0 \quad F_{0,1} = 0 \quad F_{0,2} = 1 \quad F_{0,3} = 0 \quad \ldots \quad F_{15,15} = 0 \]
 - Here: lots of features, each is binary valued

- Naïve Bayes model:
 \[P(Y|F_{0,0}, F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y) \]

- What do we need to learn?

Examples: CPTs

Parameter Estimation

- Estimating distribution of random variables like X or $X | Y$

- Empirically: use training data
 - For each outcome x, look at the empirical rate of that value:
 \[\hat{P}(x) = \frac{\text{count}(x)}{\text{total samples}} \]
 - This is the estimate that maximizes the likelihood of the data

- Elicitation: ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 - Trouble calibrating

Naïve Bayes for Text

- Bag-of-Words Naïve Bayes:
 - Predict unknown class label (spam vs. ham)
 - Assume evidence features (e.g. the words) are independent
 - Generative model
 \[P(C, W_1, \ldots, W_n) = P(C) \prod_i P(W_i|C) \]

- Tied distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution $P(F|Y)$
 - In a bag-of-words model
 - Each position is identically distributed
 - All positions share the same conditional probs $P(W|C)$
 - Why make this assumption?
Example: Spam Filtering

- Model: $P(C, W_1, ..., W_n) = P(C) \prod_{i} P(W_i | C)$
- What are the parameters?

| P(C) | P(W|spam) | P(W|ham) |
|--------|-----------|----------|
| ham: 0.66 | | |
| spam: 0.33 | 0.0156 | 0.0210 |
| the: 0.0153 | to: 0.0133 | of: 0.0119 |
| and: 0.0115 | you: 0.0095 | 2002: 0.0110 |
| of: 0.0095 | with: 0.0086 | and: 0.0105 |
| you: 0.0093 | from: 0.0107 | a: 0.0100 |
| a: 0.0086 | with: 0.0080 | to: 0.01517 |
| ... | ... | ... |

- Where do these tables come from?

Example: Overfitting

- Posteriors determined by relative probabilities (odds ratios):

 - south-west: inf
 - nation: inf
 - morally: inf
 - nicely: inf
 - seriously: inf
 - ... screens: inf
 - minute: inf
 - guaranteed: inf
 - 205.00: inf
 - delivery: inf
 - signature: inf
 - ...

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time.
 - Unlikely that every occurrence of “minute” is 100% spam
 - Unlikely that every occurrence of “seriously” is 100% ham
 - What about all the words that don’t occur in the training set at all?
 - In general, we can’t go around giving unseen events zero probability

- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn’t generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn’t enough

- To generalize better: we need to smooth or regularize the estimates

Example: Overfitting

- Posteriors determined by relative probabilities (odds ratios):

 | P(W|ham) | P(W|spam) | P(W|ham) |
 |---------|-----------|----------|
 | (prior) | 0.33333 | 0.66666 |
 | Tot Spam| -1.1 | -0.4 |
 | Tot Ham | | |

P(spam | w) = 98.9

Example: Overfitting

- Posteriors determined by relative probabilities (odds ratios):

 | P(W|ham) | P(W|spam) |
 |---------|-----------|
 | P(W|ham) |
 | south-west: inf
 | nation: inf
 | morally: inf
 | nicely: inf
 | seriously: inf
 | ... screens: inf
 | minute: inf
 | guaranteed: inf
 | 205.00: inf
 | delivery: inf
 | signature: inf
 | ...

What went wrong here?

Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it’s heads, what’s the estimate for P(heads)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

- Basic idea:
 - We have some prior expectation about parameters (here, the probability of heads)
 - Given little evidence, we should skew towards our prior
 - Given a lot of evidence, we should listen to the data
Estimation: Smoothing

- Relative frequencies are the maximum likelihood estimates
 \[
 \theta_{ML} = \arg \max_{\theta} P(X|\theta) = \frac{\text{count}(x)}{\text{total samples}}
 \]
- In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution
 \[
 \theta_{MAP} = \arg \max_{\theta} P(\theta|X) = \arg \max_{\theta} \frac{P(X|\theta)P(\theta)}{P(X)} = \arg \max_{\theta} P(X|\theta)P(\theta)
 \]

Estimation: Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did
 \[
 P_{MAP}(x) = \frac{c(x) + 1}{N + |X|} \quad P_{ML}(X) = \frac{c(x)+1}{N+|X|}
 \]
 - Can derive this as a MAP estimate with Dirichlet prior (see cs281a)

Estimation: Laplace Smoothing

- Laplace’s estimate (extended):
 - Pretend you saw every outcome \(k\) extra times
 \[
 P_{LAP}(X) = \frac{c(x) + k}{N + k|X|}
 \]
 - What’s Laplace with \(k = 0\)?
 - \(k\) is the strength of the prior

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for \(P(X|Y)\):
 - When \(|X|\) is very large
 - When \(|Y|\) is very large

- Another option: linear interpolation
 - Also get \(P(X)\) from the data
 - Make sure the estimate of \(P(X|Y)\) isn’t too different from \(P(X)\)
 \[
 P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)
 \]
 - What if \(\alpha\) is 0? 1?

- For even better ways to estimate parameters, as well as details of the math see cs281a, cs288

Real NB: Smoothing

- For real classification problems, smoothing is critical

<table>
<thead>
<tr>
<th>Font</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helvetica</td>
<td>11.4</td>
</tr>
<tr>
<td>Arial</td>
<td>10.8</td>
</tr>
<tr>
<td>Group</td>
<td>10.2</td>
</tr>
<tr>
<td>Age</td>
<td>8.4</td>
</tr>
<tr>
<td>Area</td>
<td>8.3</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Tuning on Held-Out Data

- Now we’ve got two kinds of unknowns
 - Parameters: the probabilities \(P(Y|X), P(Y)\)
 - Hyperparameters, like the amount of smoothing to do, \(k, \alpha\)

- Where to learn?
 - Learn parameters from training data
 - Must tune hyperparameters on different data
 - \(\alpha\)?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Do these make more sense?
Baselines

• First step: get a baseline
 • Baselines are very simple "straw man" procedures
 • Help determine how hard the task is
 • Help know what a "good" accuracy is

• Weak baseline: most frequent label classifier
 • Gives all test instances whatever label was most common in the training set
 • E.g. for spam filtering, might label everything as ham
 • Accuracy might be very high if the problem is skewed
 • E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn’t very good…

• For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

• The confidence of a probabilistic classifier:
 • Posterior over the top label
 \[\text{confidence}(x) = \max_y P(y|x) \]
 • Represents how sure the classifier is of the classification
 • Any probabilistic model will have confidences
 • No guarantee confidence is correct

• Calibration
 • Weak calibration: higher confidences mean higher accuracy
 • Strong calibration: confidence predicts accuracy rate
 • What’s the value of calibration?

Precision vs. Recall

• Let’s say we want to classify web pages as homepages or not
 • In a test set of 1K pages, there are 3 homepages
 • Our classifier says they are all non-homepages
 • Precision: 3 correct / 3 guessed = 0.4
 • Recall: 3 correct / 3 true = 1.0

• Which is more important in customer support email automation?
• Which is more important in airport face recognition?

Errors, and What to Do

• Examples of errors

Dear GlobalSCAPE Customer,
GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we’ve received about this offer is - is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

... To receive your $30 Amazon.com promotional certificate, click through to http://www.amazon.com/apparel.
and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you’d rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

• Need more features—words aren’t enough!
• Have you emailed the sender before?
• Have 1K other people just gotten the same email?
• Is the sending information consistent?
• Is the email in ALL CAPS?
• Do inline URLs point where they say they point?
• Does the email address you by (your) name?

• Can add these information sources as new variables in the NB model
• Next class we’ll talk about classifiers which let you easily add arbitrary features more easily
Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

Case-Based Reasoning

- Similarity for classification
 - Case-based reasoning
 - Predict an instance’s label using similar instances
- Nearest-neighbor classification
 - K-NN: copy the label of the most similar data point
 - E-NN: let the k nearest neighbors vote (have to devise a weighting scheme)
- Key issues: how to define similarity
 - Trade-off:
 - Small k gives relevant neighbors
 - Large k gives smoother functions
 - Sound familiar?
- [DEMO]

Recap: Nearest-Neighbor

- Nearest neighbor:
 - Classify test example based on closest training example
 - Requires a similarity function (kernel)
 - Lazy learning: extract classifier from data
 - Eager learning: keep data around and predict from it at test time

Nearest-Neighbor Classification

- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example
- Encoding: image is vector of intensities:
 \[\mathbf{I} = (0.0 \ 0.0 \ 0.3 \ 0.6 \ 0.7 \ 0.1 \ldots 0.0) \]
- What’s the similarity function?
 - Dot product of two images vectors:
 \[\text{sim}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i \]
 - Usually normalize vectors so \(|\mathbf{x}| = 1\)
 - min = 0 (where?), max = 1 (where?)