Announcements

- Final exam will be at 7pm on Wednesday December 14th
 - Date of last class
 - 1.5 hrs long
- I won’t ask anything about the last few classes.

Recap: Reasoning Over Time

- Stationary Markov models
 \[P(X_t) \] (\(t = 1 \) to \(t \))

- Hidden Markov models
 \[P(E_t | X_t) \]

Recap: Filtering

Elapse time: compute \(P(X_t | e_{1:t-1}) \)

Observe: compute \(P(X_t | e_t) \)

\[
P(x_t | e_{1:t}) = \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) \cdot P(x_t | x_{t-1})
\]

Example: State Representations for Robot Localization

Grid based approaches (Markov localization)

Particle Filtering

- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
 - |X|^2 may be too big to do updates

- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states

- This is how robot localization works in practice
Representation: Particles

• Our representation of \(P(X) \) is now a list of \(N \) particles (samples)
 • Generally, \(N \ll |X| \)
 • Storing map from \(X \) to counts would defeat the point
• \(P(x) \) approximated by number of particles with value \(x \)
 • So, many \(x \) will have \(P(x) = 0! \)
• More particles, more accuracy
 • For now, all particles have a weight of 1

Particle Filtering: Elapse Time

• Each particle is moved by sampling its next position from the transition model
 \[x' = \text{sample}(P(X'|x)) \]
 • This is like prior sampling – samples' frequencies reflect the transition probs
 • Here, most samples move clockwise, but some move in another direction or stay in place
 • This captures the passage of time
 • If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe

• Slightly trickier:
 • Don’t do rejection sampling (why not?)
 • We don’t sample the observation, we fix it
 • This is similar to likelihood weighting, so we downweight our samples based on the evidence
 \[w(z) = P(e|x) \]
 \[B(X) \propto P(e|X)B'(X) \]
 • Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of \(P(e) \))

Particle Filtering: Resample

• Rather than tracking weighted samples, we resample
 • \(N \) times, we choose from our weighted sample distribution (i.e. draw with replacement)
 • This is equivalent to renormalizing the distribution
 • Now the update is complete for this time step, continue with the next one

Particle Filter Algorithm

\[\text{Bel}(x) = \eta \int \int \int \text{Bel}(x_0) \ p(x_1|x_0,u_0) \ p(z|u_0) \ dx_1 \]

Robot Localization

• In robot localization:
 • We know the map, but not the robot’s position
 • Observations may be vectors of range finder readings
 • State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store \(B(X) \)
 • Particle filtering is a main technique
Robot Motion Model

Proximity Sensor Model

Laser sensor

Sonar sensor
SLAM

• SLAM = Simultaneous Localization And Mapping
 • We do not know the map or our location
 • Our belief state is over maps and positions!
 • Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Example: State Representations for Robot Localization

Robotic Cars

• DARPA Grand Challenge
• DARPA Urban Challenge
• http://www.youtube.com/watch?v=SQFEmR50HAc
Kalman Filters - Equations

Recursive filter for estimating state of linear dynamical system from noisy measurements

\[P(x_{t+1} | x_t) = N(Ax_t, \Gamma) \]
\[P(x_t | x_t) = N(Cx_t, \Sigma) \]

where:
- \(x_t \): State at time \(t \)
- \(A \): State transition matrix (n x n)
- \(C \): Measurement matrix (m x n)
- \(w_t \): Process noise (\(\epsilon \mathbb{R}^n \))
- \(v_t \): Measurement noise (\(\epsilon \mathbb{R}^m \))
- \(\Sigma \): Process noise covariance matrix
- \(\Gamma \): Measurement noise covariance matrix

Process dynamics (motion model)

\[x_t = Ax_{t-1} + w_t \]
\[y_t = Cx_t + v_t \]
\[w_t \sim N(0, \Gamma) \]
\[v_t \sim N(0, \Sigma) \]

Measurements (observation model)

\[N(\mu,m,V) = \frac{1}{2\pi V} \exp\left(-\frac{1}{2}(x-m)^T V^{-1}(x-m)\right) \]

Kalman Filters - Update

Predict state, covariance

\[\hat{x}_t = Ax_{t-1} \]
\[P_t = AP_{t-1}A^T + \Gamma \]

Compute Gain

\[K_t = P_t C^T (CP_t C^T + \Sigma)^{-1} \]

Compute Innovation

\[J_t = \hat{y}_t - C \hat{x}_t \]

Update

\[\hat{x}_t = \hat{x}_t - K_t J_t \]
\[P_t = (I - K_t C)P_t \]

Kalman Filter - Example

\[x_t = Ax_{t-1} + B + w_t \]
\[y_t = Cx_t + v_t \]
\[w_t \sim N(0, \Gamma) \]
\[v_t \sim N(0, \Sigma) \]

\[A = [1] \]
\[B = [u] \]
\[C = [1] \]
\[D = [1] \]

Predict

\[\hat{x}_t = Ax_{t-1} + B \]
\[P_t = AP_{t-1}A^T + \Gamma \]
Kalman Filter – Example

Predict:
- $\hat{x}_t = A\hat{x}_{t-1} + B$
- $P_t = AP_{t-1}A^T + \Gamma$

Compute Innovation:
- $J_t = \hat{y}_t - C\hat{x}_t$

Compute Gain:
- $K_t = P_tC^T(CP_tC^T + \Sigma)^{-1}$

Update:
- $\hat{x}_t = \hat{x}_t - K_tJ_t$
- $P_t = (I - K_tC)P_t$

Kalman Filter Applications

- Apollo guidance computer
- Cruise missiles
- Airplane autopilot
- Robotics
- Finance

Continuous State Approaches

- Perform very accurately if the inputs are precise (performance is optimal with respect to any criterion in the linear case).
- Computational efficiency.
- Requirement that the initial state is known.
- Inability to recover from catastrophic failures
- Inability to track Multiple Hypotheses the state (Gaussians have only one mode)

Discrete State Approaches

- Ability (to some degree) to operate even when its initial pose is unknown (start from uniform distribution).
- Ability to deal with noisy measurements.
- Ability to represent ambiguities (multi modal distributions).
- Computational time scales heavily with the number of possible states (dimensionality of the grid, number of samples, size of the map).
- Accuracy is limited by the size of the grid cells/number of particles-sampling method.
- Required number of particles is unknown

Best Explanation Queries

- Query: most likely seq:
 \[\arg \max_{x_{1:T}} P(x_{1:T} | e_{1:T}) \]
State Path Trellis

- State trellis: graph of states and transitions over time

\[
X_1 \quad X_2 \quad \cdots \quad X_N
\]

- Each arc represents some transition \(x_{t-1} \to x_t \)
- Each arc has weight \(P(x_t|x_{t-1})P(e_t|x_t) \)
- Each path is a sequence of states
- The product of weights on a path is the seq’s probability
- Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph

Viterbi Algorithm

\[
x_{1:T}^* = \arg \max_{x_{1:T}} P(x_{1:T}, x_{1:T}, e_{1:T}) = \arg \max_{x_{1:T}} P(x_{1:T}, e_{1:T})
\]

\[
m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})
= \max_{x_{1:t-1}} P(x_{1:t-1}, e_{1:t-1})P(x_t|x_{t-1})P(e_t|x_t)
= P(e_t|x_t) \max_{x_{1:t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-2}, e_{1:t-2})
= P(e_t|x_t) \max_{x_{1:t-1}} m_{t-1}[x_{t-1}]
\]

Example

Andrew Viterbi

[Qualcomm logo]