Introduction to Artificial Intelligence

V22.0472-001 Fall 2009

Lecture 19: Speech Recognition & Viterbi Decoding

Rob Fergus – Dept of Computer Science, Courant Institute, NYU

Slides from John DeNero, Dan Klein, Zheng Chen

Today

- HMMs: Most likely explanation queries
- Speech recognition
 - A massive HMM!
 - Details of this section not required

Speech and Language

- Speech technologies
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems
- Language processing technologies
 - Machine translation
 - Information extraction
 - Web search, question answering
 - Text classification, spam filtering, etc…

HMMs: MLE Queries

- HMMs defined by
 - States \(X \)
 - Observations \(E \)
 - Initial distr: \(P(X_1) \)
 - Transitions: \(P(X_t|X_{t-1}) \)
 - Emissions: \(P(E|X) \)

- Query: most likely explanation:

\[
\arg\max_{x_{1:T}} P(x_{1:T}|e_{1:T}) \quad \text{Viterbi algorithm}
\]

State Path Trellis

- State trellis: graph of states and transitions over time

\[
X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_N
\]

- Each arc represents some transition \(x_{t-1} \rightarrow x_t \)
- Each arc has weight \(P(x_t|x_{t-1})P(e_t|x_t) \)
- Each path is a sequence of states
- The product of weights on a path is the seq’s probability
- Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph
Viterbi Algorithm

\[x_{1:T} = \arg \max_{x_{1:T}} P(x_{1:T} \mid \mathbf{e}_{1:T}) = \arg \max_{x_{1:T}} P(x_{1:T}, e_{1:T}) \]

\[m_t[x_t] = \max_{e_{1:t-1}} P(x_{1:t-1}, e_{1:t-1}) \]

\[= \max_{e_{1:t-1}} P(x_{1:t-1}, e_{1:t-1}) P(x_t \mid x_{t-1}) P(e_t \mid x_t) \]

\[= P(x_t \mid x_{t-1}, e_{1:t-1}) \max_{e_{1:t-2}} P(x_{1:t-1}, e_{1:t-2}) \]

\[= P(x_t \mid x_{t-1}) m_{t-1}[x_{t-1}] \]

Example

Andrew Viterbi

Digitizing Speech

Speech in an Hour

- Speech input is an acoustic wave form

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
 - sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

- Fourier transform of wave displayed as a spectrogram
 - darkness indicates energy at each frequency
Adding 100 Hz + 1000 Hz Waves

Part of [ae] from “lab”

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in 0.036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Resonances of the vocal tract

- The human vocal tract as an open tube

 Length 17.5 cm

 - Air in a tube of a given length will tend to vibrate at resonance frequency of tube.
 - Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end.

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

 - x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
 - Peaks at 930 Hz, 1860 Hz, and 3020 Hz.
Acoustic Feature Sequence

- Time slices are translated into acoustic feature vectors (~39 real numbers per slice)
- These are the observations, now we need the hidden states X

State Space

- $P(E\mid X)$ encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- $P(X\mid X')$ encodes how sounds can be strung together
- We will have one state for each sound in each word
- From some state x, can only:
 - Stay in the same state (e.g. speaking slowly)
 - Move to the next position in the word
 - At the end of the word, move to the start of the next word
- We build a little state graph for each word and chain them together to form our state space X

HMMs for Speech

Schematic Architecture for a (simplified) Speech Recognizer

The most common model used for speech is constrained, allowing a state to transition only to itself or to a single succeeding state.

Fine-grained HMM model to represent a phone
Decoding

• While there are some practical issues, finding the words given the acoustics is an HMM inference problem.

• We want to know which state sequence $x_{1:T}$ is most likely given the evidence $e_{1:T}$:

$$x_{1:T} = \underset{x_{1:T}}{\arg \max} P(x_{1:T} | e_{1:T})$$

• From the sequence x, we can simply read off the words.

Also use Language Model

For the given acoustic observation $O = o_1, o_2, \ldots, o_n$, the goal of speech recognition is to find out the corresponding word sequence $W = w_1, w_2, \ldots, w_n$ that has the maximum posterior probability $P(W|O)$:

$$\hat{W} = \underset{W \in \mathcal{L}}{\arg \max} P(W | O)$$

Using the Bayes' rule:

$$\hat{W} = \underset{W \in \mathcal{L}}{\arg \max} \frac{P(O|W)P(W)}{P(O)} = \underset{W \in \mathcal{L}}{\arg \max} \frac{P(O|W)}{P(O)}$$

where $P(O|W)$ is the likelihood and $P(W)$ is the prior.

![Diagram of HMM and Language Model](image)