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Abstract. We present a method for learning object classes without su-
pervision: learning is scale and translation-invariant, does not require
alignment nor correspondence between the training images, and is ro-
bust to clutter and occlusion. Class models are probabilistic constella-
tions of parts, and their parameters are estimated by maximizing the
likelihood of the training data. The appearance of the parts, as well as
their mutual position, relative scale and probability of detection are ex-
plicitly described in the model. We investigate two models differing in
their representation of the part’s configuration. Parts may be regions,
representing object appearance patches, or curves representing the local
object shape.
Recognition takes place in two stages. First, a feature-finder identifies
promising locations for the models’ part. Second, the category model is
used to compare the likelihood that the observed features are generated
by the model, or is generated by background clutter. The flexible nature
of the model is demonstrated by excellent results over six diverse object
classes including geometrically constrained classes (e.g. faces, cars) and
flexible objects (such as animals). We also describe an application of
a learnt model to object based retrieval of frames from the situation
comedy ‘Fawlty Towers’.
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1 Introduction

Representation, detection and learning are the main issues that need to be tack-
led in designing a visual system for recognizing object classes. The first challenge
is coming up with models that can capture the ‘essence’ of a category, i.e. what
is common to the objects that belong to it, and yet are flexible enough to ac-
commodate object variability (e.g. presence/absence of distinctive parts such as
mustache and glasses, variability in overall configuration, changing appearance
due to lighting conditions, viewpoint etc). The challenge of detection is defining
metrics and inventing algorithms that are suitable for matching models to im-
ages efficiently in the presence of occlusion and clutter. Learning is the ultimate
challenge. If we wish to be able to design visual systems that can recognize, say,
10,000 object classes, then effortless learning is a crucial step. This means that
those training steps that require a human operator (e.g. collection of good qual-
ity training exemplars of the class; elimination of clutter; correspondence and
scale normalization of the training examples) should be reduced to a minimum
or eliminated.

The problem of describing and recognizing classes, as opposed to specific
objects (e.g. [10,16,19]), has recently gained some attention in the machine vision
literature [1,2,4,5,7,9,11,14,18,21,22,24,28] with an emphasis on the detection of
faces [20,23,25], handwritten characters [3,13] and automobiles [14,22]. There is
broad agreement on the issue of representation: object classes are represented as
collection of features, or parts, each part has a distinctive appearance and spatial
position. Different authors vary widely on the details: the number of parts they
envisage (from a few to thousands of parts), how these parts are detected and
represented, how their position is represented, whether the variability in part
appearance and position is represented explicitly or is implicit in the details of the
matching algorithm. The issue of learning is perhaps the least well understood.
Most authors rely on manual steps to eliminate background clutter and normalize
the pose of the training examples. Recognition often proceeds by an exhaustive
search over image position and scale. In exploring only a few classes, many of
the challenges and difficulties in tacking thousands of classes have yet to be
encountered.

We focus our attention on the probabilistic approach proposed by Burl et

al. [5] which models objects as a constellations of parts. This approach presents
several advantages: the model explicitly accounts for configuration variations
and for the randomness in the presence/absence of features due to occlusion and
detector errors. It accounts explicitly for image clutter. It yields principled and
efficient detection methods. Weber et al. [27,28] proposed a maximum likelihood
unsupervised learning algorithm for the “constellation model” which successfully
learns object classes from cluttered data with minimal human intervention. We
propose here a number of substantial improvement to the constellation model
and to its maximum likelihood learning algorithm. First: we model configuration
variability using two different models, a “fully connected” model and a “star”
model. Second, while Burl et al. and Weber et al. explicitly model configuration
variability, they do not model the variability of appearance. We extend their
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Motorbikes Airplanes Faces Cars (Side) Cars (Rear) Spotted Cats Background Background

Fig. 1. Some sample images from the datasets. Note the large varia-
tion in scale in, for example, the cars (rear) database. These datasets
are from both http://www.vision.caltech.edu/html-files/archive.html and
http://www.robots.ox.ac.uk/∼vgg/data/, except for the Cars (Side) from
(http://l2r.cs.uiuc.edu/∼cogcomp/index research.html) and Spotted Cats from
the Corel Image library. A Powerpoint presentation of the figures in this chapter
can be found at http://www.robots.ox.ac.uk/∼vgg/presentations.html
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model to take this aspect into account. Third, appearance here is learnt simul-
taneously with configuration, whereas in their work the appearance of a part is
fixed before configuration learning. Fourth: they use correlation to detect their
parts. We substitute their front end with an interest operator, which detects
regions and their scale in the manner of [15,17], and a curve detector. Fifth,
Weber et al. did not experiment extensively with scale-invariant learning, most
of their training sets are collected in such a way that the scale is approximately
normalized. We extend their learning algorithm so that new object classes may
be learnt efficiently, without supervision, from training sets where the object ex-
amples have large variability in scale. A final contribution is experimenting with
a number of new image datasets to validate the overall approach over several
object classes. Examples images from these datasets are shown in figure 1.

In summary, the outcome is that an object category constellation model can
be learnt in a semi-supervised manner from a set of training examples: it is only
necessary that the training examples contain instances of the object category,
the position and segmentation of the instance in each image are not required.
Furthermore, both learning and recognition are translation and scale invariant.
In recognition the localization of the object is determined in the image.

The aim of this chapter is to describe our algorithm in sufficient detail to
make implementation possible as well as giving an insight into its design. In
section 2 we describe the structure of our probabilistic object model and feature
detectors and their representation. In section 3 we show how to estimate the
model’s parameters given a set of training images. Section 4 describes the use of
the model in recognition. Our approach is then tested on a wide variety of data
in section 5, including an assessment of recognition and confusion performance,
and an application to image retrieval. Finally, conclusions are drawn in section
6.

2 Model structure

As in Burl et al. and Weber et al. [5,26,27,28] an object model consists of a con-
figuration of parts. Each part has an appearance, relative scale and a probability
of being occluded or not, or erroneously detected in the background clutter. The
entire model is generative and probabilistic, so appearance, scale, configuration
of parts, and occlusion are all modeled by probability density functions, which
here are Gaussians. The process of learning an object category is one of first de-
tecting regions and their scales, and then estimating the parameters of the above
densities from these regions, such that the model gives a maximum-likelihood
description of the training data. Recognition is performed on a query image by
again first detecting regions and their scales, and then evaluating the regions in
a Bayesian manner, using the model parameters estimated in the learning. Note
that parts refers to model, while features refer to detection in the image.

The model is best explained by first considering recognition. We have learnt a
generative object class model, with P parts and parameters θfg. We also assume
that all non-object images can also be modeled by a background with a single,
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fixed, set of parameters θbg. We are then presented with a new image and we
must decide if it contains an instance of our object class or not. In this query
image we have identified N interesting features with locations X, scales S, and
appearances A. We now make a decision as to the presence/absence of the object
by comparing the ratio of class posterior densities, R, to a threshold T :

R =
p(Object|X,S,A)

p(No object|X,S,A)
(1)

=
p(X,S,A|Object) p(Object)

p(X,S,A|No object) p(No object)
≈

p(X,S,A| θfg) p(Object)

p(X,S,A|θbg) p(No object)
(2)

The last expression is an approximation since we represent the class with its
(imperfect) model, parameterized by θ. The ratio of the priors may be estimated
from the training set or set by hand (usually to 1).

Since our model only has P (typically 3-7) parts but there are N (up to 30)
features in the image, we use an indexing variable h (as introduced in [5]) which
we call a hypothesis. h is a vector of length P , where each entry is between 0
and N , which allocates a particular feature to a model part. The unallocated
features are assumed to be part of the background, with 0 indicating the part
is unavailable (e.g. because of occlusion). The set H is all valid allocations of
features to the parts; consequently |H| is O(NP ). Computing R in (1) requires
the calculation of the ratio of the two likelihood functions. In order to do this,
the likelihoods are factored as follows:

p(X,S,A| θfg) =
∑

h∈H

p(X,S,A,h| θfg) (3)

=
∑

h∈H

p(A|X,S,h, θfg)
︸ ︷︷ ︸

Appearance

p(X|S,h, θfg)
︸ ︷︷ ︸

Shape

p(S|h, θfg)
︸ ︷︷ ︸

Rel. Scale

p(h|θfg)
︸ ︷︷ ︸

Other

(4)

If we believe no object to be present, then all features in the image belong
to the background. Thus we only have one possible hypothesis: h0 = 0, the null
hypothesis. So the likelihood in this case becomes:

p(X,S,A| θbg) = p(A|X,S,h0, θbg)p(X|S,h0, θbg)p(S|h0, θbg)p(h0|θbg) (5)

As we will see below, p(X,S,A| θbg) is a constant for a given image. This sim-
plifies the computation of the likelihood ratio in (1), since p(X,S,A| θbg) can
be moved inside the summation over all hypotheses in (3), to cancel with the
foreground terms.

We now look at each of the likelihood terms and derive their actual form.
The likelihood terms model not only the properties of the features assigned
to the models parts (the foreground) but also the statistics of features in the
background of the image (those not picked out by the hypothesis). It will be
helpful to define the following notation: let d be a binary vector giving the state
of occlusion for each part, i.e. dp = 1 if part p is present and dp = 0 if absent),
nfg = sum(d) (the number of foreground features under the current hypothesis)
and nbg = N − nfg (the number of background features).
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2.1 Appearance

Here we describe the form of p(A|X,S,h, θ) which is the appearance term of
the object likelihood. We simplify the expression to p(A|h, θ) since given the
detected features, we assume their appearance and location to be independent.
Each feature’s appearance is represented as a point in an appearance space,
defined below. Each part p has a Gaussian density within this space, with mean
and covariance parameters θapp

fg,p = {cp, Vp} which is independent of other parts’

densities. The background model has fixed parameters θapp
bg = {cbg, Vbg}. Both

Vp and Vbg are assumed to be diagonal. The appearance density is computed
over all features: each feature selected by the hypothesis is evaluated under the
appropriate part density while all features not selected by the hypothesis are
evaluated under the background density:

p(A|h, θfg) =
P∏

p=1

G(A(hp)|cp, Vp)
dp

N∏

j=1,j 6∈h

G(A(j)|cbg, Vbg) (6)

where G is the Gaussian distribution, and dp is the pth entry of the vector d,
i.e. dp = d(p). If no object is present, then all features are evaluated under the
background density:

p(A|h0, θbg) =

N∏

j=1

G(A(j)|cbg, Vbg) (7)

As p(A|h0, θbg) is a constant and so is not dependent on h, so we can cancel
terms between (6) and (7) when computing the likelihood ratio in (1):

p(A|h, θfg)

p(A|h0, θbg)
=

P∏

p=1

(
G(A(hp)|cp, Vp)

G(A(hp)|cbg, Vbg)

)dp

(8)

So the appearance of each feature in the hypothesis is evaluated under foreground
and background densities and the ratio taken. If the part is occluded, the ratio
is 1 (dp = 0).

2.2 Configuration

Here we describe the form of p(X|S,h, θ) which is the configuration term of
the object likelihood. We investigate two models: the first is a fully connected

model, as previously studied by Weber et al. and Burl et al. [5,28], where the
configuration is represented by a joint Gaussian density of the locations of fea-
tures within a hypothesis, once they have been transformed into a scale and
translation-invariant space. This representation allows the modeling of both in-
ter and intra part variability: interactions between the parts (both attractive
and repulsive) as well as uncertainty in location of the part itself. The second is
a star model where only the Gaussian density between parts and a distinguished
landmark part are represented.
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In both cases translation invariance is achieved by using the location of the
feature assigned to the landmark (this landmark is the first non-occluded part
in the fully connected model). We then model the configuration of the remaining
features in the hypothesis relative to this landmark feature. Scale invariance is
achieved by using the scale of the landmark part to normalize the locations of the
other features in the constellation. This approach avoids an exhaustive search
over scale that other methods use. If the index of the landmark part is l, then
the landmark feature’s location is X(hl) and its scale is S(hl).

X(h) is a 2P vector holding the x and y coordinates of each feature in
hypothesis h, i.e. X(h) = {xh1

, . . . , xhP
, yh1

, . . . , yhP
} . To obtain translation

invariance, we subtract the location of the landmark from X(h): X∗(h) = {xh1
−

xhl
, . . . , xhP

− xhl
, yh1

− yhl
, . . . , yhP

− yhl
}. A scale invariant representation is

obtained by dividing through by S(hl): X∗∗(h) = X∗(h)
S(hl)

.

Fully connected model: We model X∗∗(h) with a Gaussian density which has

parameters θshape
fg = {µ, Σ}. Since any of the P parts can act as the landmark,

µ, Σ are in fact a set of P µl’s and Σl’s to evaluate X∗∗(h) with. However, the
set members are equivalent to one another since changing landmark just involves
a translation of µ and the equivalent transformation of Σ (a referral of variances
between the old and new landmark).

Due to translation invariance, µl is a 2(P −1) vector (x and y coordinates of
the non-landmark parts). Correspondingly, Σl is a 2(P − 1) × 2(P − 1) matrix.
Note that, unlike appearance whose covariance matrices Vp, Vbg are diagonal, Σl

is a full matrix. All features not included in the hypothesis are considered as
arising from the background. The model for the background assumes features to
be spread uniformly over the image (which has area α), with locations indepen-
dent of the foreground locations. We also assume that the landmark feature can
occur anywhere in the image, so it’s location is modeled by a uniform density of
1/α.

p(X|S,h, θfg) =

(
1

α
G(X∗∗(h)|µl, Σl)

)(
1

α

)nbg

(9)

If a part is occluded then we marginalize it out, which for a Gaussian entails
deleting the appropriate dimensions from the mean and covariance matrix. See
[26] for more details.

If no object is present, then all detections are in the background and are
consequently modeled by a uniform distribution:

p(X|S,h0, θbg) =

(
1

α

)N

(10)

Again, this is a constant, so we can cancel between (9) and (10) for the likelihood
ratio in (1) to give:

p(X|S,h, θfg)

p(X|S,h0, θbg)
= G(X∗∗(h)|µl, Σl)αnfg−1 (11)
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Star model: While the joint Gaussian model on the part locations gives the
most thorough description, it makes all parts dependent on one another. The
EM learning scheme, described in Section 3, requires the computation of the
posterior density on h: p(h|X,A,S, θ). The inter-dependency of the parts makes
the calculation of this density O(NP ). Despite the use of efficient heuristics to
give accurate approximations, it becomes computationally intractable for P > 7
and N > 30.

A way around this is to reduce the dependencies in the model by only con-
ditioning on a single model part, as illustrated in Figure 2. Under this model
the non-landmark parts are independent of one another given the landmark. In
graphical model terms, this is a tree of depth one, with the landmark part being
the root node. We call this the “star” model.

In the star model the joint probability of the configuration aspect of the
model may be factored as:

p(X|S,h, θ) = p(xL|hL)
∏

j 6=L

p(xj |xL, sL, hj , θj) (12)

where xj is the position of part j and L is the landmark part. We adopt a Gaus-
sian model on the relative position between the parts p(xj |xL, sL, hj , θj). The
reduced dependencies of this model mean that the marginalization is O(N 2P ),
enabling us to cope with far larger N and P in learning and recognition. One
drawback however is that the landmark part must always be present, which may
not always be the case, leading to artificially large configuration variances.

x1

x3

x4

x6

x5

x2

Fully connected model

x1

x3

x4

x6

x5

x2

Fully connected model

(a)
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x
5

x
2

“Star” model

x
1

x
3

x
4

x
6

x
5

x
2

“Star” model

(b)

Fig. 2. (a) Fully-connected six part configuration model. Each node is a model
part while the edges represent the dependencies between parts. (b) A six part
Star model. The former has complexity O(NP ) while the latter has complexity
O(N2P )

2.3 Relative scale

Here we describe the form of p(S|h, θ) which is the relative scale term of the
object likelihood. This term has the same structure as the configuration term.
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The scale of parts relative to the scale of the landmark feature is modeled by
a Gaussian density in log space which has parameters θscale

fg = {t, U}. Again,
since the landmark feature could belong to any of the P parts, these parameters
are really a set of equivalent tl, Ul’s. The parts are assumed to be independent
of one another, thus Ul is a diagonal (P − 1) × (P − 1) matrix, with tl being a
(P −1) vector. The background model assumes a uniform distribution over scale
(within a range r).

p(S|h, θfg) =

(
1

r
G(log S∗(h)|tl, Ul)

)(
1

r

)nbg

(13)

If the object is not present, all detections are modeled by the uniform distribu-
tion:

p(S|h0, θbg) =

(
1

r

)N

(14)

Thus the ratio of likelihood becomes:

p(S|h, θfg)

p(S|h0, θbg)
= G(log S∗(h)|tl, Ul) rnfg−1 (15)

2.4 Occlusion and Statistics of the feature finder

p(h|θfg) = pPoiss(nbg|M)
1

nCr(N,nfg)
p(d|D) (16)

The first term models the number of features in the background, using a Poisson
distribution, which has a mean M . The second is a book-keeping term for the
hypothesis variable and the last is a joint distribution on the occlusions of model
parts. It is a multinomial density (of size 2P ), modeling all possible occlusion
patterns d, having a parameter, D. This joint distribution allows the modeling
of correlations in occlusion: nearby parts are more often occluded together than
far apart things. In the null case, we only have only possible hypothesis, h0, so
the only term from (16) that remains is the Poisson which now has to account
for all features belonging to the background:

p(h0|θbg) = pPoiss(N |M) (17)

Thus the ratio becomes:

p(h|θfg)

p(h|θbg)
=

pPoiss(nbg|M)

pPoiss(N |M)

1
nCr(N,nfg)

p(d|D) (18)

These terms were introduced by Weber et al. [28].

2.5 Model structure summary

The model encompasses many of the properties of an object, all in a probabilistic
way, so this model can represent both geometrically constrained objects (where
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the configuration density would have a small covariance) and objects with dis-
tinctive appearance but lacking geometric form (the appearance densities would
be tight, but the configuration density would now be looser). Some additional
assumptions inherent in our chosen model structure include: given a set of de-
tected features, their appearance and location are independent; the foreground
features’ appearances are independent of one another; the background features’
are independent of the foreground and each other. Using (8),(11),(15) and (18)
we can write the likelihood ratio from (1) as:

p(X,S,A|θfg)

p(X,S,A|θbg)
=

∑

h∈H

p(X,S,A,h|θfg)

p(X,S,A,h0|θbg)
(19)

=
∑

h∈H

P∏

p=1

(
G(A(hp)|cp, Vp)

G(A(hp)|cbg, Vbg)

)dp

(20)

G(X∗∗(h)|µl, Σl) G(log S∗(h)|tl, Ul) (αr)nfg−1 pPoiss(nbg|M)p(d|D)

pPoiss(N |M) nCr(N,nfg)

The intuition is that the majority of the hypotheses will be low scoring as they
will be picking up features from background clutter on the image but hopefully a
few features will genuinely be part of the object and hypotheses using these will
score highly. However, we must be able to locate features over many different
instances of the object and over a range of scales in order for this approach to
work.

2.6 Feature detection

The model may be learnt from any feature detector that returns a position and
a scale. In the sequel we employ two complementary detectors: a region detector
and a curve detector. One emphasizes the appearance, the other the geometry.

Region detector: Features are found using the detector of Kadir and Brady [12]3.
This method finds regions that are salient over both location and scale. For each
point in the image a histogram P (I) is made of the intensities in a circular region
of radius (scale) s. The entropy H(s) of this histogram is then calculated and
the local maxima of H(s) are candidate scales for the region. The saliency of
each of these candidates is measured by H dP

ds
(with appropriate normalization

for scale [12,15]).
This gives a 3-D saliency map (over x,y and s). Regions of high saliency are

clustered over both location and scale, with a bias toward clusters of large scale,
since they tend to be more stable between object instances. The centroids of the
clusters then provide the features for learning and recognition, their coordinates
within the saliency map defining the centre and radius of each feature.

3 An implementation of this feature detector is available at http://www.robots.ox.ac.
uk/∼timork/salscale.html



12

A good example illustrating the saliency principal is that of a bright circle
on a dark background. If the scale is too small then only the white circle is seen,
and there is no extrema in entropy. There is an entropy extrema when the scale
is slightly larger than the radius of the bright circle, and thereafter the entropy
decreases as the scale increases.

In practice this method gives stable identification of features over a variety
of sizes and copes well with intra-class variability. The saliency measure is de-
signed to be invariant to scaling, although experimental tests show that this is
not entirely the case due to aliasing and other effects. Note, only monochrome
information is used to detect and represent features. Figure 3 illustrates this
detector on six typical images from the motorbike dataset.

Fig. 3. Six typical motorbikes images with the output of the Kadir-Brady oper-
ator overlaid. The +’s illustrate the centre of the salient region, while the circles
show the scale of the region. Notice how the operator fires more frequently on
more salient regions, ignoring the uniform background present in of some of the
images.

Curve detector: Rather than only consider very local spatial arrangements of
edge points (as in [2]), extended edge chains are used, detected by the Canny
edge operator [6]. The chains are then divided into segments between bitangent
points, i.e. points at which a line has two points of tangency with the curve.
Figure 4(b) shows an example.

This decomposition is used for two reasons: first, bitangency is covariant
with projective transformations. This means that for near planar curves the
segmentation is invariant to viewpoint, an important requirement if the same,
or similar, objects are imaged at different scales and orientations. Second, by
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segmenting curves using a bi-local property interesting segments can be found
consistently despite imperfect edgel data.

Bitangent points are found on each chain using the method described in [19].
Since each pair of bitangent points defines a curve which is a sub-section of the
chain, there may be multiple decompositions of the chain into curved sections
as shown in figure 4(b). In practice, many curve segments are straight lines
(within a threshold for noise) and these are discarded as they are intrinsically less
informative than curves. In addition, the entire chain is also used, so retaining
convex curve portions.

2.7 Feature representation

Region representation: The Kadir & Brady feature detector identifies regions
of interest in each image. The coordinates of the centre give us X and the size
of the region gives S.

Once the regions are identified, they are cropped from the image and rescaled
to the size of a small (typically 11 × 11 pixels) patch. Thus, each patch exists
in a 121 dimensional space. Since the appearance densities of the model must
also exist in this space, we must somehow reduce the dimensionality of each
patch whilst retaining its distinctiveness – a 121-dimensional Gaussian will cause
numerical problems and also the number of parameters involved (242 per model
part) are too many to be estimated. This is done by using principal component
analysis (PCA). In the learning stage, we collect the patches from all images
and perform PCA on them. Each patch’s appearance is then a vector of the
coordinates within the first k (typically 10-15) principal components, so giving
us the vector of appearance parameters A. This gives a good reconstruction of
the original patch whilst using a moderate number of parameters per part (20-
30). Thus the appearance densities of all part exist within the same PCA basis
(although this basis will vary between object classes – we return to this point
in section 5). Since the principal components are orthogonal, it means that the
covariance terms between components will be zero, thus Vp (the covariance of
a parts appearance) is diagonal in nature. Alternative representations such as
ICA and Fisher’s linear discriminant were also tried, but in experiments they
were shown to be inferior.

We have now computed X, S, and A for use in learning or recognition. We
also retain the PCA basis so that patches from query images may be projected
into the same PCA space. For a typical image, this takes 10-15 seconds (all
timings given are for a 2 Ghz machine), mainly due to the unoptimized feature
detector. Optimization should reduce this to a few seconds.

Curve representation: Each curve is transformed to a canonical position using
a similarity transformation such that it starts at the origin and ends at the point
(1, 0). If the curve’s centroid is below the x-axis then it is flipped both in the
x-axis and the line y = 0.5, so that the same curve is obtained independent of
the edgel ordering. The y value of the curve in this canonical position is sampled
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at 13 equally spaced x intervals between (0, 0) and (1, 0). Figure 4(c) shows
curve segments within this canonical space. Since the model is not orientation-
invariant, the original orientation of the curve is concatenated to the 13-vector
for each curve, giving a 15-vector (for robustness, orientation is represented as a
normalized 2-vector). Combining the 15-vectors from all curves within the image
gives A.
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Fig. 4. (a) Sample output from the region detector. The circles indicate the
scale of the region. (b) A long curve segment being decomposed at its bitangent
points. (c) Curves within the similarity-invariant space - note the clustering.
(d), (e) & (f) show the curve segments identified in three images. The green
and red markers indicate the start and end of the curve respectively

3 Learning

In an unsupervised learning scenario, one is presented with a collection of images
containing examples of the objects amongst clutter. However the position and
scale of the object with each image is unknown; no correspondence between
exemplars is given; parts of the object may be missing or occluded. The challenge
is to make sense from this profusion of data. Weber et al. [28,26] approached
the problem of unsupervised learning of object classes in clutter as a maximum
likelihood estimation. For this purpose they derived an EM algorithm for the
constellation model. We follow their approach in deriving an EM algorithm to
estimate the parameters of our improved model.

The task of learning is to estimate the parameters θfg = {µ, Σ, c, V,M,D, t, U}

of the model discussed above. The goal is to find the parameters θ̂ML which
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best explain the data X,S,A from all the training images, that is maximize
the likelihood: θ̂ML = arg max

θ

p(X,S,A| θfg). Note that the parameters of the

background, θbg, are constant during learning.
Learning is carried out using the expectation-maximization (EM) algorithm

[8] which iteratively converges, from some random initial value of θfg to a max-
imum (which might be a local one).

We now look at each stage in the learning procedure, giving practical details
of its implementation and performance, using the motorbike dataset as an ex-
ample. We assume that X,S,A have already been extracted from the images,
examples of which are shown in figure 3.

3.1 Initialization

Initially we have no knowledge about the structure of the object to be learnt so
we are forced to initialize the model parameters randomly. However, the model
which has a large number of parameters, must be initialized sensibly to ensure
that the parameters will converge to a reasonable maximum. For the configura-
tion, the means are set randomly over the area of the image and the covariances
to be large enough so that all hypotheses have a roughly equal weighting. The
other terms are set in a similar manner. The same initialization settings are used
in all experiments.

3.2 EM update equations

The algorithm has two stages: (i) the E-step in which, given the current value
of θfg at iteration k, θk

fg, some sufficient statistics are computed and (ii) the M-

step where we compute the parameters for the next iteration, θk+1
fg using these

sufficient statistics.
We now give the equations for both the E-step and M-step. The E-step

requires us to compute the posterior density of the hidden variables, which in
our case are the hypotheses. This is calculated using the joint:

p(h|X,S,A, θk
fg) =

p(X,S,A,h| θk
fg)

∑

h∈H p(X,S,A,h| θk
fg)

=

p(X,S,A,h| θk
fg)

p(X,S,A,h0| θbg)
∑

h∈H
p(X,S,A,h| θ+fgk)
p(X,S,A,h0| θbg)

(21)

We divide through by p(X,S,A,h0| θbg) as it is easier to compute the joint ratio
rather than the joint directly. We then calculate the following sufficient statistics
for each image, i from which we have previously extracted Xi,Ai,Si: E[X∗∗i],

E[X∗∗iX∗∗iT ], E[Ai
p], E[Ai

pA
i
p

T
], E[S∗i], E[S∗iS∗iT ], E[ni], E[Di] where the

expectation is taken with respect to the posterior, p(h|X,S,A, θk
fg), for example:

E[X∗∗i] =
∑

h∈H

p(h|Xi,Si,Ai, θk
fg) X∗∗i(h) (22)



16

Note that for simplicity we have not considered the case of missing data. The
extensions to the above rules for dealing with this may be found in [26]. The
general principle is to condition on the features that are present to work out
the expected values of those that are missing. In the M-step we then compute:
θk+1

fg = {µk+1, Σk+1, ck+1, V k+1, tk+1, Uk+1,Mk+1,Dk+1}:

µ
k+1 =

1

I

I∑

i=1

E[X∗∗i] Σk+1 =
1

I

I∑

i=1

E[X∗∗iX∗∗iT ] − µ
k+1

µ
k+1T

ck+1
p =

1

I

I∑

i=1

E[Ai
p] ∀p ∈ P V k+1

p =
1

I

I∑

i=1

E[Ai
pA

i
p

T
] − ck+1

p ck+1
p

T
∀p ∈ P

tk+1 =
1

I

I∑

i=1

E[S∗i] Uk+1 =
1

I

I∑

i=1

E[S∗iS∗iT ] − tk+1tk+1T

Mk+1 =
1

I

I∑

i=1

E[ni] Dk+1 =
1

I

I∑

i=1

E[Di]

where I is total number of training images. The two stages are then repeated
until θk

fg converges to a stable point.

3.3 Efficient search methods

Fully connected model: In computing the sufficient statistics we need to
evaluate the likelihood for every hypothesis. Since there are O(NP ) per image,
this is the major computational bottleneck in our approach. However, only very
small portion of the hypotheses have a high probability, so efficient search meth-
ods which can quickly compute this small subset enable the learning procedure
to run in a reasonable time. These methods must ensure that initially a suf-
ficiently large set of hypotheses are considered to avoid converging on a local
maximum. However, the set must be sufficiently small to ensure that learning is
fast. The most difficult stage in learning is the start, when the large covariances
that the model is initialized with mean that many hypotheses carry significant
weight. Once the model has converged somewhat, only a very small portion of
hypotheses will need to be considered.

A tree structure is used to search the space of all possible hypotheses. The
leaves of the tree are complete hypotheses with each level representing a part:
moving down the tree features are allocated to parts until a complete hypothesis
is formed. The A∗ algorithm is used to efficiently explore the tree, with a bi-
nary heap storing the list of open branches on the tree. Conditional densities for
each part (i.e. conditioning on previously allocated parts) are pre-computed to
minimize the computation necessary at each branch. The algorithm produces hy-
potheses ordered by likelihood. For each frame, we compute all hypothesis until
they become less than some threshold (e−15) smaller than the best hypothe-
sis. This threshold was chosen to ensure that the learning progressed within a
reasonable time while evaluating as many hypotheses as possible.
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Additionally, space search methods are used to prune the tree. At a given
level of the tree, the joint density of the configuration term allows the density of
location of the current part to be computed by conditioning on the previously
allocated parts. Only a subset of the N detections need be evaluated by this
density: we assume that we can neglect detections if their probability is worse
than having all remaining parts be missing. Since the occlusion probabilities are
constant for a given learning iteration, this gives a threshold which truncates
the density. If the covariance of the density is small, only the best few detections
need to be evaluated, enabling significant numbers of hypotheses to be ignored.

Despite these methods, learning a P = 6-7 part fully connected model with
N = 20-30 features per image (a practical maximum), using 400 training images,
takes around 24-36 hours to run. This equates to spending 3-4 seconds per image,
on average, at each iteration (given total running time of 36 hours, with 400
training images and 100 EM iterations) . It should be noted that learning only
needs to be performed once per category, due to the good convergence properties.

Star model: The advantage of this model over the fully connected model is
in the computational complexity of both learning and recognition. The reduced
dependencies mean that the computation of the marginal density p(h|X,A,S, θ)
is now O(N2P ). As with the fully connected model, the majority of the probabil-
ity mass is concentrated at a few hypotheses hence we only consider hypotheses
e−15 smaller than the best hypothesis. This efficient search method allows us
to handle much large N and P – e.g. with 400 training images and 100 EM
iterations, a P = 6-7 part model with N = 20-30 features can be learnt in 10
minutes, and a model with P = 12 and N = 100 can be learnt in 12 hours.

3.4 Implementation details

To aid both convergence and speed, an ordering constraint is placed on the
x-coordinates of features allocated to parts: the features selected must have
a monotonically-increasing x-coordinate. This reduces the total number of hy-
potheses by P ! but unfortunately imposes an artificial constraint upon the con-
figuration of the object. If the object happens to be orientated vertically then
this constraint can exclude the best hypothesis. Clearly in this scenario, impos-
ing a constraint on the y-coordinate ordering would resolve the problem but it
is not clear how to choose such an appropriate constraint in an unsupervised
manner.

Since the model is generative, the background images are not used in learn-
ing except for one instance: the appearance model has a distribution in appear-
ance space modeling background features. Estimating this from foreground data
proved inaccurate so the parameters were estimated from a set of background
images and not updated within the EM iteration.

Extracting the features for a typical image takes 10-15 seconds (all timings
given are for a 2 Ghz machine) with our Matlab-C implementation.
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3.5 Final model

In figure 5 we show a complete fully connected model trained on the motorbike
dataset using regions only. It is pleasing to see that a sensible spatial structure
has been picked out and that the appearance samples correspond to distinctive
parts of the motorbike.
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Part 1  Det: 5x10-18

Part 2  Det: 8x10-22
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Part 5  Det: 3x10-17

Part 6  Det: 4x10-24

Background  Det: 5x10-19

(b)

Fig. 5. A fully connected model using only regions: (a) Top: configuration den-
sity superimposed on an image of a motorbike. The ellipses represent the co-
variance of each part (the inter-part covariance terms cannot easily be shown)
and the probability of each part being present is shown just to the right of the
mean. Bottom: Relative scale densities. The x–coordinate is log–scale, relative
to the scale of the landmark part. (b) Samples belonging to each part (i.e. from
the best hypothesis in a training image) which are closest to the mean of the
appearance density.

4 Recognition

The recognition process is very similar in nature to learning. For query image,
t, recognition proceeds by first detecting features, giving Xt and St. These are
then cropped from the image and rescaled leaving each feature as an 11 × 11
patch. Using the PCA basis from the training process, they are transformed into
the k dimensional PCA space, giving At.

Once Xt, At and St have been obtained we then compute the likelihood
ratio using (1). To determine if an object is in the image involves the summation
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over all hypotheses, not the best one. The likelihood ratio, assuming we take the
ratio of the priors in (1) to be 1, is the same as the ratio of posteriors, R. This is
then compared to a threshold to make the object present/absent decision. This
threshold is determined from the training set to give the desired balance between
false positives and false negatives.

If we wish to localize the object within the image, the best hypothesis is
found and a bounding box around it formed at its location. We then sum over
all hypotheses which are within this box. If the total is greater than the thresh-
old then an instance of the object placed at the centroid of the box and all
features within the box are deleted. The next best hypothesis is then found and
the process repeated until the sum of hypotheses within the box fall below the
threshold. This procedure allows the localization of multiple object instances
within the image.

The same efficient search methods described in section 3.3 are used in the
recognition process to perform the summation over only those hypotheses that
have a significant contribution to the overall sum. However, recognition is faster
as the covariances are tight (as compared with the initial values in the learning
process) so the vast majority of hypotheses may safely be ignored. For N = 25
and P = 6 the process takes around 2-3 seconds per image for the fully connected
model, and 0.02 seconds for the star model.

5 Results

A variety of experiments were carried out on a number of different pre-prepared
datasets, each one being a different category. The first series of experiments were
performed on large datasets which were split randomly into two separate sets of
equal size. The model was then trained on the first and tested on the second. In
recognition, the decision was a simple object present/absent one, except for the
cars (side) dataset where multiple instances of object and their location within
the image were to be found. To avoid confusion, we call these the closed world

experiments.

In the second series of experiments, models were trained on a limited number
of hand-selected images obtained from Google’s image search. They were then
tested on data from a different source (i.e. movie footage) - quite different in
nature to the training images. These are called the open world experiments.

5.1 Methodology and datasets for closed world experiments

The performance was evaluated by plotting receiver-operating characteristic
(ROC) curves. To ease comparisons we use a single point on the curve to sum-
marises its performance, namely the point of equal error (i.e. p(True positive)=1-
p(False positive)) when testing against one of two background (negative) datasets.
For example a figure of 91% means that 91% of the foreground images were cor-
rectly classified but 9% of the background images were incorrectly classified (i.e.
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Fig. 6. (a) The motorbike model from Fig. 5 evaluating a set of query images.
The pink dots are features found on each image and the coloured circles indicate
the features of the best hypothesis in the image. The size of the circles indicates
the scale of feature. The outcome of the classification is marked above each image,
incorrect classifications being highlighted in red. (b) The model evaluating query
images consisting of scenes around Caltech – the negative test set.
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thought to be foreground). While the number of foreground test images var-
ied between experiments, depending on the number of images available for each
class, the foreground and background sets were always of equal size.

There were two phases of experiments. In the first, the fixed-scale experi-
ments, those datasets with scale variability, were normalized so that the objects
were of uniform size. The algorithm was then evaluated on the datasets and com-
pared to other approaches. In the second phase the scale-invariant algorithm was
run on the datasets containing scale variation and the performance compared to
the scale-normalized case.

In all these experiments, the only feature type used were Kadir & Brady
interest regions and the fully connected configuration model was used in prefer-
ence to the star model. The following parameters were adopted: k = 15, P = 6
and on average N = 25. The only parameter that was adjusted at all was the
scale over which features were found. The standard setting was 4−60 pixels but
for the scale-invariant experiments, this was changed to account for the wider
scale variation in features.

Six diverse datasets were used in the experiments, examples of which can
be seen in figure 1. These include motorbikes, airplanes, cars (rear), faces and
cluttered scenes around Caltech (used as the negative test set). Two additional
background (negative) datasets are used. The first was collected from Google’s
image search using the keyword “things”, resulting in a highly diverse collection
of images. The second was a set of empty road scenes for use as a realistic
background test set for the cars (rear) dataset. The motorbike and airplanes
datasets contain images that were manually flipped to ensure the object was
facing the same way. The spotted cat dataset, obtained from the Corel base,
was only 100 images originally, so another 100 were added by reflecting the
original images, making 200 in total. Amongst the datasets, only the motorbikes,
airplanes and cars (rear) contained any meaningful scale variation. All images
from the datasets were converted to grayscale as colour was not used in our
experiments. Table 1 gives the size of training set used for each dataset in the
experiments.

Fixed scale experiments: Figures 7-9 show models and test images for four of
the datasets. Notice how each model captures the essence, be it in appearance or
configuration or both, of the object. The face and motorbike datasets have tight
configuration models, but some of the parts have a highly variable appearance.
For these parts any feature in that location will do regardless of what it looks like
(hence the probability of detection is 1). Conversely, the spotted cat dataset has
a loose configuration model, but a highly distinctive appearance for each region.
In this instance, the model is just looking for regions of spotty fur, regardless
of their location. The differing nature of these examples illustrate the flexible
nature of the model.

The majority of errors are a result of the object receiving insufficient coverage
from the feature detector. This happens for a number of reasons. One possibil-
ity is that, when a threshold is imposed on N (for the sake of speed), many
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features on the object are removed. Alternatively, the feature detector seems to
perform badly when the object is much darker than the background (see exam-
ples in figure 9). Finally, the clustering within the feature detector is somewhat
temperamental and can result in parts of the object being missed.

Dataset Total size of dataset Object width (pixels) (a) (b)

Motorbikes 800 200 91.0 90.5

Faces 435 300 91.7 88.5

Airplanes 800 300 85.5 86.5

Spotted Cats 200 80 85.0 92.0

Cars (Rear) 800 100 88.8 89.3

Table 1. Recognition results on five scale-normalized datasets. (a) is the detec-
tion rate (%) at the point of equal-error on an ROC curve, testing against the
Caltech background (negative) dataset as the negative set (with the exception
of Cars (rear) which uses empty road scenes as the negative test set). The al-
gorithm’s parameters were kept exactly the same. (b) is the same as (a), except
that the Google background dataset was used in testing.

Table 1 shows the performance of the algorithm across the five datasets,
with some of the learnt models illustrated in figures 7-9. In experiments (a)
and (b), exactly the same algorithm settings are used for all models. Note that
the performance is above 90% for all four datasets, regardless of the choice of
background dataset.

Recognized category

Query image Motorbike Spotted cat Airplane Face

Motorbike 94.1 4.3 1.2 0.4

Spotted Cats 1.0 97.0 2.0 0

Airplane 8.0 1.1 90.5 0.4

Face 1.4 0.9 7.8 89.9

Table 2. Confusion table between the four classes for fixed scale learning and
recognition of the fully connected model using regions. Each row gives a break-
down of how a query image of a given category is classified (in %). No negative
(background) dataset was used, rather images belonging to each class acted as
negative examples for models trained for the other classes. The optimum would
be 100% on the diagonal with zero elsewhere.

Table 2 shows a confusion table between the different classes. For each query
image all four models are applied and the one with the highest likelihood deter-
mines the category. Despite being inherently generative, the models can distin-
guish between the classes well. In order to construct this table, it was necessary
to be able to directly compare likelihoods between different models and so the
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same PCA basis was used for all classes, in contrast to all other experiments,
where it was computed for each dataset separately. In changing the way the PCA
basis was computed, the object present/absent performance is not significantly
altered - in the case of motorbikes, the performance increased from 91.0% (PCA
basis computed for motorbike dataset alone) to 91.3% (fixed PCA basis across
all classes).

Comparison with other methods: Figure 10 shows a recall-precision curve
(RPC) and a table comparing the algorithm to previous approaches to object
class recognition [1,26,28]. In the majority of cases, the performance of the algo-
rithm is superior to the earlier methods, despite not being tuned for a particular
dataset. In the Cars (Side) dataset from Agarwal et al. [1] the performance also
includes localizing the object instance(s) within the image.

More recently several methods [7,11,14,18,24] have exceeded the performance
of the fully connected constellation model given in the table of Figure 10 for
some classes. However, in the case of [7,11,18,24] the methods do not determine
the localization of the object instance in the image. The method of Leibe and
Schiele [14] does determine the location, but also includes a verification stage.
This stage is responsible for a 6.5% improvement in performance over the original
hypothesis. The constellation model could also benefit from a stage similar to
this.

Scale-invariant experiments: Table 3 shows the performance of scale-invariant
models on unscaled images. Comparing these results to those of the scale-variant
models tested on the pre-scaled data (as in table 1 above), it can be seen that
the performance is roughly the same as the scale-normalised case. In the case
of airplanes, the improved performance may be explained by the imprecise nor-
malisation of the data when using the fixed-scale model. Figure 11 shows the
scale-invariant model for this cars (read) dataset. This model was tested against
a negative set consisting of background road scenes (rather than the background
images, examples of which are in Fig. 1) to make a more realistic experiment.

Total size Object size Scale-invariant
Dataset of dataset range (pixels) performance

Motorbikes 800 200-480 90.5

Airplanes 800 200-500 90.8

Cars (Rear) 800 100-550 90.3

Table 3. Results for scale-invariant learning/recognition.

5.2 Methodology and datasets for open world experiments

The aim of the open world experiments is to test the algorithm in a more realistic
environment, where large collections of training data, similar in nature to the test
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Fig. 7. A typical spotted cat fully connected model with 6 region parts. Note
the loose configuration model but distinctive “spotted fur” appearance.
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Fig. 8. A typical fully connected airplane model with 6 region parts. The long
horizontal structure of the fuselage is captured by the configuration model.
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Fig. 9. A fixed scale cars (Rear) fully connected model with 6 region parts. The
feature detector fires somewhat erratically, thus the model resorts to finding
low-level horizontal line type structures on the back of the car.
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Dataset Ours Others Ref.

Motorbikes 91.0 84 [26]

Faces 91.7 94 [28]

Airplanes 85.5 68 [26]

Cars(Side) 88.5 79 [1]

Fig. 10. Comparison to other methods [1,26,28]. The diagram on the left shows
the RPC for [1] and our algorithm on the cars (side) dataset. On the right the
table gives ROC equal error rates (except for the car (side) dataset where it is a
recall-precision equal error) on a number of datasets. The errors for our algorithm
are at least half those of the other methods, except for the face dataset.

data are not typically available. The particular application was to find objects
within a video sequence, the BBC situation comedy Fawlty Towers. Every 30th
frame from a 40 minute episode was extracted, forming a test set of 1463 images.
The dataset is challenging because images are of poor quality due to the effects
of de-interlacing; motion blur and age of the original footage (the series was
made in the 1970’s). A couple of example frames from the test set is shown in
Figure 12.

Two objects present in a reasonable portion of the Fawlty Towers sequence
were chosen as classes to search for: antique barometer (present in 12.9% of
frames) and car (front) (present in 1.5%). 15 images for each category were then
hand-selected from Google’s image search4 to form a limited training set. No
pre-processing of any kind was done on the images.

In this application, since it is not clear what would constitute a negative test
set, the evaluation criterion used is a Recall-Precision curve. Recall and Precision
are defined as:

Recall =
Portion of positives returned

Total positives in dataset
Precision =

Portion of positives returned

Total returned

Positives and negatives in this instances are frames with the object present/absent
respectively.

Models are learnt using a combination of both Kadir & Brady interest regions
and Curves. Given the small size of the target object within the frames, a large
N was needed to ensure good converge of the image. Hence the star model was
used for both learning and recognition. A variety of combinations were evaluated
for each category. The following parameters were adopted: k = 15, P = 5 and
on average N = 200 in recognition.

4 http://www.google.com/imghp
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Fig. 11. A scale-invariant cars (rear) fully connected model with 6 region parts.
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(a) (b)

(c)
(d)

Fig. 12. (a) & (b) Two typical scenes from the sit-com “Fawlty Towers”. (c)
Sample training images for Cars (Front). (d) Sample training images for Antique
Barometers.
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Fawlty Towers experiments: Two object classes were learnt from Google im-
ages and evaluated on the Fawlty Towers video sequence: antique barometer and
car (front). The antique barometer model with the best performance is shown
in Figure 13. Note that it uses a combination of curves and regions. As Figure
15(a) shows, using either all regions or all curves gives inferior performance. The
first pages of frames returned by the model (ranked by likelihood ratio) is shown
in Figure 14.

The model and detection examples for Cars (Front) are shown in figure 16,
with the recall-precision curve shown in figure 15(b). The poor quality of the
model for this class – it just appears to prefer indistinct horizontal edge features
on the car’s radiator grille – is attributable to the tiny quantity of training data.
Since 200-300 images are typically required to eliminate over-fitting, it is clear
that using only 15 images places these models at a severe handicap. Nevertheless,
the precision of the model is very good.
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Fig. 13. A barometer star model consisting of 3 regions (R) and 2 curves (C).

6 Conclusions and Further work

We have proposed an improved learning scheme for the ‘constellation model’
which is scale-invariant and where configuration and appearance are learnt si-
multaneously. We tested an implementation of such scheme on six diverse and
challenging datasets. We find that learning is robust with respect to clutter, scale
variation and inter-object variability. It does not require human intervention to
segment, normalize or otherwise pre-process the training data.

There are two other areas where improvements will be very beneficial. The
first is in a further generalization of the model structure to have a multi-modal
appearance density with a single configuration distribution. This will allow more
complex appearances to be represented, for example faces with eyes (wide) shut
or open. Second, we have built in scale-invariance, but full affine-invariance
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Fig. 14. The first page of images returned by the barometer model, ordered by
likelihood ratio.
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Fig. 15. (a) Recall-precision curves for barometer models with different combi-
nations of feature types. (b) Recall-precision curves for Cars (Front).
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should also be possible. This would enable learning and recognition from im-
ages with much larger viewpoint variation.
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