
1

Introduction to Artificial Intelligence
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Lecture 18: Particle &Lecture 18: Particle & 
Kalman Filtering

Rob Fergus – Dept of Computer Science, Courant Institute, NYU

Slides from John DeNero, Dan Klein, Haris Baltzakis, Dieter Fox

Announcements

• Final exam will be at 7pm on Wednesday December 14th

• Date of last class

• 1.5 hrs long

• I won’t ask anything about the last few classes.y g
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Recap: Reasoning Over Time

• Stationary Markov models

X2X1 X3 X4 rain sun
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• Hidden Markov models
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sun no umbrella 0.8

Recap: Filtering
•

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe

Particle Filtering

• Sometimes |X| is too big to use exact 
inference
• |X| may be too big to even store B(X)
• E.g. X is continuous
• |X|2 may be too big to do updates
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• Solution: approximate inference

• Track samples of X, not all values
• Samples are called particles
• Time per step is linear in the number of 

samples
• But: number needed may be large
• In memory: list of particles, not states

• This is how robot localization works 
in practice

Example: State Representations  
for Robot Localization

Grid Based approaches 
(Markov localization)

6

Particle Filters 
(Monte Carlo
localization)
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Representation: Particles

• Our representation of P(X) is now a 
list of N particles (samples)

• Generally, N << |X|

• Storing map from X to counts would 
defeat the point

• P(x) approximated by number of 
particles with value x

• So, many x will have P(x) = 0! 

• More particles, more accuracy

• For now, all particles have a weight 
of 1
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Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

Particle Filtering: Elapse Time

• Each particle is moved by sampling its 
next position from the transition model

• This is like prior sampling samples’• This is like prior sampling – samples  
frequencies reflect the transition probs

• Here, most samples move clockwise, but some 
move in another direction or stay in place

• This captures the passage of time
• If we have enough samples, close to the exact 

values before and after (consistent)

Particle Filtering: Observe

• Slightly trickier:
• Don’t do rejection sampling (why not?)

• We don’t sample the observation, we fix it

• This is similar to likelihood weighting, so we 
downweight our samples based on the 
evidence

• Note that, as before, the probabilities don’t 
sum to one, since most have been 
downweighted (in fact they sum to an 
approximation of P(e))

Particle Filtering: Resample

• Rather than tracking 
weighted samples, we 
resample

• N times, we choose 
from our weighted 
sample distribution (i.e. 

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1) w=0.9  
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4p

draw with replacement)

• This is equivalent to 
renormalizing the 
distribution

• Now the update is 
complete for this time 
step, continue with the 
next one

(2,1) w=0.9
(3,2) w=0.3

Old Particles:
(2,1) w=1
(2,1) w=1
(2,1) w=1  
(3,2) w=1
(2,2) w=1
(2,1) w=1
(1,1) w=1
(3,1) w=1
(2,1) w=1
(1,1) w=1

draw xi
t−1 from Bel(xt−1)

draw xi
t from p(xt | xi

t−1,ut−1)
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Robot Localization

• In robot localization:

• We know the map, but not the robot’s position

• Observations may be vectors of range finder readings

• State space and readings are typically continuous (works basically like a 
very fine grid) and so we cannot store B(X)

• Particle filtering is a main technique• Particle filtering is a main technique
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Robot Motion Model 

Start

Proximity Sensor Model

Laser sensor Sonar sensor
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Robotic Cars

• DARPA Grand Challenge

• DARPA Urban Challenge

• http://www.youtube.com/watch?v=SQFEmR50HAk

SLAM

• SLAM = Simultaneous Localization And Mapping

• We do not know the map or our location

• Our belief state is over maps and positions!

• Main techniques: Kalman filtering (Gaussian HMMs) and particle 
methods

DP-SLAM, Ron Parr

Example: State Representations  
for Robot Localization

Grid Based approaches 
(Markov localization)

36

Particle Filters 
(Monte Carlo
localization) Kalman 

Tracking
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Kalman Filters - Equations
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A: State transition matrix (n x n)

C: Measurement matrix (m x n)

w: Process noise (є Rn), 
M t i ( Rm)

Recursive filter for estimating state of linear 
dynamical system from noisy measurements
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v: Measurement noise(є Rm)

Kalman Filters - Update
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Kalman Filter - Example
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Kalman Filter - Example
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Kalman Filter - Example
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Kalman Filter - Example
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Kalman Filter – Example 
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Kalman Filter Applications

Apollo guidance computer

Cruise missiles

A l lAirplane autopilot

Robotics

Finance

…

Continuous State Approaches

• Perform very accurately if the inputs are precise (performance is 
optimal with respect to any criterion in the linear case).

• Computational efficiency.
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• Requirement that the initial state is known.

• Inability to recover from catastrophic failures 

• Inability to track Multiple Hypotheses the state (Gaussians have 
only one mode)

Discrete State Approaches

• Ability (to some degree) to operate even when its initial pose is 
unknown (start from uniform distribution).

• Ability to deal with noisy measurements.

• Ability to represent ambiguities (multi modal distributions).
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• Computational time scales heavily with the number of possible 
states (dimensionality of the grid, number of samples, size of the 
map).

• Accuracy is limited by the size of the grid cells/number of 
particles-sampling method.

• Required number of particles is unknown

Best Explanation Queries

X5X2

E

X1 X3 X4

E E E E

• Query: most likely seq:

48

E1 E2 E3 E4 E5
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State Path Trellis

• State trellis: graph of states and transitions over time

sun

rain

sun

rain

sun

rain

sun

rain

• Each arc represents some transition

• Each arc has weight

• Each path is a sequence of states

• The product of weights on a path is the seq’s probability

• Can think of the Forward (and now Viterbi) algorithms as 
computing sums of all paths (best paths) in this graph 49

Viterbi Algorithm

sun

rain

sun

rain

sun

rain

sun

rain
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Example

51

Andrew Viterbi


