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Abstract

Semantic hashing[1] seeks compact binary codes of data-points so that the
Hamming distance between codewords correlates with semantic similarity.
In this paper, we show that the problem of finding a best code for a given
dataset is closely related to the problem of graph partitioning and can
be shown to be NP hard. By relaxing the original problem, we obtain a
spectral method whose solutions are simply a subset of thresholded eigen-
vectors of the graph Laplacian. By utilizing recent results on convergence
of graph Laplacian eigenvectors to the Laplace-Beltrami eigenfunctions of
manifolds, we show how to efficiently calculate the code of a novel data-
point. Taken together, both learning the code and applying it to a novel
point are extremely simple. Our experiments show that our codes outper-
form the state-of-the art.

1 Introduction

With the advent of the Internet, it is now possible to use huge training sets to address
challenging tasks in machine learning. As a motivating example, consider the recent work
of Torralba et al. who collected a dataset of 80 million images from the Internet [2, 3]. They
then used this weakly labeled dataset to perform scene categorization. To categorize a novel
image, they simply searched for similar images in the dataset and used the labels of these
retrieved images to predict the label of the novel image. A similar approach was used in [4]
for scene completion.

Although conceptually simple, actually carrying out such methods requires highly efficient
ways of (1) storing millions of images in memory and (2) quickly finding similar images to
a target image.

Semantic hashing, introduced by Salakhutdinov and Hinton[5] , is a clever way of addressing
both of these challenges. In semantic hashing, each item in the database is represented by a
compact binary code. The code is constructed so that similar items will have similar binary
codewords and there is a simple feedforward network that can calculate the binary code for
a novel input. Retrieving similar neighbors is then done simply by retrieving all items with
codes within a small Hamming distance of the code for the query. This kind of retrieval can
be amazingly fast - millions of queries per second on standard computers. The key for this
method to work is to learn a good code for the dataset. We need a code that is (1) easily
computed for a novel input (2) requires a small number of bits to code the full dataset and
(3) maps similar items to similar binary codewords.

To simplify the problem, we will assume that the items have already been embedded in
a Euclidean space, say Rd, in which Euclidean distance correlates with the desired simi-
larity. The problem of finding such a Euclidean embedding has been addressed in a large
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number of machine learning algorithms (e.g. [6, 7]). In some cases, domain knowledge can
be used to define a good embedding. For example, Torralba et al. [3] found that a 512
dimensional descriptor known as the GIST descriptor, gives an embedding where Euclidean
distance induces a reasonable similarity function on the items. But simply having Euclidean
embedding does not give us a fast retrieval mechanism.

If we forget about the requirement of having a small number of bits in the codewords, then
it is easy to design a binary code so that items that are close in Euclidean space will map
to similar binary codewords. This is the basis of the popular locality sensitive hashing
method E2LSH [8]. As shown in[8], if every bit in the code is calculated by a random linear
projection followed by a random threshold, then the Hamming distance between codewords
will asymptotically approach the Euclidean distance between the items. But in practice this
method can lead to very inefficient codes. Figure 1 illustrates the problem on a toy dataset
of points uniformly sampled in a two dimensional rectangle. The figure plots the average
precision at Hamming distance 1 using a E2LSH encoding. As the number of bits increases
the precision improves (and approaches one with many bits), but the rate of convergence
can be very slow.

Rather than using random projections to define the bits in a code, several authors have
pursued machine learning approaches. In [5] the authors used an autoencoder with several
hidden layers. The architecture can be thought of as a restricted Boltzmann machine (RBM)
in which there are only connections between layers and not within layers. In order to learn 32
bits, the middle layer of the autoencoder has 32 hidden units, and noise was injected during
training to encourage these bits to be as binary as possible. This method indeed gives codes
that are much more compact than the E2LSH codes. In [9] they used multiple stacked RBMs
to learn a non-linear mapping between input vector and code bits. Backpropagation using
an Neighborhood Components Analysis (NCA) objective function was used to refine the
weights in the network to preserve the neighborhood structure of the input space. Figure 1
shows that the RBM gives much better performance compared to random bits. A simpler
machine learning algorithm (Boosting SSC) was pursued in [10] who used adaBoost to
classify a pair of input items as similar or nonsimilar. Each weak learner was a decision
stump, and the output of all the weak learners on a given output is a binary code. Figure 1
shows that this boosting procedure also works much better than E2LSH codes, although
slightly worse than the RBMs1.

The success of machine learning approaches over LSH is not limited to synthetic data. In [5],
RBMs gave several orders of magnitude improvement over LSH in document retrieval tasks.
In [3] both RBMs and Boosting were used to learn binary codes for a database of millions
of images and were found to outperform LSH. Also, the retrieval speed using these short
binary codes was found to be significantly faster than LSH (which was faster than other
methods such as KD trees).

The success of machine learning methods leads us to ask: what is the best code for perform-
ing semantic hashing for a given dataset? We formalize the requirements for a good code
and show that these are equivalent to a particular form of graph partitioning. This shows
that even for a single bit, the problem of finding optimal codes is NP hard. On the other
hand, the analogy to graph partitioning suggests a relaxed version of the problem that leads
to very efficient eigenvector solutions. These eigenvectors are exactly the eigenvectors used
in many spectral algorithms including spectral clustering and Laplacian eigenmaps [6, 11].
This leads to a new algorithm, which we call “spectral hashing” where the bits are calculated
by thresholding a subset of eigenvectors of the Laplacian of the similarity graph. By utiliz-
ing recent results on convergence of graph Laplacian eigenvectors to the Laplace-Beltrami
eigenfunctions of manifolds, we show how to efficiently calculate the code of a novel data-
point. Taken together, both learning the code and applying it to a novel point are extremely
simple. Our experiments show that our codes outperform the state-of-the art.

1All methods here use the same retrieval algorithm, i.e. semantic hashing. In many applica-
tions of LSH and Boosting SSC, a different retrieval algorithm is used whereby the binary code
only creates a shortlist and exhaustive search is performed on the shortlist. Such an algorithm is
impractical for the scale of data we are considering.

2



0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

LSH

stumps boosting SSC

RBM

P
ro

p
o

rt
io

n
 g

o
o

d
 n

e
ig

h
b

o
rs

 f
o

r 
h

a
m

m
in

g
 d

is
ta

n
c
e

 <
 2

number of bits

stumps boosting SSC

LSH

RBM (two hidden layers)

Training samples

Figure 1: Building hash codes to find neighbors. Neighbors are defined as pairs of points in
2D whose Euclidean distance is less than ε. The toy dataset is formed by uniformly sampling
points in a two dimensional rectangle. The figure plots the average precision (number of
neighbors in the original space divided by number of neighbors in a hamming ball using the
hash codes) at Hamming distance ≤ 1 for three methods. The plots on the left show how
each method partitions the space to compute the bits to represent each sample. Despite
the simplicity of this toy data, the methods still require many bits in order to get good
performance.

2 Analysis: what makes a good code

As mentioned earlier, we seek a code that is (1) easily computed for a novel input (2) requires
a small number of bits to code the full dataset and (3) maps similar items to similar binary
codewords. Let us first ignore the first requirement, that codewords be easily computed for
a novel input and search only for a code that is efficient (i.e. requires a small number of
bits) and similarity preserving (i.e. maps similar items to similar codewords). For a code
to be efficient, we require that each bit has a 50% chance of being one or zero, and that
different bits are independent of each other. Among all codes that have this property, we
will seek the ones where the average Hamming distance between similar points is minimal.

Let {yi}
n
i=1 be the list of codewords (binary vectors of length k) for n datapoints and Wn×n

be the affinity matrix. Since we are assuming the inputs are embedded in Rd so that
Euclidean distance correlates with similarity, we will use W (i, j) = exp(−‖xi − xj‖

2/ε2).
Thus the parameter ε defines the distance in Rd which corresponds to similar items. Using
this notation, the average Hamming distance between similar neighbors can be written:∑

ij Wij‖yi − yj‖
2. If we relax the independence assumption and require the bits to be

uncorrelated we obtain the following problem:

minimize :
∑
ij

Wij‖yi − yj‖
2 (1)

subject to : yi ∈ {−1, 1}k

∑
i

yi = 0

1

n

∑
i

yiy
T
i = I

where the constraint
∑

i yi = 0 requires each bit to fire 50% of the time, and the constraint
1
n

∑
i yiy

T
i = I requires the bits to be uncorrelated.

Observation: For a single bit, solving problem 1 is equivalent to balanced graph partition-
ing and is NP hard.
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Proof: Consider an undirected graph whose vertices are the datapoints and where the
weight between item i and j is given by W (i, j). Consider a code with a single bit. The bit
partitions the graph into two equal parts (A,B), vertices where the bit is on and vertices
where the bit is off. For a single bit,

∑
ij Wij‖yi −yj‖

2 is simply the weight of the edges cut

by the partition: cut(A,B) =
∑

i∈A,j∈B W (i, j). Thus problem 1 is equivalent to minimizing

cut(A,B) with the requirement that |A| = |B| which is known to be NP hard [12].

For k bits the problem can be thought of as trying to find k independent balanced partitions,
each of which should have as low cut as possible.

2.1 Spectral Relaxation

By introducing a n×k matrix Y whose jth row is yT
j and a diagonal n×n matrix D(i, i) =∑

j W (i, j) we can rewrite the problem as:

minimize : trace(Y T (D − W )Y ) (2)

subject to : Y (i, j) ∈ {−1, 1}

Y T 1 = 0

Y T Y = I

This is of course still a hard problem, but by removing the constraint that Y (i, j) ∈ {−1, 1}
we obtain an easy problem whose solutions are simply the k eigenvectors of D − W with
minimal eigenvalue (after excluding the trivial eigenvector 1 which has eigenvalue 0).

2.2 Out of Sample Extension

The fact that the solution to the relaxed problem are the k eigenvectors of D − W with
minimal eigenvalue would suggest simply thresholding these eigenvectors to obtain a binary
code. But this would only tell us how to compute the code representation of items in the
training set. This is the problem of out-of-sample extension of spectral methods which is
often solved using the Nystrom method [13, 14]. But note that the cost of calculating the
Nystrom extension of a new datapoint is linear in the size of the dataset. In our setting,
where there can be millions of items in the dataset this is impractical. In fact, calculating
the Nystrom extension is as expensive as doing exhaustive nearest neighbor search.

In order to enable efficient out-of-sample extension we assume the datapoints xi ∈ Rd are
samples from a probability distribution p(x). The equations in the problem 1 are now seen
to be sample averages which we replace with their expectations:

minimize :

∫
‖y(x1) − y(x2)‖

2W (x1, x2)p(x1)p(x2)dx1x2 (3)

subject to : y(x) ∈ {−1, 1}k∫
y(x)p(x)dx = 0

∫
y(x)y(x)T p(x)dx = I

with W (x1, x2) = e−‖x1−x2‖
2/ε2 . Relaxing the constraint that y(x) ∈ {−1, 1}k now gives

a spectral problem whose solutions are eigenfunctions of the weighted Laplace-Beltrami
operators defined on manifolds [15, 16, 13, 17]. More explicitly, define the weighted Lapla-

cian Lp as an operator that maps a function f to g = Lpf by g(x)
p(x) = D(x)f(x)p(x) −∫

s
W (s, x)f(s)p(s)ds with D(x) =

∫
s
W (x, s). The solution to the relaxation of problem 3

are functions that satisfy Lpf = λf with minimal eigenvalue (ignoring the trivial solution
f(x) = 1 which has eigenvalue 0). As discussed in [16, 15, 13], with proper normalization,
the eigenvectors of the discrete Laplacian defined by n points sampled from p(x) converges
to eigenfunctions of Lp as n → ∞.

What do the eigenfunctions of Lp look like ? One important special case is when p(x) is
a separable distribution. A simple case of a separable distribution is a multidimensional
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uniform distribution Pr(x) =
∏

i ui(xi) where ui is a uniform distribution in the range
[ai, bi]. Another example is a multidimensional Gaussian, which is separable once the space
has been rotated so that the Gaussian is axes aligned.

Observation: [17] If p(x) is separable, and similarity between datapoints is defined as

e−‖xi−xj‖
2/ε2 then the eigenfunctions of the continuous weighted Laplacian, Lp have an outer

product form. That is, if Φi(x) is an eigenfunction of the weighted Laplacian defined on
R1 with eigenvalue λi then Φi(x1)Φj(x2) · · ·Φd(xd) is an eigenfunction of the d dimensional
problem with eigenvalue λiλj · · ·λd.

Specifically for a case of a uniform distribution on [a, b] the eigenfunctions of the one-
dimensional Laplacian Lp are extremely well studied objects in mathematics. They corre-
spond to the fundamental modes of vibration of a metallic plate. The eigenfunctions Φk(x)
and eigenvalues λk are:

Φk(x) = sin(
π

2
+

kπ

b − a
x) (4)

λk = 1 − e−
ε2

2
| kπ

b−a
|2 (5)

A similar equation is also available for the one dimensional Gaussian . In this case the
eigenfunctions of the one-dimensional Laplacian Lp are (in the limit of small ε) solutions
to the Schrodinger equations and are related to Hermite polynomials. Figure 2 shows the
analytical eigenfunctions for a 2D rectangle in order of increasing eigenvalue. The eigenvalue
(which corresponds to the cut) determines which k bits will be used. Note that the eigenvalue
depends on the aspect ratio of the rectangle and the spatial frequency — it is better to cut
the long dimension before the short one, and low spatial frequencies are preferred. Note
that the eigenfunctions do not depend on the radius of similar neighbors ε. The radius does
change the eigenvalue but does not affect the ordering.

We distinguish between single-dimension eigenfunctions, which are of the form Φk(x1) or
Φk(x2) and outer-product eigenfunctions which are of the form Φk(x1)Φl(x2). These outer-
product eigenfunctions are shown marked with a red border in the figure. As we now discuss,
these outer-product eigenfunctions should be avoided when building a hashing code.

Observation: Suppose we build a code by thresholding the k eigenfunctions of Lp with
minimal eigenvalue y(x) = sign(Φk(x)). If any of the eigenfunctions is an outer-product
eigenfunction, then that bit is a deterministic function of other bits in the code.

Proof: This follows from the fact that sign(Φ1(x1)Φ2(x2)) = sign(Φ1(x1))sign(Φ2(x2)).

This observation highlights the simplification we made in relaxing the independence con-
straint and requiring that the bits be uncorrelated. Indeed the bits corresponding to outer-
product eigenfunctions are approximately uncorrelated but they are surely not independent.

The exact form of the eigenfunctions for 1D continuous Laplacian for different distributions
is a matter of ongoing research [17]. We have found, however, that the bit codes obtained
by thresholding the eigenfunctions are robust to the exact form of the distribution. In par-
ticular, simply fitting a multidimensional rectangle distribution to the data (by using PCA
to align the axes, and then assuming a uniform distribution on each axis) works surprisingly
well for a wide range of distributions. In particular, using the analytic eigenfunctions of a
uniform distribution on data sampled from a Gaussian, works as well as using the numeri-
cally calculated eigenvectors and far better than boosting or RBMs trained on the Gaussian
distribution.

To summarize, given a training set of points {xi} and a desired number of bits k the spectral
hashing algorithm works by:

• Finding the principal components of the data using PCA.

• Calculating the k smallest single-dimension analytical eigenfunctions of Lp using a
rectangular approximation along every PCA direction. This is done by evaluating
the k smallest eigenvalues for each direction using (equation 4), thus creating a list
of dk eigenvalues, and then sorting this list to find the k smallest eigenvalues.
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Figure 2: Left: Eigenfunctions for a uniform rectangular distribution in 2D. Right: Thresh-
olded eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues de-
pend on the aspect ratio of the rectangle and the spatial frequency of the cut – it is better
to cut the long dimension first and lower spatial frequencies are better than higher ones.
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Figure 3: Comparison of neighborhood defined by hamming balls of different radii using
codes obtained with LSH, Boosting, RBM and spectral hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are
within a hamming distance of zero. Green corresponds to a hamming ball of radius 1, and
blue to radius 2.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

This simple algorithm has two obvious limitations. First, it assumes a multidimensional
uniform distribution generated the data. We have experimented with using multidimensional
Gaussians instead. Second, even though it avoids the trivial 3 way dependencies that arise
from outer-product eigenfunctions, other high-order dependencies between the bits may
exist. We have experimented with using only frequencies that are powers of two to avoid
these dependencies. Neither of these more complicated variants of spectral hashing gave a
significant improvement in performance in our experiments.

Figure 4a compares the performance of spectral hashing to LSH, RBMs and Boosting on a
2D rectangle and figure 3 visualizes the Hamming balls for the different methods. Despite
the simplicity of spectral hashing, it outperforms the other methods. Even when we apply
RBMs and Boosting to the output of spectral hashing the performance does not improve.
A similar pattern of results is shown in high dimensional synthetic data (figure 4b).

Some insight into the superior performance can be obtained by comparing the partitions
that each bit defines on the data (figures 2,1). Recall that we seek partitions that give low
cut value and are approximately independent. LSH which uses random linear partitions
may give very unbalanced partitions. RBMs and Boosting both find good partitions, but
the partitions can be highly dependent on each other.

3 Results

In addition to the synthetic results we applied the different algorithms to the image databases
discussed in [3]. Figure 5 shows retrieval results for spectral hashing, RBMs and boosting
on the “labelme” dataset. Note that even though the spectral hashing uses a terrible model
of the statistics of the database — it simply assumes a N dimensional rectangle, it performs
better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but
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Figure 4: left: results on 2D rectangles with different methods. Even though spectral
hashing is the simplest, it gives the best performance. right: Similar pattern of results for
a 10 dimensional distribution.
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Figure 5: Performance of different binary codes on the LabelMe dataset described in [3]. The
data is certainly not uniformly distributed, and yet spectral hashing gives better retrieval
performance than boosting and LSH.

our visual inspection of the retrieved neighbors suggests that with a small number of bits,
the retrieved images are better using spectral hashing than with boosting.

Figure 6 shows retrieval results on a dataset of 80 million images. This dataset is obviously
more challenging and even using exhaustive search some of the retrieved neighbors are se-
mantically quite different. Still, the majority of retrieved neighbors seem to be semantically
relevant, and with 64 bits spectral hashing enables this peformance in fractions of a second.

4 Discussion

We have discussed the problem of learning a code for semantic hashing. We defined a hard
criterion for a good code that is related to graph partitioning and used a spectral relaxation
to obtain an eigenvector solution. We used recent results on convergence of graph Laplacian
eigenvectors to obtain analytic solutions for certain distributions and showed the importance
of avoiding redundant bits that arise from separable distributions.

The final algorithm we arrive at, spectral hashing, is extremely simple - one simply performs
PCA on the data and then fits a multidimensional rectangle. The aspect ratio of this mul-
tidimensional rectangle determines the code using a simple formula. Despite this simplicity,
the method is comparable, if not superior, to state-of-the-art methods.
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Spectral hashing: 32 bits 64 bitsGist neighbors

Figure 6: Retrieval results on a dataset of 80 million images using the original gist descriptor,
and hash codes build with spectral hashing with 32 bits and 64 bits. The input image
corresponds to the image on the top-left corner, the rest are the 24 nearest neighbors using
hamming distance for the hash codes and L2 for gist.
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