Introduction to Artificial Intelligence

V22.0472-001 Fall 2009

Lecture 18: Particle &
Kalman Filtering

Rob Fergus — Dept of Computer Science, Courant Institute, NYU

Slides from John DeNero, Dan Klein, Haris Baltzakis, Dieter Fox

Announcements

+ Final exam will be at 7pm on Wednesday December 14t
« Date of last class
e 1.5hrslong

* I won’t ask anything about the last few classes.

Recap: Reasoning Over Time

* Stationary Markov models 03

O O O e @@

P(X1) P(X|X_1)

2
(] (]
Recap: Filtering
Elapse time: compute P(X, | e;,.;)
Plxy|e1q-1) = Z P(xi_1ler:—1) - Play|zi—y)
Tp—1
Observe: compute P(X, | e;,)
.r”[.‘l'f:t"];p) o J'”[..";|{ 1it—1 | P{Cf Ig)
Belief: <P(rain), P(sun)>
@ @ P(X,) <05,05> Prior on X,
PIX, | Ey = wmbrella) <0.82,0.18> Observe
@ @ P(Xq | I winhrello) <0.63,0.37> Elapse time

P(Xa | Ex umb, 2 = umb) <0.88,0.12> Observe

0.3
* Hidden Markov models P(E|X)
) e O e) T
rain umbrella 0.9
rain no umbrella 0.1
e @ @ @ sun umbrella 0.2
sun no umbrella 0.8
L] (] (]
Particle Filtering
* Sometimes |X] is too big to use exact
inference 0.0 | 0.1 | 00
* | X]| may be too big to even store B(X)
« E.g. Xis continuous 0.0 | 00 | 02
* | X|? may be too big to do updates
0.0 | 0.2 | 0.5
* Solution: approximate inference
* Track samples of X, not all values
* Samples are called particles
* Time per step is linear in the number of °
1
Samp (&)
* But: number needed may be large
* In memory: list of particles, not states LX)
* This is how robot localization works 0.0
: . 00 o'
in practice

Example: State Representations
for Robot Localization

Grid Based approaches
(Markov localization)

Representation: Particles

* Our representation of P(X) is now a °
list of N particles (samples)

+ Generally, N << |X] Y

* Storing map from X to counts would

defeat the point ® 0
00 | %

* P(x) approximated by number of

particles with value x Particles:
(33)

* So, many x will have P(x) = 0! o

* More particles, more accuracy

For now, all particles have a weight
of 1

.
GEEEERES
cezbebee

Particle Filtering: Elapse Time

* Each particle is moved by sampling its
next position from the transition model

' = sample(P(X'|))

frequencies reflect the transition probs
* Here, most samples move clockwise, but some
move in another direction or stay in place

@)
* This is like prior sampling — samples’ ee : P

* This captures the passage of time .L
« If we have enough samples, close to the exact ®
values before and after (consistent)

Particle Filtering: Observe

+ Slightly trickier:
* Don’t do rejection sampling (why not?)
* We don’t sample the observation, we fix it e |oo
* This is similar to likelihood weighting, so we
downweight our samples based on the
evidence ® o9 ®®
w(x) = P(e|x)
B(X) x P(¢|X)B'(X) i
* Note that, as before, the probabilities don’t
sum to one, since most have been o 00
downweighted (in fact they sum to an
approximation of P(e)) O ..dp S

Particle Filtering: Resample

* Rather than tracking OIT:;P;H\:::I%S%
weighted samples, we (2:1) Ww=09 o
resample (2,1) w=0.9
(3.1)w=0.4
i (3.2)w=0.3 L] 00
* N times, we choose (2.2) w=0.4
from our weighted (1,1) w=0.4 UJ
sample distribution (i.e. (3,1) w=0.4 ° o0 | ®°
draw with replacement) (2,1) w=0.9
(3.2)w=0.3
* This is equivalent to Old Particles:
renormalizing the 2.1 w=1
distribution 2,1) w=1
(2.1) w=1
* Now the update is gé; x; ® ®
complete for this time (2,1) w=1
step, continue with the (1.1) w=1 PSS
next one (3.1)w=1 o0 o []
1) w=1 ®e
(1.1) w=1

Particle Filter Algorithm

Bel(x) = 17 P I) [pOx %1 4,) Bel(x.,) dx,

L draw x,_, from Bel(x, ;)
draw xi, from p(x, | X/_1,U; 1)

Importance factor for xi;:
target distribution
proposal distribution
_ 1Pz %) p(x] % 4,Upy) Bel (x4)
PO [X, Uiy) Bel (%)
p(z %)

w, =

t

8

Robot Localization

* Inrobot localization:
* We know the map, but not the robot’s position
 Observations may be vectors of range finder readings
« State space and readings are typically continuous (works basically like a
very fine grid) and so we cannot store B(X)

Particle filtering is a main technique

Robot Motion Model

Proximity Sensor Model

e e
Memered | al Mesaired ——
asa|
i
B \M—\
- .. - = E3 = =
meamsrrd distance (cm| a e
Laser sensor Sonar sensor

Ed

Robotic Cars

* DARPA Grand Challenge
* DARPA Urban Challenge
* http://www.youtube.com/watch?v=SOFEmR50HAk

* SLAM = Simultaneous Localization And Mapping
* We do not know the map or our location
* Our belief state is over maps and positions!

* Main techniques: Kalman filtering (Gaussian HMMs) and particle
methods

DP-SLAM, Ron Parr

Example: State Representations
.............. for Robot Localization

Grid Based approaches
(Markov ization)

N

Particle Filters
(Monte Carlo
localization)

Kalman
Tracking

36

Kalman Filters - Equations

Recursive filter for estimating state of linear
dynamical system from noisy measurements

A: State transition matrix (n x n)
P(x[%)~ N(Ax ,.T) _)
P(‘X)~ N(CX 2) C: Measurement matrix (m x n)
¥)= v w: Process noise (€ R"),
v: Measurement noise(e R™)

=AX_+W,
% AX‘ ! ! \ Process dynamics (motion model)
Yo =CX +VY,

waNED) [N
v, =N(0,2)

measurements (observation model)

Where: N(x;m,V)= Wexp{—%(xf m)TV 2 (x— m)J

37

Kalman Filters - Update

Predict state, Xo= A%,
X = AXy + W, covariance P= AF’HA.r +I
Y, =CX +V,
w, ~ N(0,T) Compute Gain K, =R C'(CRC +3)*

v, = N(0,%)

Compute Innovation ‘]t = 91 _C)’ii_

| Update)21 =)21 -K.J,

P=(-KC)R

Kalman Filter - Example

X, = AX_ +B+w, A =[]
Y, =CX +D+v, B, =[u]
- d I, w,~N(O,r) C=[-1
ol v, = N(0,2) D, =[1]

Xy = X HU + W,
yo=d-X+V,
w, ~ N(0,T)
v, = N(0,%)

- 39

t
38
Kalman Filter - Example
Predict K =A%, +B
P=AP_A"+T
."l
> 40

Kalman Filter - Example

Predict R=A%,+B
Pi= APLAT +T

hl:

Kalman Filter - Example

Predict ~ % =A%a+B
Pi= APLAT 4T

Compute ~ a
Innovation 9t = ¥ ~CX,

Compute
Gain K, =R CT(CRC"+%)"

Kalman Filter — Example

Predict X =A%, +B
Pi= AP AT +T

Compute a a
Innovation 3t = Ye ~CX;

Compute
Gain K,=RC'(CRC" +3)”

T =

Update X =% -KJ,
P=(1-KC)R

Kalman Filter — Example

Predict K= Ak, +B
Pi= AP AT 4T

i

Kalman Filter Applications

Apollo guidance computer

Cruise missiles

Airplane autopilot
Robotics

Finance

Continuous State Approaches

¢ Perform very accurately if the inputs are precise (performance is
optimal with respect to any criterion in the linear case).

¢ Computational efficiency.

* Requirement that the initial state is known.
* Inability to recover from catastrophic failures

* Inability to track Multiple Hypotheses the state (Gaussians have
only one mode)

Discrete State Approaches

° Ability (to some degree) to operate even when its initial pose is
unknown (start from uniform distribution).

* Ability to deal with noisy measurements.

° Ability to represent ambiguities (multi modal distributions).

¢ Computational time scales heavily with the number of possible
states (dimensionality of the grid, number of samples, size of the
map).

* Accuracy is limited by the size of the grid cells/number of
particles-sampling method.

* Required number of particles is unknown
47

Best Explanation Queries
* Query: most likely seq:
arg max P(@1:¢le1:t)
T1:t
48

State Path Trellis

* Each arc represents some transition T — Tt

* Each arc has weight P(ay|zy_1) P(eq|z¢)

* Each path is a sequence of states

* The product of weights on a path is the seq’s probability

+ Can think of the Forward (and now Viterbi) algorithms as

Viterbi Algorithm

sun sun sun sun
rain rain rain rain
K — aramayx P PN N\ — avramay P o AY
‘LI:T—GISIIIGAL \Ll 1‘|C1:1/—KJI9IIIGA1 \‘Ll 1',(11 1}
z1T 1T

mylay] = max Py 1,70 e1:)

Il
‘3
W

[max P(zyy-1,e1:4-1)P(@i|w-1) Pledxy)

= P(et|ay) max P(xlep—1) max Pay-1.e1:-1)
foe T1:4-32

= P(et|xr) f]_’:?fn”(!b‘:lir---l)f”.- 1lzi-1] 50

computing sums of all paths (best paths) in this graph 49
Example
Rain, Rain, Rain y Rain Rain ¢
state
space
ths
pa Jalse firlse Janlse false false
umbrella firlse
BI82 5155 0361 0334
most
likely < g
paths 818 0491 1237 0173
m Il m 12 m LB m (B m 1:5

51

Andrew Viterbi

